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Preterm-born infants frequently suffer from an array of neurological damage, collectively

termed encephalopathy of prematurity (EoP). They also have an increased risk of

presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention

deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury

to the cortex, in addition to white matter injury, in EoP that is responsible for the altered

behavior and cognition in these individuals. However, although it is established that gray

matter injury occurs in infants following preterm birth, the exact nature of these changes

is not fully elucidated. Here we will review the current state of knowledge in this field,

amalgamating data from both clinical and preclinical studies. This will be placed in the

context of normal processes of developmental biology and the known pathophysiology

of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required

integration of this information so that in the future we can combine mechanism-based

approaches with patient stratification to ensure the most efficacious and cost-effective

clinical practice.

Keywords: preterm, brain injury, development, inflammation, synaptopathy, MRI, functional activity,

neuropathology

INTRODUCTION

Preterm birth is defined as delivery before 37 completed weeks of gestation, and although the
shorter the gestation, the higher risk of mortality and morbidity, even the late preterm-born infants
are vulnerable to injury, including to the brain. The hallmarks of brain injury to the preterm
born infant are: neuroinflammation, oligodendrocyte maturation arrest and hypomyelination,
axonopathy, reduced fractional anisotropy and cortical volume determined by magnetic resonance
imaging (MRI), and eventually, significant cognitive deficits (1). Collectively the brain damage
associated with preterm birth is called encephalopathy of prematurity (EoP).

As long-term cognitive and behavioral consequences of preterm birth are increasingly
recognized, neuropathological studies have focused on gray matter (GM), in addition to white
matter (WM). It was initially thought that cortical GM injury only occurred in preterm infants
in cases of very severe injury. Increased understanding of cortical development and more detailed
post-mortem studies revealed that this not the case (2, 3). Over the past few years, work has
increasingly indicated a widespread subtle neuronal injury in infants born preterm, that in some
cases, such as interneuron deficits, may be independent ofWM injury (4). Further than this, swathes

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.00575
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.00575&domain=pdf&date_stamp=2020-07-14
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hstolp@rvc.ac.uk
https://doi.org/10.3389/fneur.2020.00575
https://www.frontiersin.org/articles/10.3389/fneur.2020.00575/full
http://loop.frontiersin.org/people/195913/overview
http://loop.frontiersin.org/people/141324/overview
http://loop.frontiersin.org/people/35958/overview


Fleiss et al. Cortical GM Injury in EoP

of clinical and preclinical studies indicate that the cortical GM
injury found in preterm infants significantly contributes to
their increased risk of neurodevelopmental disorders (NNDs),
such as autism spectrum disorder (ASD), attention deficit
hyperactivity disorder (ADHD), and other learning and
behavioral disorders.

The large and long running EPICURE (UK), EPIPAGE
(France), and ELGAN (U.S.A.) studies have provided invaluable
data on the incidence of neurological injury following very
premature birth [e.g., (5–7)]. Together, these epidemiological
studies confirm that preterm infants have a 25–30% incidence
of neurological disorder, with as many as 40% of affected
individuals having more than one diagnosable disorder (5–7).
In all studies, incidence of cerebral palsy was 5–8% of preterm
children, consistent between 2, 6, and 10 years of age (5, 6, 8).
In addition, more than 40% of children at 2 years were below
threshold for communication, motor, problem solving, and social
skills (7), and 30% of children were diagnosed with cognitive
impairment at 6 years of age (5), while at school age (10–11
years), 7–8% of preterm born children were diagnosed with ASD,
11% with ADHD, and 10% with emotional disorders, such as
anxiety (8, 9). Using latent profile analysis in school age preterm
born children (10 years of age), 25% of children were shown to
have impaired executive functioning across a range of cognitive
domains, while 41% of children fell into a “low-normal” category,
where impairment was related to reasoning and working
memory (10).

ENVIRONMENTAL CONTRIBUTORS TO
EoP AND MECHANISMS OF INJURY

The maternal fetal membranes surrounding the amniotic cavity
represent the boundaries of a sort of “black box,” inside
which we struggle to know and understand the processes
preceding preterm birth. This is due to technical difficulties
in safely monitoring the biochemical processes ongoing in
the uterine space. However, processes causing brain injury in
the preterm born infants certainly begin before delivery, as
indicated by a small study of brain functional connectivity
in fetuses who went on to be born preterm (11) and an
increasingly number of studies showing predictive biomarkers
in maternal blood months before preterm birth (12–14).
Numerous events and antenatal exposures have also been
associated with preterm birth and EoP via epidemiological
study and verified with preclinical studies. These include
placental abruption or twin–twin transfusion, preeclampsia, or
placental insufficiency (potentially contributing to a hypoxic-
ischemic-like insult and/or intrauterine growth retardation) and,
less commonly, complications linked to oligohydramnios and
maternal substance abuse (15). A predominant role of hypoxia
in EoP with no other complications (such as those described

Abbreviations: ADHD, attention deficit hyperactivity disorder; ASD, autism

spectrum disorder; EEG, electroencephalogram; EoP, encephalopathy of

prematurity; GM, gray matter; FA, fractional anisotropy; IVH, intraventricular

hemorrhage; MRI, magnetic resonance imaging; NDD, neurodevelopmental

disorder; PVL, periventricular leukomalacia; WM, white matter.

above) is not supported by clinical data (16). Chorioamnionitis,
leading to a maternal–fetal inflammatory response, is a chief
driver of the process of early parturition leading to preterm
birth, demonstrated across clinical and preclinical studies (17–
19). Maternal–fetal inflammatory response not only precipitates
preterm birth, but a wealth of epidemiological and clinical
studies have shown that, although it is often clinically silent,
it is a major driver of EoP (20, 21) and its associated long-
term neurological and behavioral/psychiatric deficits [see reviews
(22, 23)]. While EoP can be initiated prenatally, there is
evidence of continued disruption of the brain post-natally, which
could be driven by a mixture of pre- and post-natal factors.
For instance, Bouyssi-Kobar et al. (24) show reduced brain
growth trajectories in preterm born infants compared to age-
matched in utero controls that were associated with (antenatal)
chorioamnionitis, as well as post-natal sepsis. Inflammatory
drivers include pre- and post-natal events and conditions:
chorioamnionitis, funisitis, early and late onset sepsis, and
necrotizing enterocolitis. Other, non-inflammatory, post-natal
contributors to EoP may include hyperoxia (25), as the ex
utero environment is relatively high in oxygen compared
to the in utero environment (26), and reduced exposure to
maternal hormones, such as estrogen and other neuroactive
precursors (27). While there has been little follow up on
the estrogen hypothesis clinically (28), recent animal models
have suggested a potential protective effect (4, 29, 30). That
hyperoxia plays a role in EoP is also supported by animal
studies (31–33).

CELLULAR MEDIATORS OF BRAIN INJURY

How, specifically, do these perinatal events lead to EoP? In
the case of maternal–fetal inflammation, systemic inflammation
drives changes in the brain after either crossing directly through
the endothelial cells making up the blood–brain barrier (BBB) or
by stimulating, via receptors for cytokines, such as interleukin-
1 (IL-1), production of pro-inflammatory molecules by the
endothelial cells that are secreted into the brain parenchyma
(34, 35). It is currently unclear whether these immune mediators
act directly on neurons or have their actions performed via
stimulated glial cells, such asmicroglia and astrocytes, though it is
likely that both processes occur. Inflammation has been shown in
the fetal brain to reduce neurogenesis in embryonic proliferative
zones (36) or to increase neurogenesis in the SVZ and dentate
gyrus (37), which has been linked to microglia activity in some
cases [reviewed in (38–40)]. The timing of the exposure of
neurons to inflammatory stimuli is undoubtedly critical. The
exact timing of events impacting EoP is not clear, though it
is likely that events occurring in the third trimester are most
influential. Although the vast amount of proliferation is complete
in the third trimester, there are specific cell types, interneurons of
note, that are still being born and migrating in this period and
that are increasingly demonstrated to be vulnerable in preterm
born infants and animal models (41, 42). Susceptibility of
processes, such as neuronal arborization and synapse formation
may be even more important, given the intersect between injury
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events sensitizing to EoP and the developmental timetable of the
brain (discussed in more detail below).

