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Background: Different factors influence severity, progression, and outcomes in

Parkinson’s disease (PD). Lack of standardized clinical assessment limits comparison

of outcomes and availability of well-characterized cohorts for collaborative studies.

Methods: Structured clinical documentation support (SCDS) was developed within the

DNA Predictions to Improve Neurological Health (DodoNA) project to standardize clinical

assessment and identify molecular predictors of disease progression. The Longitudinal

Clinical and Genetic Study of Parkinson’s Disease (LONG-PD) was launched within the

Genetic Epidemiology of Parkinson’s disease (GEoPD) consortium using a Research

Electronic Data Capture (REDCap) format mirroring the DodoNA SCDS. Demographics,

education, exposures, age at onset (AAO), Unified Parkinson’s Disease Rating Scale

(UPDRS) parts I-VI or Movement Disorders Society (MDS)–UPDRS, Montreal Cognitive

Assessment (MoCA)/Short Test of Mental Status (STMS)/Mini Mental State Examination

(MMSE), Geriatric Depression Scale (GDS), Epworth Sleepiness Scale (ESS),

dopaminergic therapy, family history, nursing home placement, death and blood samples

were collected. DodoNA participants (396) with 6 years of follow-up and 346 LONG-PD

participants with up to 3 years of follow-up were analyzed using group-based trajectory

modeling (GBTM) focused on: AAO, education, family history, MMSE/MoCA/STMS,

UPDRS II-II, UPDRS-III tremor and bradykinesia sub-scores, Hoehn and Yahr staging

(H&Y) stage, disease subtype, dopaminergic therapy, and presence of autonomic

symptoms. The analysis was performed with either cohort as the training/test set.
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Results: Patients are classified into slowly and rapidly progressing courses by AAO,

MMSE score, H &Y stage, UPDRS-III tremor and bradykinesia sub-scores relatively

early in the disease course. Late AAO and male sex assigned patients to the rapidly

progressing group, whereas tremor to the slower progressing group. Classification is

independent of which cohort serves as the training set. Frequencies of disease-causing

variants in LRRK2 and GBA were 1.89 and 2.96%, respectively.

Conclusions: Standardized clinical assessment provides accurate phenotypic

characterization in pragmatic clinical settings. Trajectory analysis identified two different

trajectories of disease progression and determinants of classification. Accurate

phenotypic characterization is essential in interpreting genomic information that is

generated within consortia, such as the GEoPD, formed to understand the genetic

epidemiology of PD. Furthermore, the LONGPD study protocol has served as the

prototype for collecting standardized phenotypic information at GEoPD sites. With

genomic analysis, this will elucidate disease etiology and lead to targeted therapies that

can improve disease outcomes.

Keywords: longitudinal monitoring, Parkinson’s disease, structured clinical documentation, motor symptoms,

non-motor symptoms

INTRODUCTION

Parkinson’s disease (PD), the second most common
neurodegenerative disease has an insidious onset and a long pre-
symptomatic and symptomatic course. Four cardinal features
that include resting tremor, bradykinesia, rigidity, and postural
instability define the motor aspects of the disease. Different
disease subtypes have been described including a tremor-
predominant, akinetic/rigid predominant and mixed subtype
(1). Non-motor features, including cognitive dysfunction,
anosmia, anxiety, depression, sleep disorders, and autonomic
dysfunction are also observed either alone or in varying
combinations. Simuni et al. reported that for the Primary
Progression Markers Initiative (PPMI) cohort, the higher
baseline non-motor scores were associated with female sex and
a more severe motor phenotype (2). Longitudinal increase in
non-motor score severity was associated with older age and
lower CSF aβ1–42 at baseline.

The temporal profile of the motor symptom appearance
and progression is rather variable. A number of different
patient cohorts have been followed longitudinally for different

lengths of time and identified predictors of disease progression.