Over the past decade, the importance of microglial activation
has been exhaustively demonstrated in human preterm-born
infant post-mortem brain samples and in models of perinatal
brain injury [reviewed in (43, 44)]. These studies have included
experimental evidence that microglia are necessary for the
evolution of injury in the developing brain (45, 46), but
conversely, that microglia also play protective roles in perinatal
brain injury (47, 48). Microglia are also activated by other
modulators of brain injury, such as hypoxia or hypoxia-ischemia,
as these events lead to cell injury and the release of damage-
associated messenger proteins (DAMPS) and/or the production
of toxic metabolites that also activate microglia directly (49, 50).
Microglia establish territories in the developing brain from early
in embryonic life and are intimately involved in the processes
of brain building. Thus, microglia activation to an immune
responsive state leads to EoP via a double hit, whereby there
is production of toxic factors for neighboring neural cells and
loss of normal microglial functions to shape axonal connectivity
and synaptic elimination/function. This has been well-described
in the WM (51–54). There is substantially less information on
the specific effects of activated microglia on the GM, including
synapses and interneurons, which are relevant to EoP. However,
as increasing evidence shows that microglial dysfunction persists
for weeks to years after insult (55–58), the importance of this
phenomena may become more apparent with further study.
It is also plausible that the GM and WM are differentially
vulnerable, as microglia in these tissues have differing gene
expression patterns in the basal state and after injury, based
on studies in adults (59, 60). However, nothing is known of
this difference in a model relevant to EoP. As such, although
we can speculate that there may be specific soluble factors or
regulators (micoRNAs, cytokines, etc.) released (possible via
vesicles) from GM microglia that influence GM development in
ways that would offer therapeutic avenues (61, 62), evidence is
still required.

Reactive astrogliosis is also observed in some forms of
human perinatal WM injury (63, 64) and is associated with
deleterious effects mediated by agents, including hyaluronic
acid (65), bone morphogenic protein (66), cycloxygenase-2
induction and associated prostaglandin E2 production (64), and
endothelin-1 (67), which can impair oligodendrocyte precursor
cell maturation. Clinical and experimental studies have shown a
role for GFAP-positive astrocytes in WM injury in preterm born
infants, but specifically in older preterm born infants [>32 weeks;
(68, 69)] and during equivalent stages of rodent development
[5 post-natal days plus; (70)]. In the GM, astrocytes increase
in number with gestational age. Compared to the WM, GFAP
positive cells represent a far smaller proportion of cells (<1%)
(71) and the response of the populations a whole to injury is
under-studied. In preterm-born infants, a small increase in the
number of GM astrocytes was reported in a study of infants
with cystic periventricular leukomalacia (cPVL; severe injury),
but as the control group had a significantly lower gestational
age, this effect did not survive correcting for development
(72). However, studies in animals support the hypothesis that

astrocytic dysfunction proceeds neuronal damage in at least some
injury paradigms (73).

DEVELOPMENTAL EVENTS SUSCEPTIBLE
TO INJURY IN THE PRETERM BRAIN

When assessing how pre- and post-natal factors contribute to
EoP, it is necessary to consider what developmental events
happen during the preterm period that may be affected by
preterm birth. The prenatal period most associated with EoP
(from 23 to 32 weeks) is characterized by the final stages of
neurogenesis in the human telencephalon, neuronal migration,
differentiation and maturation, and the very early stages of
cortical myelination. Neurogenesis peaks very early in gestation
(8–12 weeks), but continues both in the ventricular zone of
the dorsal cortex and within the ganglionic eminences for up
to 29 weeks (41). The cortical plate forms around 11 weeks
into gestation [reviewed in (74)] until shortly after the end
of neurogenesis. Excitatory neurons primarily come from the
progenitors in the ventricular zone of the dorsal cortex and
migrate radially to the cortical plate [reviewed in (74)], while
inhibitory cortical neurons derive from the ganglionic eminences
and migrate tangentially to the cortical plate [reviewed in (75)].
Once neurons reach their final positions in the cortical plate, they
start to mature—a process which includes extending dendritic
arbors and forming synapses, detectable form 19–23 weeks
gestation (76). At the same time, radial projections of the neural
progenitors are lost, and tangential extension of subcortical and
cortico-cortical projections continues. These processes continue
through the prenatal and post-natal period of brain development,
with an extensive period of synaptic modulation and pruning
throughout the first year of life. Local electrical activity and
connectivity between neurons can be detected early, undergoing
numerous changes over development, and don’t appear to find a
mature state until early adolescence [reviewed by (77)]. Details of
these events and many of the mechanisms underlying them are
reviewed extensively in Molnar et al. (78) and Volpe (79). On top
of these microstructural changes is a general increase in cortical
thickness and a semi-stereotypical pattern of cortical folding,
with primary sulci forming from 16 to 19 weeks gestation, and
secondary and tertiary sulci formation starting from 32 to 36
weeks, respectively (80).

The real-time development of the brain, including the
increasing complexity in the cortical structure, can be detected
with non-invasive imaging methods, such as T1/T2 or diffusion-
weighted MRI [(81–83); reviewed by (84)] and these techniques
have allowed the detection of delayed or impaired cortical
development in preterm born infants. However, given the
relatively low resolution and integrated nature of diffusion MRI
signal, interpreting the specific structural changes in relation
to neurodevelopmental processes is difficult. Techniques are
in development to scale match MRI and histological data
[e.g., (85)], though changes in diffusion MRI are currently
interpreted through comparison with standard histological
measures. There is evidence that preterm birth can result
in changes to all the processes of cortical development
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described above, including reduced progenitor proliferation,
arborization, and myelination, as well as direct injury outcomes,
such as cell death. The rest of this review will discuss a
number of these in detail, including potential mechanisms of
injury, overlap with neurodevelopmental disorders (NDDs), and
potential therapeutics.

MACROSCALE ALTERATIONS IN
CORTICAL GM

Many elegant neuroimaging studies have begun to correlate both
typical and pathological behavior with specific brain areas or
functional readouts. Based on these, we know that many brain
regions contribute to the diverse array of neurological disorders
presented by preterm-born children. In particular, the important
role of cortical dysfunction underlying these cognitive disorders
(but not so prominently in motor disorders) is increasingly clear.
Rathbone et al. (86), in their study of cortical growth (cerebral
volume and cortical surface area) in the 20 weeks between birth
and term-equivalent age in preterm infants, showed that slow
rates of cortical growth correlated directly with neurocognitive
ability at 2 and 6 years of age. In particular, impaired cortical
surface area growth correlated with poorer scores in numerous
features of executive function, learning, memory, and attention,
as well as social ability. However, there was a clear lack of
correlation between cortical growth and motor abilities (86).
Numerous neuroimaging studies using different post-imaging
assessment methods have shown reductions in cortical GM
volumes in preterm infants, both in the preterm population
as a whole (87–89) or specifically those with periventricular
leukomalacia [PVL; (90, 91)] and in very preterm born children
[assessed at 7 years; (92)] and adolescence [assessed at 15 years;
(93, 94)]. Reductions in volume of the deep GM have also been
reported (95, 96); changes in thalamic volume were found to be
a predictor of reduced cortical GM volume and alterations in
diffusivity within the thalamocortical networks (95) were found
to correlate with cognitive performance at 2 years of age, though
they only accounted for 11% of the variance (97).

Importantly, Bora et al. (98) showed that very preterm
infants had a 13%-increased risk of inattention and hyperactivity
behavior at school age (4, 6, and 9 years), which correlated with
decreased GM volumes, particularly within the prefrontal region.
Increased anxiety-like behavior has also been associated with
preterm born infants with reduced GM volume (99). In a small
study group, very preterm infants that went on to have a diagnosis
of ASD were found to have increased incidence of cystic WM
lesions, and reduced cerebellar volume, but no changes in GM
volume (100). However, only eight children in the cohort (4.7%)
were diagnosed with ASD by the age of 7 years, so the study may
have been underpowered for detecting more subtle changes in
cortical GM.

In animal models, mimicking changes in these cortical volume
parameters is difficult, due to differences in the relative GM
and WM volumes in experimental species and the differences
in the size/complexity of the individual regions relative to one
another. Sheep are used in studies of perinatal brain injury, with

advantages regarding physiological and neurological similarities
to preterm humans, including gray–white ratios [discussed in
(101)]. Dean et al. (102) have studied intra-amniotic LPS in sheep,
a paradigm able to cause cystic WM injury. This inflammatory
exposure caused no obvious cell loss in the GM, but reduced
cortical volume by∼18%. In further work in sheep models, Dean
et al. (103) also showed a reduction in cortical GM volume after in
utero hypoxia-ischemia, in which there was again no cortical cell
loss. Interestingly, there was no early reduction in cortical volume
(+7 days) but these became increasingly apparent with time after
injury [starting at 2 weeks and at least up to 4 weeks; (103)].
In a mouse model of maternal immune activation using poly
I:C, subtle decreases in GM volumes were observed throughout
development (104), though changes in cortical volumes were not
specifically reported.

In addition to alterations in GM volume, complex changes
in cortical architecture have also been identified. For instance,
Zhang et al. (92) determined that there was a decrease in cortical
surface area and the gyrification index of 7-years-old following
very preterm birth compared to term-born controls. Maps of
cortical folding patterns in neonates suggest that preterm infants
have fewer and shallower sulci than term equivalent controls
(105). Data suggested that the lower gyrification index and
cortical surface area in preterm-born neonates was likely to be
due to a combination of altered in utero and post-natal growth,
and it was a finding independent of reduced total brain volume
(105, 106). Reduced cortical folding has also been associated with
increased incidence of NDDs later in life (106), matching, at least
partly with data from specific disorder cohorts (107–110), though
the data are not substantial here, as existing studies are small.

Collectively, these data point to the possibility that alterations
in cortical folding are driven by numerous age-specific
microstructural changes. The theories behind cortical folding are
many, and include processes such as the rate of neurogenesis,
of tangential migration and neuronal arborization [reviewed
by (111–113)]; currently no single one is sufficient to explain
the biological underpinning to normal or abnormal cortical
folding. Numerous aspects of the in utero environment and
preterm injury have been associated with changes in cortical
folding [reviewed by (114)], though the mechanism by which
this injury is produced is still unclear. Recent work by Garcia
et al. (115) has shown regional differences in cortical growth
rate between post-menstrual age 30 and term equivalent age
(based on 2–4 MRI scans over this period in preterm-born
infants), which are disrupted in preterm-born infants with gross
injury, such as intraventricular hemorrhage (IVH). Their work
suggests that severe injury in preterm born infants may alter
local cortical growth and subsequently cortical folding (115),
supporting the hypothesis that cortical folding may result from
mechanical instability as the GM grows faster than underlying
WM (116). Alternatively, recent compelling evidence also shows
that the extracellular matrix is essential in normal cortical folding
(117), likely contributing to the mechanical tension within the
brain. The link between these highly reductionist ex vivo studies
and EoP is currently unclear, though they have suggested that
hyaluronic acid can inhibit cortical folding (117), and increases in
hyaluronic acid have been found within the preterm brain (118).
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GRAY MATTER NEUROPATHOLOGY
ASSOCIATED WITH EoP

There are few neuropathological studies of GM injury in
preterm-born infants, compared to the number of studies of
WM injury. Complicating matters, due to the difficulties of
defining appropriate controls, GM studies typically use evidence
of WM injury as a starting point in the assessment of the GM,
rather than searching for independent patterns of injury. We
have created Table 1, which summarizes studies performed on
human preterm-born, post-mortem tissue that have included
GM analyses. From this, we can generalize that in studies of
infants with severe and contemporaneously uncommon WM
injury (cystic PVL), there are reductions in neuronal number
and increased neuronal cell death (where assessed; 6/6 studies).
However, in studies of infants predominantly with diffuse WM
injury, global reductions in cell number are less frequently
reported (1/5 studies), but interneurons seem to be a vulnerable
subpopulation (present in 3/3 studies) and dysmaturation in
cerebellar lamination are reported (1 study). Interestingly, there
are complex subtle changes in interneurons in cases with non-
cystic WM injury vs. controls (42) and when comparing very
preterm infants to less preterm infants [irrespective of WM
injury; (4)]. It is necessary to note that of the 12 studies
identified, 6 of these were performed on archival tissue collected
between 1993 and 2007 from the Department of Pathology at
the Children’s Hospital Boston. An additional observation study
was not included in the table, as the data were expanded upon
in a later study (127). It is not possible from the published
details of the Boston group’s work to determine whether cases
in these studies have been reused. Thus, reports of cell death
across regions in these studies may be interdependent, due to case
severity in this center, and studies of other centers and in more
contemporaneous cohorts are needed to determine the state of
neuronal injury in preterm born infants more generally.

ANIMAL MODELS OF GM PATHOLOGY

Severe Injury
Severe brain injury, including cystic lesions and severe IVH,
occurs in very few preterm-born infants [<5% cystic lesions,
<5% IVH; (128)]. Historically, the proportion of infants with
these forms of injury was much higher. It was also once
considered that hypoxia-ischemia was the leading (possibly the
predominant) cause of perinatal injury, including in preterm-
born infants. Because of these historical trends and (now
updated) ideas, much of the data that we have on GM injury
in EoP is from animal models of gross clastic lesion (30–80%
hemispheric ablation). This initial wave of data suggested that of
the cortical layers, the subplate was most susceptible to hypoxic-
ischemic injury at preterm equivalent ages (129), possibly due
to its relatively early birth and maturation. However, subsequent
studies agree that the extent of cortical injury is dependent on
the severity of the insult, and all lower cortical layers have the
capacity for cell loss after severe hypoxia-ischemia (130). In
a study of partial uterine artery occlusion, modeling hypoxia-
ischemia in the fetal sheep, immediate low level necrotic cell

death was found throughout the deep and cortical GM, followed
by extensive apoptosis in both the GM andWM at 3 h post-injury
(131). Other studies of in utero hypoxia-ischemia in sheep have
shown some increase in pyknotic cells and activated caspase-3
staining from 24 h up to 4 weeks in the caudate nucleus and
subplate (132, 133), reduced NeuN and somatostatin positive
neurons in the caudate and putamen (134), specific loss of
glutamate decarboxylase interneurons (a marker of GABAergic
neurons) and their perineuronal nets in the cortex (135), along
with reduced arborization complexity and spine density in both
the caudate, hippocampus, and cortex (103, 132–134, 136).

Moderate/Mild Injury
Improvements in antenatal and post-natal care, including the
use of prenatal steroids and post-natal surfactants and improved
respiratory support, have collectively led to the decrease in
severe brain injury, so that now the vast majority of infants
suffer from diffuse WM injury (118). This has inspired the
revision/creation of animal models focused on modeling white
matter dysmaturation. A number of these new(er) models
providing insights into the role of contemporaneously relevant
insults to GM injury are described. A landmark study in
our understanding of the GM injury induced by preterm
birth came from the team led by Sandra Rees (137), wherein
they delivered baboons preterm and held them in a NICU
environment for 2 weeks. This important study isolated the roles
of prematurity itself from exogenous/precipitating factors (such
as chorioamnionitis and sepsis). WM injury and hemorrhage
were most common in preterm baboons, but there were
significant pockets of necrosis in layer IV/V cortical neurons
(4/16 cases) and in the head of the caudate (1/16 cases). One
of the first attempts to nail down the cellular substrate of GM
injury was the analysis of the effects of intrauterine hypoxia-
ischemia on the fetal sheep (103). Although it can be debated
whether hypoxia-ischemia is particularly relevant to the majority
of cases of EoP (16), this team used cutting edge combinations
of high-field MRI and detailed neuropathological assessments
of cell number and structure to reveal novel insights into brain
injury. The team found that overall reductions in GM volume
were not precipitated by neuronal cell loss, but that there
were frank changes in dendritic arborizations [length, number,
intersections; (103)].

Sheep models of moderate inflammatory injury are also
providing important information. Exposure to intra-amniotic
inflammation prior to preterm birth, was used to reveal
the evolution of in utero inflammatory brain injury (138).
Interestingly, sheep were all exposed to inflammation on the
same gestational day, but sub-groups were culled every 24 h
providing a detailed time course of events. Cleave caspase-3
positive cells were increased in number in the hippocampus
at 2, 4, 8, and 15 days following LPS exposure, and in
the cortex (at 8 days only), along with increases in MAP2
staining in both GM regions. Strikingly, there was only
moderate WM injury (few cleaved caspase-3 positive cells,
microgliosis, and mild demyelination) suggesting that neurons
may be vulnerable to injury in the absence of overt WM
damage. Reduced cortical neurons were found in another
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TABLE 1 | Summary of post-mortem studies of preterm-born infants, including analysis of the GM, highlighting the case characteristics, regions of interest, and the GM and WM injuries described.