Mollenhauer et al. analyzing the De Novo Parkinson (DeNOPA)
cohort reported that baseline predictors of worse progression of

motor symptoms included male sex, orthostatic blood pressure

drop, diagnosis of coronary artery disease, arterial hypertension,
elevated serum uric acid, and CSF neurofilament light chain

(3). In the DeNOPA cohort, predictors of cognitive decline
in PD were previous heavy alcohol abuse, current diagnoses
of diabetes mellitus, arterial hypertension, elevated periodic
limb movement index during sleep, decreased hippocampal
volume by MRI, higher baseline levels of uric acid, C-
reactive protein, high density lipoprotein (HDL) cholesterol, and

glucose levels. In their cohort, risk markers for faster disease
progression included cardiovascular risk factors, deregulated
blood glucose, uric acid metabolism, and inflammation. Lawton
et al. reported four clusters from the Tracking Parkinson’s
and Discovery cohorts: one with fast motor progression and
symmetrical motor disease, poor olfaction, cognition, and
postural hypotension; a second with mild motor and non-
motor disease and intermediate motor progression; a third
with severe motor disease, poor psychological well-being, and
poor sleep with an intermediate motor progression; and a
fourth with slow motor progression with tremor-dominant,
unilateral disease (4). From the PPMI cohort, Aleksovski et al.
reported that the postural instability gait disorder (PIGD)
subtype was characterized by more severe disease manifestations
at diagnosis, greater cognitive progression, and more frequent
psychosis than tremor predominant patients (5). From the
PPMI cohort, Latourelle et al. identified higher baseline MDS-
UPDRS motor score, male sex, and increased age, as well
as a novel Parkinson’s disease-specific epistatic interaction,
as indicative of faster motor progression (6). De Pablo-
Fernandez et al. reported that the presence of autonomic
symptoms contributed to a more rapid and severe disease
course (7).

Comparing the findings of the different reported cohorts
indicates partially overlapping clinical predictors. At the same
time though, they reveal a variable clinical assessment. Here, we
present an analysis of disease trajectory by GBTM in two large PD
patient cohorts from five different countries followed at a routine
clinical practice setting using identical clinical measures (8). We
find that over an interval of 13 years, there are two trajectories,
one with a more benign and another with a more severe disease
progression. Patients can be reliably assigned to either group
relatively early in their disease course.
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FIGURE 1 | Group-based Trajectory Modeling flowchart.

FIGURE 2 | Hoehn and Yahr (H&Y) stage groups in the DNA Predictions to Improve Neurological Health (DodoNA) and Longitudinal Clinical and Genetic Study of

Parkinson’s Disease (LONG-PD) cohorts. (A) The model trained on DodoNA data (training set). (B) The model trained on the LONG-PD data (test set). (C) The

validation for the LONG-PD prediction trained on NS data against the test set.
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METHODS

Clinical Information
Two patient cohorts with PD were included in the study: (1) the
DNA Predictions to Improve Neurological Health (DodoNA)
cohort, which includes patients that are followed longitudinally
in the Department of Neurology at NorthShore University
HealthSystem in Evanston, Illinois and (2) the Longitudinal
Clinical and Genetic Study of Parkinson’s Disease (LONG-PD)
cohort that includes PD patients enrolled by clinician
investigators from Norway, Greece, South Korea, and Sweden.
These investigators entered their clinical data through REDCap, a
web-based database. The patient information that was submitted
from the four different sites is referred to as the LONG-PD cohort
in aggregate. The cohorts included both previously diagnosed
and naïve patients. A copy of the study protocol is available in
the Supplemental Information.

The DodoNA Cohort
The goal of interpreting variation in DNA to predict neurological
disease led to naming the NorthShore cohort as the “DodoNA”
cohort after the Dodona oracle of ancient Greece. The content
of the electronic medical record-based (EPIC systems) SCDS
toolkit was developed through frequent movement disorder
neurologist meetings aimed to reach a consensus on the

essential data elements that conform to Best Practices in the
treatment of PD, parkinsonism, or tremor patients, taking
into consideration relevant literature and American Academy
of Neurology (AAN) guidelines (9), and the International
Consortium for Health Outcomes Measurement (ICHOM)
guidelines (10). The criteria for which rating scales and score

test measures to include in the toolkit were: (a) to obtain
clinically relevant information in a standardized manner that

can be performed at regular intervals; and (b) that the

standardized assessment can be performed during an office
visit within the time limitations that are imposed by a routine