Reference

/

Study location

/

Years of sample

collection

Number of cases (n)

/

Gestational age at birth

/

Survival time

Pathologists description of injury

/

Post-mortem delay

Nature of cases designated as controls Regions of interest Gray matter pathology (description of what

was analyzed)

White matter pathology

(description of what was

analyzed)

Andiman et al. (119)

/

Dept. of Pathology,

Children’s Hospital

Boston, MA, USA

/

1993–2007

20 WMI, 15 controls

/

WMI = 33.9 ± 4.3, Control

= 33.1 ± 6.2

/

WMI = 5.9 ± 14.0 weeks,

Controls = 13.2 ± 23.6

(NS diff)

PVL or diffuse WMI as diagnosed by a

histopathologist

/

Post-mortem delay not reported

Prematurity with respiratory distress

syndrome, n = 4; congenital heart disease,

n = 2; primary pulmonary hypertension, n =

1; hydrops fetalis due to placental

chorioangiomas, n = 1; hydrops fetalis, n =

1; sacral teratoma, n = 1; cystic lymphatic

malformation of the neck, n = 1;

Werdnig–Hoffmann disease, n = 1; foreign

body aspiration, n = 1; Blackfan–Diamond

syndrome, n = 1 and bronchiolitis, n = 1

No difference in mean Apgar scores at 5min

(6.8 for both groups) or in other disorders

/

confounders

In the WMI cases, the

cortex overlying WMI and

compared it to similar

cortical areas in control

cases

No sig. difference in the presence of

fractin-immunopositive neurons in any

cortical layer

No sig. difference in the incidence of the

percent of MAP2-stained pyramidal cells in

layer V or obvious cortical anomalies.

Significant reduction (67%) in the density

(MAP2) of layer V pyramidal neurons

No sig. difference in the cortical or laminar

thickness (MAP2, H&E)

Periventricular focal necrosis in

the deep white matter with

surrounding diffuse reactive

gliosis and microglial activation

(previous neuropathologic

studies)

Haynes and van

Leyen (120) 12

/

15-Lipoxygenase

/

Dept. of Pathology,

Children’s Hospital

Boston, MA, USA

/

Collection epoch

not reported

13 PVL, 17 controls

/

PVL −29 to 43PC weeks

(median = 35.5) and 0–8

PN weeks (median = 1.5),

Controls −20 to 43PC

weeks (median = 33.5) and

0–2.5 PN weeks (median =

1)

/

Survival time not

reported

PVL as diagnosed by a

histopathologist

/

PVL = 6–25 h, Control = 4–25 h

Control cases did not have PVL or other

significant brain pathology upon standard

histologic examination. Autopsy reports

were reviewed for major clinical findings,

systemic autopsy diagnoses, and

neuropathologic findings

Subcortical white matter

and the cortex overlying

WMI and compared it to

similar cortical areas in

control cases

No increase in 12/15-LOX

expression in neurons of the cerebral cortex

in PVL.

Cell death or total cell number not assessed

in the gray matter

PVL had “focal” necrotic

component in the periventricular

region, and “diffuse” component

characterized by reactive gliosis

and activated microglia in the

surrounding white matter

Increased 12/15-LOX expression

in large round CD68+ cells,

lectin double positive and O4

double positive cells and

scattered TUNEL- positive cells

Haynes et al. (121)

Diffuse axonal

/

Dept. of Pathology,

Children’s Hospital

Boston, MA

/

Collection epoch

not reported

13 PVL, 17 Control (spread

across acute and later

stages)

/

Mean gestational age (wks)

PVL =36 ± 3, Controls =

32 ± 7

/

Mean postnatal age

(wks)—PVL = 7.5 ± 17,

Control = 10.5 ± 27

PVL as diagnosed by a

histopathologist

/

PVL = 6–44 h (median = 17), Controls

= 1.5–132 h (median = 14)

Control cases did not have PVL or other

significant brain pathology upon standard

histologic examination.

Causes of death included Noonan’s

syndrome 1, Fetal hydrops 1, Neonatal

hepatic disease 1, Immune

thrombocytopenia 1, Possible mitochondrial

disorder 1, Sudden unexplained death in

childhood, 1, Trisomy 21 1,

Unexplained stillbirth

The area of study for axonal

damage in PVL was distant

from the infarct, i.e., in a

separate section with no

overlying cortical damage

Approximately 1/3rd PVL cases had

thalamic gliosis, neuronal loss, and

/

or microinfarcts as determined by

conventional histopathologic examination.

Visually appreciable neuronal loss was

present in the overlying cerebral cortex in

15% of the PVL cases. None of the

non-PVL, non-axonal controls examined

showed evidence of thalamic and

/

or cerebral cortical damage

PVL based on histopathologic

criteria—periventricular focal

necrosis in association with

diffuse reactive gliosis and

microglial activation

Diffuse axonal injury, as

determined by the apoptotic

marker fraction, in the gliotic

(non-necrotic) cerebral white

matter in the acute and

organizing stages of focal PVL

Ligam et al. (122)

/

Dept. of Pathology,

Children’s Hospital

Boston, MA, USA

/

Collection epoch

not reported

22 PVL, 16 non-PVL

/

Gestational age in PVL =

32.5 ± 4.8 gw, Controls =

36.7 ± 5.2 gw, Sig dif in

gw.

/

PVL = ∼4 weeks,

Controls = ∼20 weeks (P

= 0.07)

PVL as diagnosed by a

histopathologist

/

Post-mortem delay not described

Control cases did not demonstrate white

matter features. Lower rates of NEC and

sepsis in controls than in PVL

Thalamic sections were

analyzed at one of the

following levels: I (anterior),

level of the mammillary

bodies; II (mid), level of the

red nucleus; and III

(posterior), level of the

lateral geniculate nucleus

Increased thalamic pathology via

neuropathologist assessment (H&E)

Trend to decreased neuronal density with

H&E (p = 0.07)—criteria for neuronal

discrimination not described

Increased density of reactive astrocytes

(GFAP) in the mediodorsal nucleus and the

lateral posterior nucleus

No significant increase in the density of

CD68 + cells and numbers overall low

No difference in the density of

MDA-immunopositive neurons or percent of

MDA-immunopositive neurons

Histopathology to confirm (or

not) PVL, with “focal” necrotic

component in the periventricular

region, and “diffuse” component

characterized by reactive gliosis

and activated microglia in the

surrounding white matter

(Continued)
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TABLE 1 | Continued

Reference

/

Study location

/

Years of sample

collection

Number of cases (n)

/

Gestational age at birth

/

Survival time

Pathologists description of injury

/

Post-mortem delay

Nature of cases designated as controls Regions of interest Gray matter pathology (description of what

was analyzed)

White matter pathology

(description of what was

analyzed)

Kinney et al. (123)

/

Dept. of Pathology,

Children’s Hospital

Boston, MA, USA

/

1998–2012

15 PVL, 10 controls

/

The mean gestational age

PVL = 32.8 ± 4.1 weeks in

the, Control = 30.1 ± 5.9

weeks

/

PVL = 34 ± 4.6

postconceptional

weeks, Controls = 31.6

± 6.6 postconceptional

weeks

PVL as diagnosed by a

histopathologist

/

Causes of death in PVL: respiratory

distress syndrome (n = 7); congenital

heart disease (n = 3); primary skeletal

disorders (n = 2); congenital

diaphragmatic hernia (n = 1); inborn

error of metabolism (n = 1) and

VOGM (n = 1)

/

PVL = median 14 h, Control = median

16.5 h

Controls did not demonstrate white matter

abnormalities

Causes of death in controls respiratory

distress syndrome (n = 5); congenital heart

disease (n = 1); hydrops fetalis due to

placental chorioangiomas (n = 1); hydrops

fetalis due to parvovirus (n = 1); primary

pulmonary hypertension (n = 1); and

bronchiolitis (n = 1)

Neurons in the ventricular/

subventricular region,

periventricular white matter,

central white matter, and

subplate region in PVL

cases and

controls—including five

subtypes of subcortical

neurons: granular, unipolar,

bipolar, inverted pyramidal,

and multipolar

The neuronal density of the granular

neurons in each of the four regions was

54–80% lower (p ≤ 0.01) in the PVL cases

compared to controls adjusted for age and

post-mortem interval

The overall densities of unipolar, bipolar,

multipolar, and inverted pyramidal neurons

did not differ significantly between the PVL

cases and controls

Analysis grouped neurons in the

subplate and white matter

collectively

PVL was characterized by

necrotic foci in the periventricular

and/

or central white matter; and

diffuse astrogliosis and microglial

activation in the surrounding

white matter

Pierson et al. (72)

/

Dept. of Pathology,

Children’s Hospital

Boston, MA, USA

/

1997–1999

17 PVL, 17 DWMI, 7

Negative (controls)

/

PVL = 3.7 ± 4.1 (median

= 2.3), DWMI = 3.4 ± 14.0

(median = 1.2), Negative =

0.8 ± 1.2 (n = number of

samples)

PVL or diffuse white matter gliosis

(DWMG) without necrosis

/

Post-mortem delay not described

“Negative” white matter group with no

diffuse gliosis or focal periventricular

necrosis in the cerebral white matter

Seventeen gray matter

regions, across the limbic

system, cerebral cortex,

deep gray nuclei,

cerebellum and relay nuclei

Seven white matter

regions—frontal lobe,

temporal lobe, parietal

lobe, occipital lobe, corpus

callosum, internal capsule

and cerebellum

Sig increased neuronal injury in the

cerebellar cortex and frontal cortex of PVL

compared with DWMI or Negatives (H&E)

No increase in astrogliosis (GFAP)

Focal periventricular necrosis;

diffuse white matter gliosis

Haldipur et al. (124)

/

National Brain

Research Centre,

Manesar, India

/

2007–2010

40 cases

/

Across the window of 28

weeks of gestation to 8

postnatal months

/

4 controls with 0 days

survival and 32 cases of

varying age at birth and

survival

All cases are those in which the

autopsy indicated minimum or no

damage to the brain and cerebellum in

particular

/

Delay = <24 h

Still birth cases—with no obvious signs of

injury as per cases with postnatal survival

Cerebellum EGL cell density significantly increased by

preterm birth

EGL thickness reduced by preterm birth

None described

Marin-Padilla (3)

/

Paediatric Autopsy

Service,

Dartmouth-Hitchcock

Medical Center,

Hannover, New

Hampshire, USA (via

ref 23)

/

Collection epoch

not reported

33 cases total

/

5 cases born preterm who

all had short survival time

/

3 months through to 5

years survival

PVL as diagnosed by a

histopathologist

/

Post-mortem delay not described

No controls—description of changes over

time after WM injury only

Gray matter overlying frank

WM injury

No changes visible in the acute

cases—which were the pre-term born

infants

In the cases surviving longer—late term and

term born infants, no change in the upper

cortical layer vascular and cellular

distribution and morphology (H&E, Golgi)

Axomatoised pyramidal neurons change

from being long projecting to being

local-circuit (Golgi). These cells have

increased circuitry and altered neuronal

morphology—populations of larger and

smaller cells with altered distributions (Golgi,

H&E, GFAP)

Cystic white matter lesions

Stolp et al. (42)

/

Perinatal Pathology

Department, Imperial

Health Care Trust,

London,

Non-WMI group, n = 7,

WMI group, n = 6

/

Non-WMI group = 23 + 2

to 28 + 1 gw, WMI group

26 + 5 to 29 + 3

Evidence of diffuse (non-cystic) white

matter injury (WMI cases) including

white matter gliosis and focal lesions

/

1–3 days—bodies stored at 4◦C

Seven cases showed no significant brain

pathology, non-neuropathologic controls (no

WMI cases)

Interneurons of the frontal

cortex and underlying white

matter

No change in the total number of cortical

neurons, identified by HuC/

HuD immunoreactivity, with 53,104 ±

11,009 immunopositive cells/

mm2 found in the control brains (n = 5)

No statistical differences in the

number of SST or NPY

subpopulations in the white

matter between preterm infants

with or without white matter

injury. Significant decrease in the

(Continued)
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TABLE 1 | Continued

Reference

/

Study location

/

Years of sample

collection

Number of cases (n)

/

Gestational age at birth

/

Survival time

Pathologists description of injury

/

Post-mortem delay

Nature of cases designated as controls Regions of interest Gray matter pathology (description of what

was analyzed)

White matter pathology

(description of what was

analyzed)

UK

/

Collection epoch

not reported

gw

/

Non-WMI group = 5min

to 43h. WMI group 1min

to 5 weeks (comparison

p = 0.002)

and 52,120 ± 6,327 cells/mm2 in the cortex

of the white matter injury cases (n = 4)

Significant decrease in the cortical

calretinin+ cells

Calbindin- and parvalbumin-positive cells

were observed in low numbers in both

cases, insufficient for determining

statistically significant changes.

Somatostatin and Neuropeptide Y only

found in the white matter

arborization of Somatostatin and

Neuropeptide Y interneurons in

both of these interneuron classes

As previously reported (125)

Panda et al. (4)

/

New York Medical

College and Albert

Einstein College of

Medicine, USA

/

2002–2016

Fetuses: 20–22 gw, n = 5,

Infants: 23–28 gw, n = 5,

Inafnat: 29–34 gw, n = 5

/

20–40 gestational weeks

(gw): 26–27 gw infants

surviving for 4–6 weeks

were compared with 32–33

gw infants who lived for ∼3

days. Therefore, both had

PMA33 gw at their death

Excluded = moderate to severe

intraventricular hemorrhage, major

congenital anomalies, history of

neurogenetic disorder, chromosomal

defects, culture-proven sepsis,

meningitis, or hypoxic–ischemic

encephalopathy and infants receiving

extracorporeal membrane oxygenation

treatment

/

post-mortem interval of ∼18 h

None. Comparisons of effects of varying

degrees of prematurity

Cortex (cortical plate),

white matter (embryonic

intermediate layer), and

ganglionic eminences,

which were cut at the level

of the head of caudate

nucleus

More prematurely born infants have fewer

GAD67+ neurons in upper and not lower

cortical layers

More prematurely born infants have fewer

Parvalbumin+ neurons in upper and not

lower cortical layers

More prematurely born infants have greater

numbers of Somatostatin+ neurons in

upper and not lower cortical layers

Calretinin+ and neuropeptide Y+

interneurons not effected by preterm birth

No analysis undertaken.

Vontell et al. (125)

/

Perinatal Pathology

Department, Imperial

Health Care Trust,

London, UK

/

Collection epoch

not reported

7 WMI and 7 controls

/

All <32 weeks’ gestational

age, vaginally delivered

/

Survival time not

reported

Cerebral white matter gliosis,

lipid-laden macrophages, and focal

lesions with evidence of WMI on

pathologic examination (WMI cases)

/

1–3 days—bodies stored at 4◦C

Also, extremely preterm, but with no

significant brain pathology on gross and

microscopic examination from post-mortem

examination and had no visible brain

abnormalities on post-mortem magnetic

resonance imaging

Thalamus (medial dorsal

(MD) nucleus, ventral lateral

posterior (VLp) nucleus,

ventral posterior lateral

(VPL) nucleus)

White matter [posterior limb

of the internal capsule

(PLIC) adjacent to the VLp

(PLIC-VLp) and PLIC

adjacent to the

VPL (PLIC-VPL)]

No difference in the total average cell

density in thalamic regions (H&E)

Significant decrease in neurons in WMI

cases in the MD, VLp, and VPL (HuC/

HuD)

Significant increase in the ratio of astrocytes

(GFAP+) to total cell count in thalamic

regions in WMI cases, compared with MD (p

< 0.01) and VLp (p < 0.01)—but not VPL

Significant increase in IBA1+ cells in WMI

cases in the MD, VLp, and VPL.