office visit. The toolkit content consists of discretized fields
that record detailed information regarding initial and current

symptoms, medication history and treatment response, and
imaging results, as well as score test measures, including the
Geriatric Depression Scale (GDS) (11), Epworth Sleepiness Scale
(ESS) (12), United Parkinson’s Disease Rating Scale (UPDRS)
(13), Part I—Mentation, Behavior and Mood, UPDRS Part
II—Activities of Daily Living (ADLs), UPDRS-Part III—Motor
Score, UPDRS-IV—Complications of Therapy (COT), UPDRS-
Part V—Hoehn and Yahr staging (H&Y), UPDRS-Part VI—
Schwab & England Score (S&E), and the Short Test of Mental
Status (STMS) (14) that are autoscored. For cognitive assessment,
initially, the MoCA (Montreal Cognitive Assessment) (15)
was used. However, due to licensing permissions, the STMS

FIGURE 3 | Mini-Mental State Examination (MMSE) score groups in the DodoNA and LONG-PD cohorts. (A) The model trained on DodoNA data (training set). (B)

The model trained on the LONG-PD data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test set.
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FIGURE 4 | Motor Score groups in the DodoNA and LONG-PD cohorts. (A) The model trained on DodoNA data (training set). (B) The model trained on the LONG-PD

data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test set.

FIGURE 5 | Unified Parkinson’s Disease Rating Scale (UPDRS) (UPDRS)-III Tremor sub-score groups in the DodoNA and LONG-PD cohorts. (A) The model trained on

DodoNA data (training set). (B) The model trained on the LONG-PD data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test

set.
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was subsequently used. Both scores (MoCA and STMS) can
be converted to the Mini-Mental State Examination (MMSE)
published nomograms (16) (unpublished data, with permission
of Dr. Bradley Boeve, Mayo Clinic, Rochester, MN, USA),
and therefore, all cognitive scores are recorded as the MMSE
converted score.

The implementation of the toolkit has been cost effective, and
the annual follow-up rates using the toolkit exceeded 85%.

The LONG-PD Cohort
The clinical information for the LONG-PD cohort was entered by
the neurologists from the four participant sites in the REDCap
web-based tool designed for the electronic capture and sharing
of data (http://project-redcap.org/). NorthShore built a REDCap
form mirroring the DodoNA SCDS toolkit. A working group
refined the form and defined required fields for all sites. The
finalized formwas presented at the annual meeting of the Genetic
Epidemiology of Parkinson’s Disease (GEoPD) Consortium in
Vancouver, Canada (2015). All of the teams (DodoNA project,
LONG-PD) are members of GEoPD. The REDCap format was
chosen because it provides an easily accessible Interface for
collecting and validating data, as well as automated data export to
statistical packages in a secure, de-identified manner (SPSS, SAS,
Stata, R).

Data Treatment
Subjects were excluded that experienced onset of symptoms 10
years or more prior to their initial visit or that had less than two
valid visits (at 1 year or greater intervals). Prior to assessment,
subject scores were assumed to be unknown, and the study was
limited to a 13-year period covering all patient visits in the
cohort. Missing motor assessment scores were imputed as zero
for calculation of patient tremor and bradykinesia sub-scores.

Statistical Analysis
Group-based trajectory modeling (GBTM) was applied to
identify latent subgroups within the patient cohorts, given their
covariates and assessment scores over time (17, 18). Assessment
scores were taken on an annual basis during initial and annual
follow-up visits. GBTM assigns individuals to separate latent
subgroups with posterior probabilities over time and regression
parameters to define the trajectory of those subgroups. The
DodoNA cohort data were used as the training set and the
LONG-PD data as the test set. The test set data were entered
into the DodoNA model, and the output was compared to the
LONG-PD test set for validation. This approach is illustrated in
Figure 1.