No difference in the average total

cell density in white matter

regions

Significant increases in neurons

in PLIC-VPL but not in PLIC-VLp

Significant increase in IBA1+

cells in the PLIC-VPL (p < 0.05),

but not in PLIC-VLp

Pogledic et al. (126)

/

Hôpital Robert Debré,

Paris, France

/

Collection epoch

not reported

Cystic (c)-WMI, n = 7,

Controls, n = 18

/

c-WMI = 24 + 4 to 27 gw,

controls = 24 + 2 to 34 gw

/

c-WMI = 0–4 weeks and

1 day, Control = 0–11

days

Cystic cases including focal lesions

with macroscopic cysts associated or

not with necrosis and

/

or calcifications surrounded by diffuse

pallor

/

post-mortem interval <48 h

Non-cystic cases without tissue loss

displayed pallor and gliosis (18/18

cases) associated with microscopic necrotic

foci in a few cases

(4/18 cases) and were considered to consist

of diffuse lesions

Cortical regions located in

the posterior part of the

superior, middle and inferior

frontal gyri and sulci, and

the precentral gyrus and

central sulcus

corresponding to

corresponding to the

presumptive premotor and

motor areas (areas 8-6-4)

and contiguous prefrontal

areas

Significantly increased cortical plate and

subplate astrogliosis (GFAP) in c-WMI vs.

control preterm WMI (no change in very

preterm cystic and control cases)

No increase in cortical plate and subplate

microgliosis (IBA1) in c-WMI vs. control

preterm WMI (for very preterm or just

preterm cases)

White matter cysts were

confined to the white matter

without extending into superficial

layers of the cerebral wall, such

as the subplate and cortical plate

WM injury provided as context for overall injury severity.

Of the 12 studies identified, those highlighted in yellow (n = 6) report studies performed on tissues drawn from the same pool of post-mortem samples between the years of 1993–2007. It is unclear, and undeterminable from the case

reports, how many times a single case appears across the six studies, and as such, how co-dependent the findings are. 12/15-LOX, 12/15-lipoxygenase; DWMI, diffuse white matter injury; EGL, external granule cell layer; h, hours;

GAD67, glutamate decarboxylase 67; GFAP, glial fibrillary protein; gw, gestational weeks; H&E, hematoxylin and eosin; MAP2, microtubule associated protein 2; MD, Medial dorsal nucleus (thalamus); MDA, malondialdehyde; NEC,

necrotising enterocolitis; PC, post-conceptional; PLIC, posterior limb of the internal capsule; PVL, periventricular leukomalacia; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; WMI, white matter injury; VLp, ventral

lateral, posterior (thalamus); vPL, Ventral posterolateral nucleus (thalamus).
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study exposing the developing sheep to LPS (139), 7 days
after a single LPS challenge. In these experiments there
was no difference in either astrogliosis or microgliosis at
the time point analyzed compared with the previous sheep
study (138) in which microgliosis was present, but astrogliosis
was not.

Rodent models are by far the most common for studying
potential neuropathology of EoP. In a rat model of inflammatory
exposure (maternal LPS exposure at the end of gestation),
significant post-natal reduction in brain and body weight were
observed, and a small increase in cell death in the striatum
and germinal matrix (140). In a milder injury model of
prolonged induction of systemic inflammation [using systemic
IL-1β exposure; (52)], there was no gross body weight change,
no evidence of caspase-3 positive dying cells or alteration in the
number of NeuN-positive neurons in the neocortex. However,
in this injury model, there were numerous changes in gene
expression for synaptic and neurotransmission related genes
(141). In this same animal model, and similar to data reported
in human cases, a specific alteration in interneuron number
was identified in the neocortex (42)—a finding supported by
a number of other early-life inflammatory exposure models
(142, 143) and preterm birth models (4). It is likely that
the migration and differentiation of these cell populations
is affected, though many studies show that injury reduces
or repairs in adult mice, following early-life inflammation
(42, 143). The important advantage of rodent models is
the potential for behavioral testing, where aspects of human
clinical disease can be recapitulated. In the inflammatory injury
models just described, behavioral dysfunction has been reported,
including reduced social interaction (143), short and long-
term memory deficits (46, 52), attention-shifting deficits, and
anxiety-like behavior (142). These behaviors are commonly
found in preterm infants, as described above, and in other
NDDs, thus supporting the face validity of these models.
This is further supported by an extensive body of work
showing reduction in GABAergic interneurons or expression
of parvalbumin (as distinct from a reduction in cell number)
in clinical ASD cases (144–146) and genetic models of
NDDs (147–149).

EoP AS A SYNAPTOPATHY

A synaptopathy is a disease or disorder caused by dysfunction
of synapses. This dysfunction can arise due to a mutation in
a gene encoding a synaptic-related protein, such as an ion
channel, a neurotransmitter receptor, or a protein involved in
neurotransmitter release; alternatively, a synaptopathy may be
due to structural deficits in extension of neuronal arbors and
synaptic process. Whether EoP can be defined as synaptopathy
requires further study, but we suggest that this is likely to be
an important part of the neuropathology of this condition. The
changes in EoP of gross GM volume changes, variations in
growth rate, and patterns of cortical folding discussed above
all reflect a combination of microstructural deficits (150) and
connectivity (97, 151, 152) including delayed acquisition of

the default mode network, as assessed by MRI techniques.
Additionally, there is the fact that EoP predisposes to strikingly
increased odds of a diagnosis of a NDD that are clearly
recognized as synaptopathies, such as: ASD, up to 17-fold
increased rates (9, 153); attention deficit disorder, up to 2.5-
fold increased rates (154, 155); epilepsy, up to 5-fold increased
rates (156, 157); and decreases in IQ directly proportional to the
severity of their preterm birth (158, 159).

Considering the developmental events happening during the
period of preterm birth, it may be expected that alterations
should be found in patterns of neuronal migration, time
frames and degrees of arborization, axon extension, and synapse
formation. On this subject, the recent study by Petrenko et al.
(160), provides a number of important insights. In a highly
reductionist model of selective neuronal apoptosis in layer 5
of the cortex, induced by diphtheria toxin (161), the authors
showed a progressive loss of ∼20% of neurons within the cortex
over a 14-days period. While this degree of neuronal loss is
unlikely to occur in EoP, the pre- and post-apoptosis changes
to the brain have interesting correlates for the injury observed
in EoP. Specifically, there was an associated increasing presence
of astro- and microgliosis, retraction of dendritic arbors in
dying neurons (days 3–5), and increased arborization (branch
number and length) in the surviving neurons [day 14; (160)].
Alterations in dendritic arborization have been found in the
GM in a number of experimental studies, many of which have
already been referred to above [e.g., (103, 138)]. Additionally,
a model of intrauterine growth restriction in pig, initiated at
100 days of pregnancy and assessed 22 days later, showed a
loss of MAP2 staining in the parietal cortex and hippocampus,
which was interpreted as disrupted somatodendritic neurites
(162). Intrauterine growth restriction is an important contributor
to poor perinatal outcomes, particularity in preterm born
infants [see (163)]. Reduced dendritic branching and spine
immaturity have also been reported in the CA1 region of
hippocampus in a model of preterm birth in rabbit kits (30)
and in the granular layer of the dentate gyrus in a maternal
inflammatory activation (using i.p. poly I:C exposure) model
in mice (164). These assessments are harder to perform in
neuropathology on clinical samples, though reduced dendritic
complexity (branch number and length) have been described
for somatostatin and neuropeptide Y-positive neurons in the
subcortical WM of preterm born infants with WM injury
(42). Dendritic arborization, and relatedly, synapse formation
[something also disrupted in these models; (42, 102, 165)],
are essential developmental events for ensuring appropriate
connectivity in the brain, and disruption in these processes have
been implicated in a number of functional disorders of the
brain (discussed below). The vulnerability of synapse structure
in preterm born infants is clearly shown in a study that revealed
a relationship between brain injury in preterm born infants and
single nucleotide polymorphism (SNP) variants in the gene for
the post-synaptic protein 95 [PSD-95, DLG4; (166)]. This work
focused on a novel role for PSD-95 expressed specifically by
microglia in early development in EoP, but the patient SNP
data also suggest a wider vulnerability of synapse structure in
preterm-born infants.
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While evidence of EoP as a synaptopathy inevitable comes
from neuropathological studies, our best capacity to clinical
recognize disease, stratify patients for treatment, and monitor
progress comes from neuroimaging. When relating in vivo
imaging to pathology, the study by Petrenko et al. (160) suggested
that (a) neurons loss could be detected by decrease in N-
acetylaspartate and N-acetylaspartylglutamate and astrogliosis
with reduced Glutamate/Glycine ratio, using magnetic resonance
spectroscopy within 3 days of injury; and (b) diffusion MRI
could also detect microstructural injury within 3 days of cell
death induction, starting with increased water diffusivity (mean
diffusivity) and extending to reduced factional anisotropy (FA)
due to altered dendritic arrangement. Ball et al. (150) have shown
a developmental decrease in FA in the cortex over the preterm
period, with preterm born infants lagging behind term born
infants in this maturational process, i.e., with a higher FA at
term equivalent age. Modeling by Dean et al. (103) supports
the idea that this increased FA value is due to delays in the
normal dendritic arborization of the cortical neurons over this
period. Vinall et al. (167), studied variation in diffusion MRI
values between two scans in a cohort of very preterm infants.
Their work showed that increased FA in the cortical GM at scan
two was independently associated with reduced gestational age,
birth weight, and slow weight gain. In addition, changes in FA
were related to the second and third eigenvector direction, rather
than the primary eigenvector direction. Collectively, these data
imply that delays in cortical maturation were most likely driven
by delays in neuronal process formation, or cell loss, and that
cortical maturation was associated primarily with the phase of
neonatal growth (167). Structural connectivity studies, typically
based on the integrity of WM tracts using diffusion MRI, have
shown a topographically dependent timetable of connectivity
developing brain, which is impaired in the preterm brain (168,
169), and which is altered in nature over time, but persists in
some form to adulthood (170). While these measures are not
directly assessing cortical GM injury, it is likely that an interplay
between WM and GM development occurs and that altered
connectivity maps will reflect changes in GM development.
These structural alterations are also likely to have functional
consequences that reflect both local and global connectivity.

INTERPLAY OF STRUCTURAL AND
FUNCTIONAL DEFICITS IN EoP

Altered structural and functional connectivity can be identified
in the brains of preterm infants at term equivalent age, using
combined diffusion and functional MRI (171). Aside from
studies testing passive function, including touch and auditory
stimulation, the majority of functional MRI studies in preterm
infants have investigated resting states. Collectively, these resting
state studies suggest that there is modular organization of the
connectivity of the preterm brain, as is seen in the mature brain,
but that integration between networks is altered (172–174). In
these studies, there is evidence for disruption in both cortico-
cortical and cortico-subcortical networks (172, 174), and reduced

connectivity between areas associated with motor function,
cognition, language, and executive function (173).

The electroencephalogram (EEG) is a clinical tool that has
been shown to have some potential to monitor and predict
severity and outcome of EoP. EEG waveforms are immature
in the preterm brain, but appear to have some characteristic
changes that can be used as a biomarker, including seizures,
EEG suppression, and mechanical delta brush activity (175–178).
The rate of spontaneous activity transients on EEG in preterm
born infants with or without GM-IVH, measured over the first
48 h of life, was associated with cortical GM volume growth,
increased gyrification index, and increased FA in WM tracts
(179). Additional studies of the association between early EEG
and cortical growth have revealed very specific band frequency
relationships and with spontaneous activity transients (SATs)
(180). As we begin to understand the biological drivers of
these events, it will provide further information of the structure
function relationship of the EEG recordings. Whitehead et al.
(181), using EEG, showed that gross injury initially disrupts
signal recruitment from cortical circuits. Signal recruitment
appears to eventually be reinstated following injury but remains
different from individuals without gross injury. Importantly,
EEG abnormalities assessed shortly after birth (a week to amonth
after birth) were able to predict both developmental delay and
cerebral palsy at 18–24 months (182, 183).

In animal models, fMRI has not been used, but EEG
has been used extensively in sheep models of in utero
hypoxic ischemic injury (more closely modeling hypoxic-
ischemic encephalopathy) and shows reduced maturation of
the EEG signal over time, seizure susceptibility, and microscale
epileptiform events in the latent phase (up to 7 h post-injury)
prior to seizure onset that correlates with cell death (184, 185).
Following intrauterine inflammatory exposure in fetal sheep,
changes in developmental patterns in alpha and beta power
(reduced) and delta power (increased) have also been reported
(186). However, while there is widespread evidence of altered
EEG parameters in both clinical and preclinical studies, it is
not clear how well these changes related to the neuropathology
and how predictive they are for outcome. This work is only
just beginning in clinical populations [e.g., (181–183)], but
in pre-clinical studies, a number of studies have found a
disconnect between EEG results and activity and arousal (187)
or neuropathology (188, 189). However, it should be noted that
the pathology examined in the study by Galinsky et al. (189)
was largely focused on WM, rather than GM, features, and
therefore may provide a limited understanding the pathological
correlates of EEG. Van den Heuij et al. (185), for instance,
have reported improved EEG findings together with reduced
cortical and deep GM damage following intrauterine artery
occlusion in the fetal sheep. In rodent models, EEG studies are
less common, due to the size of the post-natal brain. Using
ex vivo multi-electrode arrays, Mordel et al. (190) showed
that inflammation and hypoxia, alone or together, increased
the excitability of cortical neurons, in a glutamate receptor
dependent manner. Interestingly, this research group has also
shown that inflammation-induced alterations in cortical neuron
spontaneous burst activity subsequently results in an increase in
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apoptosis in the same cell population (191). The work of Mordel
et al. (190) suggests that altered electrical activity in the cortex
occurs only in the first few weeks after injury and that it recovers
in adulthood. However, long-term alterations in spontaneous and
mini-inhibitory post-synaptic currents, a more subtle measure
of neuronal activity, was found specifically for parvalbumin-
positive interneurons following fetal exposure to inflammation
(142). Electrophysiological studies in the preterm sheep have
shown altered excitability in subplate neurons (133), as well as
reductions in intrinsic excitability, altered polarization dynamics
and reduced long-term synaptic plasticity in the hippocampus,
following hypoxia-ischemia and hypoxia alone (136).

The relationship with structure and function is complex and
needs to be understood better at a (sub-)cellular level in the
context of EoP. However, the study of Zaslavsky et al. (192) in
iPSCs from ASD patients shows increased dendritic arborization
and synaptic connectivity associated with a significant increase in
sESPC frequency, supporting suggestions that altered neuronal
morphology does change cellular function (rather than being
compensated for in the function of the cellular communications
pathway). This link between structure and function, the capacity
for one to affect the other, and the plasticity for recovery is a
particularly important point to consider when exploring new
therapeutic targets, and optimal periods of treatment, for EoP
and NDDs. This concept has recently been supported in a study
of genetically encoded epilepsy, where timely treatment with
Bumetanide altered long-term neuronal activity and network
formation (193).

POTENTIAL THERAPIES FOR EoP

Gray Matter Targets
The most obvious change in the GM of preterm born infants
are reductions in volumes on MRI, changes that persist with
increasing age. These gross changes are likelymediated by limited
but significant cell death, changes in sub-classes of interneurons,
and, across neuronal classes, reductions in arborization and/or
synaptic number. There are no therapies designed to target GM
injury in the preterm specifically. Given that there are striking
similarities between the GM changes in EoP and NDDs, it
would seem appropriate to consider if any therapeutic candidates
from the NDD field might have efficacy in EoP. Current
pharmacological strategies for the treatment of ADHD focus
on normalizing, but not repairing, disturbances in synaptic
transmission and activity (194), and the same is the case for
the various forms of epilepsy (195, 196). For ASD, therapy
focuses on treating the symptoms of the disorder, such as
risperidone, to reduce irritability via antagonism of central
type 2 serotonergic (5-HT2) receptors and central dopamine
D2 receptors (197). There are no therapies for ASD to treat
the underlying deficits in social abilities. Other NDDs, such
as intellectual disability and learning disorders (dyslexia and
dyscalculia), together with ASD and ADHD, are successfully
treated with behavioral interventions. It is believed that these
therapies do rewire the brain (198), but whether they are capable
of repair is not at all established.

A recent review of the drugs under investigation review
for ASD highlighted that potential therapies fall into several
clear classes—GABA/glutamate modulators, neuropeptides,
immunologics, and dietary supplementation (199). The only
therapies whose specific underlying premise is to permanently
alter the structure of the brain are immunological therapies;
although, neurotransmitter modulators given at the optimal
stage of development may normalize aspects of structural and
functional development—something that needs to be considered
in future research. That immunological therapies might enable
repair is based on the underlying idea that, in the brains of people
with ASD, there is a persistent immunological dysfunction that
itself is the cause of the core social deficits. As such, removing
this dysfunction allows the brain to return to a normal structural
and functional state. A very similar process of persisting and
damaging inflammation is hypothesized to occur in the brain
after perinatal brain injury (200) that evidence begins to accrue,
which, in this context, it is also a valid therapeutic target
(57, 201).