Trajectories were calculated based on the year of the reported
initial symptom when the patient is seen for the first time in the
movement disorder clinic, thus extending the trajectory duration

FIGURE 6 | UPDRS-III Bradykinesia sub-score in the DodoNA and LONG-PD cohorts. (A) The model trained on DodoNA data (training set). (B) The model trained on

the LONG-PD data (test set). (C) The validation for the LONG-PD prediction trained on NS data against the test set.
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FIGURE 7 | Activities of Daily Living (ADL) scores in the DodoNA (A) and LONG-PD (B) cohorts. (C) The validation for the LONG-PD prediction trained on NS data

against the test set.

to a maximum of 13 years that included at least 5 years of follow-
up for the DodoNA cohort and 3 years of annual follow-up
for the LONG-PD cohort. This choice to include the interval
from the reported initial motor symptom allows a more accurate
assessment of the disease course as often the patients come to the
clinic at different points in the disease process.

We tested models with one to two subgroups using
either constant or linear terms. The best-fitting results were
selected using the lowest Bayesian information criterion (BIC)
value. We used fixed covariates including patient gender, age
of onset of symptoms, positive family history of PD with
multiple-member instances, tremor predominance, presence
of autonomic symptoms (orthostatism, urinary incontinence,
constipation) individually and in combination, levodopa therapy,
dopaminergic therapy, and years of education. Each of the fixed
covariates was then measured across assigned subgroups to
determine group membership totals and statistical significance
across subgroups (Wilcoxon rank sum test for continuous
variables: age of onset, years of education; Pearson’s chi-squared
test for count data: all other covariates).

Latent subgroup classes in GBTM cannot be externally
validated. However, we attempted to validate whether GBTMs
trained on the DodoNA cohort would be predictive of patient
subgroup membership in the LONG-PD cohort. To do this, we
trained GBTMs on the DodoNA patient cohort (the “training”

set), and using their covariate estimates with respect to baseline,
predicted subgroup membership when applied to LONG-PD
patients for each sub-score. As a validation measure, we
separately applied GBTM to the LONG-PD cohort using the
same external model parameters (number of subgroups to stratify
patients, shape of subgroup trajectories) and assumed these
results to be the ground truth “test” set. We validated the overall
results of the prediction and test sets using confusion matrices
and statistics to assess the GBTM predictive value. The GBTM
analysis was also performed in reverse with the LONG PD cohort
as the training set and the DoDoNA cohort as the test set.

All data were analyzed using STATA/IC 16.0 using the PROC
TRAJ package, and the significance level was set at 0.05.

RESULTS

Statistical Analysis
Assignment of Patients to Different Disease

Trajectories Based on Individual Clinical Scores
Individual clinical parameters were assessed for their effect on
disease trajectory: With each clinical score with the exception
of the tremor sub-score, two separate trajectories are clearly
identified: one with a slower and less severe and one with a more
rapid and more severe trajectory: for the H&Y stage (UPDRS-
V) the group with a slower progression includes 73.2% of the
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cohort (Figure 2A). This is also observed in the LONG-PD
cohort (Figure 2B) for 75.8% of the cohort. The validation for the
LONG-PD prediction trained on the DodoNA test set is shown in
Figure 2C with a sensitivity of 0.9777 and a specificity of 0.7922.

For the MMSE scores, a similar separation is seen with the
larger subset [83.8% in the DodoNA cohort (Figure 3A) and
89.8% in the LONG-PD cohort (Figure 3B)] having a slower
progression. The validation for the LONG-PD prediction trained
on the DodoNA test set is shown in Figure 3C with a lower
sensitivity of 0.54286 and a specificity of 0.99678. The apparent
improvement of the MMSE scores, Figure 3B probably reflects
the smaller sample size of the LONG-PD cohort.

For the UPDRS-III score, two groups are identified, with
the slower progression group including 62% of the DodoNA
cohort (Figure 4A) and 57.2% of the LONG-PD cohort
(Figure 4B). The separation of the two trajectories appears less
clear in the LONG-PD cohort, possibly reflecting treatment
effects and shorter duration of follow-up. The validation for
the LONG-PD prediction trained on the DodoNA test set

is shown in Figure 4C with a sensitivity of 0.8366 and a
specificity of 0.9444.

For the tremor sub-score of UPDRS-III, two groups are again
identified: the slower progression group of the DodoNA cohort
including 47.2% (Figure 5A) and the LONG-PD cohort 51%
(Figure 5B). The validation for the LONG-PD prediction trained
on theDodoNA test set is shown in Figure 5Cwith a sensitivity of
0.7857 and a specificity of 0.4479. The lower specificity that likely
reflects the presence of tremor may not accurately reflect disease
severity as it may be more sensitive to treatment effects.

For the bradykinesia sub-score of UPDRS-III, two groups
are again identified: the slower progression group of DodoNA
cohort including 62.7% (Figure 6A) and the LONG-PD cohort
including 24.7% (Figure 6B). The validation for the LONG-PD
prediction trained on the DodoNA test set is shown in Figure 6C

with a sensitivity of 1.000 and a specificity of 0.4648. The lower
specificity likely indicated that sub-scores may not accurately
reflect disease severity, as they only represent separate cardinal
features and do not assess rigidity and postural instability.

FIGURE 8 | Convergence scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the DodoNA cohort.
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The UPDRS-II ADL score separates patients in two different
trajectories, with 66.2% of the DodoNA cohort (Figure 7A) and
78.9% of the LONG-PD cohort (Figure 7B) showing a slow
trajectory. The validation for the LONG-PD prediction trained
on the DodoNA test set is shown in Figure 7C with a sensitivity
of 0.9892 and a specificity of 0.7313. It is important to note that
the UPDRS-II score reflects historical information and subject to
a subjective assessment.

To determine adherence to a particular group identified in
the GBTM, convergence graphs were generated based on the
assumption that the group assignment at year 13 is the “true
group.” In addition, convergence graphs provide information
regarding the time point in the disease course where patients
can be reliably classified to their “true group.” The time point
in which the two trajectories appear to be horizontal reflects
the time point when the group assignments “converge” to their
“true groups.” For H&Y stage for both the DodoNA and LONG-
PD cohorts, year 9 represents the time point in which group

assignment more closely reflects the “true group” assignment
(Figures 8B, 9B). For the MMSE score in the DodoNA cohort,
this time point is delayed at year 10 (Figure 8A), whereas in the
LONG-PD cohort, it occurs earlier in year 8 (Figure 9A). For
UPDRS-III and II, that time point is later (Figures 8C,D, 9C,D).
Taken together, these results point to the H&Y stage and the
MMSE as reliable predictors of trajectory group assignment and
identify a point relatively early in the disease trajectory in which
group assignment can be made.

To further investigate the possibility of the misclassification
rate for group assignments, misclassification graphs were
generated assuming that the assignment at year 13 is the “true
group,” complementing the convergence analysis. In the case
of H&Y trajectory, convergence was at year 9. At year 9, the
misclassification (i.e., 1-accuracy) is 0.05, representing a 5% error
rate for group 2 and almost 0% error for group 1 assignment.
Based on these graphs, the H&Y stage provides an “acceptable
error rate” in both cohorts (Figures 10, 11).

FIGURE 9 | Convergence scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the LONG-PD cohort.
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FIGURE 10 | Misclassification scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the DodoNA cohort.

To ascertain the reliability of the analyses, the LONG-PD
cohort was used as a training set and the DodoNA cohort as
the test set. Both types of analyses provided similar results (data
not shown).

Covariates Contributing to Trajectory Group

Assignment
From the covariates entered into the model, the following
contribute to group assignment: older AAO for both cohorts
and male sex only for the DodoNA cohort assign patients
to the more severe group (group 2) and tremor-predominant
disease subtype to the benign group (group 1). Interestingly for
tremor scores in the DodoNA cohort only, years of education
assigns patients to group 1. Bradykinesia and AAO in the
DodoNA cohort only assign patients to group 2. The tremor-
predominant subtype in the LONG-PD, but not the DodoNA

cohort, assigns patients to group 1. Interestingly, levodopa and
dopaminergic therapy are not significant for the DodoNA cohort
but are significant for the LONG-PD cohort. Complications of
therapy do not contribute to group assignment (data not shown).
Cognitive impairment at disease onset likely assigns patients
to group 2. The differences noted between the two cohorts
may reflect different sample sizes or genetic background effects.
Group counts are shown in Table 1 and the effect of covariates
in Tables 2, 3. To assess whether the presence of autonomic
symptoms contributes to a more rapid and severe course in PD,
we also assessed both cohorts for the presence of autonomic
symptoms. Orthostatism, urinary incontinence, and constipation
were the most prevalent autonomic symptoms. Therefore, we
included these in the analysis, individually and in combination.
They did not contribute, either individually or in combination,
to a more severe disease course in our cohorts.
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FIGURE 11 | Misclassification scores for MMSE (A), H&Y stage (B), UPDRS-III (C), and UPDRS-II (D) for the LONG-PD cohort.

Genotypes were assessed for the presence of LRRK2 and
GBA mutations. The prevalence of LRRK2 and GBA pathogenic
variants was 1.89%and 2.96%, respectively. The vast majority of
these were in the DodoNA, a United States-based cohort. In
combination with the lack of significant contribution of family
history to the disease trajectory, this suggests that in these two
cohorts, at least some genetic factors do not contribute to the
disease trajectory.

DISCUSSION

Longitudinal monitoring of PD over long time intervals is
essential in order to obtain a more accurate characterization of
patterns in the disease course and clinical outcomes, as well as
to gain insights into disease etiology. Here, we present a group-
based trajectory modeling analysis of five ethnically different PD
patient cohorts from the United States (the DodoNA cohort) and

from Norway, South Korea, Greece, and Sweden (the LONG-
PD cohort) within the GEoPD consortium (https://geopd.lcsb.
uni.lu/). The trajectory analysis is based on standardized clinical
assessment that takes place at annual intervals in the routine
office setting. The choice of clinical assessment parameters
reflects a consensus among clinicians with different backgrounds
and practice modes and which would facilitate data collection
and entry using a web-based format. The analysis of a maximum
of 13-year disease course identifies two distinct groups: a
slower and more benign course and a faster, more malignant
course. Clinical predictors of group assignment include male
sex, age at disease onset, presence of tremor as a predominant
clinical feature, years of education, and cognitive impairment at
onset. Interestingly, levodopa/dopaminergic therapy and family
history do not contribute to group assignment. The significance
of beneficial effect of years of education for assignment to
a particular disease trajectory is supported by the findings
of Lee et al., which implicate a passive reserve hypothesis
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TABLE 1 | Group counts from the DNA Predictions to Improve Neurological

Health (DodoNA) and Longitudinal Clinical and Genetic Study of Parkinson’s

Disease (LONG-PD) cohorts.

DodoNA cohort Group 1 Group 2

Hoehn and Yahr (H&Y) stage 291 (73.48%) 105 (26.52%)

Mini Mental State Examination

(MMSE)

59 (14.9%) 337 (85.1%)

Unified Parkinson’s Disease Rating

Scale (UPDRS)-III

251 (63.38%) 145 (36.62%)

UPDRS-II 266 (67.17%) 130 (32.83%)

Tremor sub-score 188 (47.47%) 208 (52.53%)

Bradykinesia sub-score 247 (63.01%) 145 (36.99%)

LONG-PD cohort Group 1 Group 2

H&Y 269 (77.75%) 77 (22.25%)

MMSE 35 (10.12%) 311 (89.88%)

UPDRS-III 203 (58.67%) 143 (41.33%)

UPDRS-II 279 (80.64%) 67 (19.36%)

Tremor sub-score 182 (52.6%) 164 (47.4%)

Bradykinesia sub-score 86 (24.86%) 260 (75.14%)

for motor/non-motor symptoms of PD (19). The somewhat
unexpected lack of contribution of family history in group
assignment may reflect the diverse genetic background of the
two cohorts.

Adherence to a particular group occurs at mid-stage disease
and remains stable thereafter for the study interval. Interestingly,
complications of therapy do not appear to contribute to the
assignment to individual trajectories. It is interesting to point
out that while there is significant overlap between cohorts for the
different covariates, there are covariates in which the two cohorts
diverge. This may be explained by the different cohort sizes, but
it may also reflect different genetic, environmental, and cultural
factors. The prevalence of LRRK2 disease causing variants in
sporadic PD has been reported between 0.5 and 2% (20, 21) and
that of GBA between 2.3 and 9.4% (22) in the U.S. population,
similar to what we find in our cohort. It seems unlikely that
the low percentage of LRRK2 and GBA disease-causing variants
drives trajectory classification as there is a lack of contribution
of family history to trajectory classification. This suggests that
genetic factors are not likely to have at best a modest effect.

The GBTM analysis presented here has several strengths: (a)
it employs easily assessed standardized clinical parameters that
can be assessed at annual intervals and identifies predictable
patterns of disease progression; (b) the analysis is performed
over a long disease duration (maximum of 13 years); (c) it
identifies individual clinical predictors of trajectory patterns;
(d) the accurate clinical phenotypic characterization provides
an essential background for genotype–phenotype correlations,
currently ongoing in our study; (e) it provides an informative
template for large-scale clinical and genomic studies.

Our study has also some limitations. Since the intent of
this study was to assess measures that could be evaluated in
a routine clinical setting, a limitation is its assessment of a

TABLE 2 | Summary statistics, DodoNA cohort: AAO and YOE are continuous

covariates and their group values represent within-group means.

H&Y stage Group 1 Group 2 P-value

AAOa 66.0 75.0 <0.0001

YOEb 16.0 16.0 <0.0001

FH>1c 12 5 0.7817

FH 69 22 0.6594

TDS 71 4 <0.0001

LDd 254 90 0.8103

DPe 94 23 0.0605

Male sex 221 64 0.0050

MMSE

AAO 75.0 67.0 <0.0001

YOE 15.0 16.0 <0.0001

FH>1 2 15 1.0000

FH 11 80 0.4899

TPSf 8 67 0.3354

LD 52 292 0.9176

DP 9 108 0.0141

Male sex 48 237 0.1134

UPDRS-III (Motor)

AAO 67.0 72.0 <0.0001

YOE 16.0 16.0 <0.0001

FH>1 11 6 1.0000

FH 59 32 0.8388

TPS 60 15 0.0014

LD 212 132 0.0871

DP 80 37 0.2221

Male sex 171 114 0.0337

UPDRS-II (ADL)

AAO 68.0 70.0 <0.0001

YOE 16.0 16.0 <0.0001

FH>1 12 5 0.9660

FH 63 28 0.7268

TPS 59 16 0.0266

LD 231 113 1.0000

DP 83 34 0.3592

Male sex 188 97 0.4837

UPDRS-III Tremor sub-score

AAO 69.0000 68.0000 <0.0001

YOE 16.0000 16.0000 <0.0001

FH>1 8 9 1.0000

FH 51 40 0.0809

TDS 0 75 <0.0001

LD 171 173 0.0322

DP 60 57 0.3831

Male sex 130 155 0.2819

UPDRS-III bradykinesia sub-score

AAO 65.0 74.0 <0.0001

YOE 16.0 16.0 <0.0001

FH>1 9 8 0.5569

FH 60 31 0.5354

TPS 67 8 <0.0001

LD 211 133 0.2263

DP 81 36 0.0999

Male sex 177 108 0.8198

Other covariates are binary, and as such, their values represent within-group sums of

positive membership. P-values display statistical significance across groups.
aAAO, age at onset; bYOE, years of education; cFH, family history; dLD, levodopa therapy;
eDP, dopaminergic therapy; fTPS, tremor-predominant subtype.

Frontiers in Neurology | www.frontiersin.org 12 July 2020 | Volume 11 | Article 548

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Markopoulou et al. Parkinson’s Disease Longitudinal Monitoring

TABLE 3 | Summary statistics from the LONG-PD cohort: AAO and YOE are

continuous variables and their group values represent within-group means.

Group 1 Group 2 P-value

H&Y stage

AAO 61.0 67.0 <0.0001

YOE 12.0 10.0 <0.0001

FH>1 26 6 0.7816

FH 29 11 0.5183

TPS 75 4 <0.0001

LD 248 61 0.0024

DP 142 39 0.8400

Male sex 139 36 0.5273

MMSE

AAO 69.0 62.0 <0.0001

YOE 6.0 12.0 <0.0001

FH >1 1 31 0.2269

FH 2 38 0.4014

TPS 8 71 1.0000

LD 24 285 0.0003

DP 13 168 0.0860

Male sex 16 159 0.6681

UPDRS-III (Motor)

AAO 59.0 67.0 <0.0001

YOE 12.0 10.0 <0.0001

FH>1 18 14 0.9176

FH 23 17 1.0000

TPS 56 23 0.0173

LD 186 123 0.1371

DP 115 66 0.0694

Male sex 105 70 1.0000

UPDRS-II (ADL)

AAO 61.0 67.0 <0.0001

YOE 11.0 10.0 <0.0001

FH>1 26 6 1.0000

FH 32 8 1.0000

TPS 67 12 0.3645

LD 264 45 <0.0001

DP 150 31 0.3337

Male sex 135 40 0.1267

UPDRS-III tremor sub-score

AAO 62.0 63.0 1.0000

YOE 12.0 11.0 1.0000

FH>1 21 11 0.1729

FH 26 14 0.1332

TPS 39 40 0.5981

LD 152 157 0.0005

DP 80 101 0.0015

Male sex 101 74 0.0689

UPDRS-III bradykinesia sub-score

AAO 62.0000 62.0000 1.0000

YOE 10.0000 12.0000 <0.0001

FH>1 9 23 0.8146

FH 12 28 0.5445

TPS 31 48 0.0013

LD 60 249 <0.0001

DP 30 151 0.0003

Male sex 46 129 0.6183

Other variables are binary, and as such, their values represent within-group sums of

positive membership. P-values display statistical significance across groups.

narrower spectrum of phenotypic characteristics than other
comprehensively studied cohorts such as the PPMI, DeNOPA,
and LABS-PD cohorts (2–6, 23). Specifically, in our cohorts, CSF
analyses, SPECT scans, quantitative olfactory assessment, and
polysomnograms were not obtained routinely. Since the study
protocols of other longitudinally studied cohorts vary in aims and
scope, direct comparisons with our study are challenging. These
issues would be better addressed by a meta-analysis.

A second limitation of our study is the lack of autopsy data.
However, over a quarter of participants underwent SPECT scans
that were abnormal. In the absence of autopsy data, an abnormal
SPECT scan in the context of clinically definite PD (Bower
criteria) confirms the clinical diagnosis. In that context, it should
also be pointed out that the diagnosis of PD in our study was
assessed and confirmed at each annual interval.

A strength of this study is that detailed information on
comorbidities, head injury, complications of dopaminergic
therapy, autonomic dysfunction (orthostatic symptoms,
anhidrosis/hyperhidrosis, urinary incontinence), sleep disorders,
dysphagia, anxiety, and depression have been, and continue
to be, collected at annual intervals. As the study is ongoing,
these will continue to be analyzed to inform conclusions
regarding the spectrum of factors that contribute to the
disease course in intervals longer than 5 years. It is important
to point out that the focus of the analysis presented here
is to identify individual, clinical parameters that reflect the
cardinal features of the disease as well as assess the effect
of other covariates on those parameters. Furthermore, it is
important to stress that the clinical data collected in the
DodoNA and LONG-PD cohorts are pragmatic and can
be easily collected within routine clinical practice settings
worldwide. Identifying what features in this simplified,
reproducible set of clinical parameters can predict disease
course complements findings from other longitudinally followed
disease cohorts.

In conclusion, the longitudinal study of the DodoNA and
the LONG-PD cohorts combines clinically meaningful, easily
obtainable information from ethnically different PD cohorts
and demonstrates that clinical parameters assessed in the
routine office setting can help predict clinical outcomes in
PD as well as inform our understanding of the underlying
neurodegenerative process. Large international consortia
to understand genetic risk factors contributing to PD have
been formed where phenotypic information is sketchy and
often minimal. This work demonstrates that a detailed
phenotypic characterization is essential in informing and
interpreting the data from such consortia. The development
of the LONG-PD protocol has led to the adoption of a
somewhat simplified version of phenotypic information
collection by a majority of the GEoPD participating sites and
can be easily adapted for genomic information obtained by
other international consortia. Ongoing genotype–phenotype
analyses will identify molecular predictors of the disease
trajectories. Longer longitudinal follow-up of >10 years will help
determine whether the adherence to the identified trajectories
remains stable or whether splintering occurs as the disease
process advances.
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