Another exploratory area of understanding and treating ASD
and other NDDs is the gut–microbiome–brain axis (202, 203).
Gene mutations associated with autism pathogenesis impair
brain and gut function and contribute to core and comorbid
symptoms reported in autism (204, 205). The gut and brain share
cellular structures, molecular pathways and processes that likely
cause shared vulnerability to processes leading to autism (203).
For instance, gut and brain synaptic structure and function are
similarly vulnerable to disturbances in structural proteins, such
as neuroligins, post-synaptic density proteins, and Shanks (166,
206–210). An inexorable production of gut microbe-derived
neuroactive metabolites influences gastrointestinal function, and
these also traverse the BBB to exert potent effects on the
brain (211–213). Importantly, microbiome-mediated gut and
brain crosstalk even alters early brain development (214, 215)
via dysbiosis, which impairs the function of the brain’s chief
“building managers” and resident immune cells—microglia.
Microbe-derived metabolites also regulate the function of the
BBB itself (216) demonstrating the integral nature of the
microbiome-gut-brain axis in brain health. As such, research
investigating factors modulating the gut–microbiome axis in
NDDs may uncover novel mechanisms for treatment (217, 218).

Considering the options from the classes of drugs already
being tested in models of EoP, we find that, despite many
compounds being tested (with mixed results), most have not
considered outcomes in the GM. There are some notable
exceptions, such as MgSO4 pre-treatment in a rat model of
preterm HI (modeling antenatal treatment in at-risk mothers),
significantly reduced tissue loss in the hippocampus and striatum
and were associated with reduced neurological injury score
(219). MgSO4 has also been tested in a sheep model of
perinatal asphyxia, reporting reduced seizure burden, but worse
WM outcomes and no GM neuropathology (189). Clinically,
MgSO4 has a number to treat of 54 (220), though due
to the nature of pre-treatment of at risk individuals, the
exact efficacy is difficult to determine; a Cochrane review of
four trials of antenatal treatment of at-risk women showed
no significant effect on mortality or neurological outcome
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(220). Erythropoietin in this environment has not been shown
to be protective for qualitative WM or GM injury when
administered as three doses of 25 µg/kg within the first 2
days of birth in preterm infants (221). This is despite positive
GM outcomes in rodent (188, 222) and sheep models (223).
Robinson et al. (222) showed that 2,000 U/kg erythropoietin
(∼17 µg/kg), administered post-natally following intrauterine
occlusion, was beneficial for both WM and GM, ameliorating
behavioral deficits in gait and social interaction and fractional
anisotropy changes in the WM, hippocampus, and striatum.
In their study of perinatal injury, hypoxia-ischemia in the
post-natal day-3 rat, van de Looij et al. (188) showed that
erythropoietin improved somatosensory-evoked potentials and
diffusion parameters in the WM, when measured with MRI, but
didn’t prevent cortical tissue loss. Wassink et al. (223) assessed
neuronal number and cell death in the caudate, showing a
significant improvement with erythropoietin (5,000 IU loading
dose, followed by 832 IU/h) in the preterm sheep, as well as
reduced seizure burden. More positive data on erythropoietin
have been found for WM injury [reviewed in (79, 224)],
supporting the numerous on-going clinical trials for this drug;
however, it is clear that additional therapeutic agents need to be
tested for GM efficacy.

LINKS BETWEEN EoP AND
NEURODEVELOPMENTAL DISEASES

It has been unequivocally established that preterm born infants
have increased rates of diagnosis for NDDs, including ASD,
ADHD, and generalized learning disorders (5, 7–9, 225). It is also
clear that, in the brains of people who suffered from EoP and
those with NDDs (and from their matched preclinical models),
there are a striking number of shared pathomechanisms. In
this section, we will highlight key phenotypic, macrostructural,
genetic, cellular, and sub-cellular processes shared with EoP and
in cases of NDD. We will focus on the GM; but, we wish
to highlight that for the WM these links between EoP and
NDD are more established, such as shared deficits in corpus
callosum structure in people after EoP and those with ASD and
ADHD (226).

Recent work has assessed in detail the specific characteristics
of behavioral disturbances in people born preterm with NDD,
compared with people born at-term with an NDD [see
reviews (227, 228)]. In general, in preterm vs. term NDD,
the phenotypic presentations are similar. However, there are
important differences. For instance, in people born at term, there
is a higher rate of ADHD in males compared with females;
but, this sex difference in not observed in people with ADHD
who were born preterm (229). For ASD, a greater proportion
of preterm (vs. term-born) males reported comorbidities (sleep
apnea, seizure disorders, and ADHD) and people born preterm
(particularly females) weremore often non-verbal (230). Another
recent small study of children with ASD demonstrated that,
compared to term children, the preterm children had higher
quality peer relationships and socioemotional reciprocity, but
poorer non-verbal behaviors that regulate social communication

(231). None of the current literature has indicated a problem
with diagnosing those born preterm using the current diagnostic
criteria. However, we speculate that just as autism has been
expanded and refined into a complex spectrum of disorders that,
in the future, ASD phenotypes specific to preterm born infants
may be defined.

With increased MRI analyses of the GM in individuals
with EoP, we begin to see a clear pattern of similarities in
changes in brain structure in people with ASD and those born
preterm—there are shared changes in the orbitofrontal regions,
the amygdala, the basal ganglia, the hippocampus, and the
cerebellum [reviewed in (227, 232)]. There is also a parallel with
the altered cortical growth in preterm born infants and equivalent
findings in ASD and ADHD patients. In MRI studies of ASD
and ADHD, decreased GM volume has been associated with
both conditions (233–237). In ASD, decreases have particularly
been found in areas related to social behavior networks (233,
235, 237), while regions associated with inhibitory control (234)
were changed in ADHD. In both cases, it is clear that patterns of
GM deficits alter through the disease course (235, 238). Changes
in the volume of GM in preterm infants/children/adolescents
have been found in many of these regions [e.g., (91, 92,
239)], but are typically more widespread. Variation between
studies has, of course, been reported, with not all studies
finding cortical GM volume changes or associating them with
neurological outcome. However, these are in the minority, and
it has been suggested that these may be due to difficulties
in accurately recognizing the gray-white matter boundary in
the developing brain (240). Interestingly, in addition to this
overlap in affected brain areas in both EoP and NDDs, MRI
studies are also showing alterations in cortical networks [e.g.,
(236, 241)] in ASD and ADHD that warrant further exploration,
and may come from as similar anatomical basis as in the
EoP studies.

A newer avenue to link EoP and NDDs are genetic studies,
such as genome-wide association studies (GWAS), copy number
variant (CNV) studies, SNP, and haplotype studies, and these
are revealing common risk factors. For instance, we have
recently uncovered that an SNP in the gene for PSD95 is
associated with poorer outcome for preterm born infants (166),
mentioned above, as genetic variation in polymorphisms for
PSD95 is a known risk factor for ASD (242). Common genetic
variants and methylation patterns have been revealed in focused
studies of people with ASD, with and without prior history
of preterm birth (243). Changes uncovered by these targeted
studies include tyrosine-protein kinase Met (MET), Neuregulin
3 (NRG3), and serotonin transporter (SLC6A4). A great deal
can also be learned from comparing findings from studies
of NDDs and studies of prematurity and EoP. For NDDs,
there are numerous genes associated with synapse formation
identified from GWAS studies including Shanks, Neuroregulin,
Neurexin, and Contactins [reviewed by (244, 245)]. Many of
these genes also associate with preterm birth or outcomes after
preterm birth. Of note, neuregulin is found associated with
infant outcome, with polymorphisms increasing mRNA levels
in patients associated with better outcomes in babies born
preterm (246).

Frontiers in Neurology | www.frontiersin.org 12 July 2020 | Volume 11 | Article 575

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fleiss et al. Cortical GM Injury in EoP

A key vulnerable neuronal subpopulation in EoP is
interneurons, although it is still unclear which populations
are the most vulnerable at which time point and in what
regions based on the human and preclinical studies (4, 42).
Research into neuropathology in NDD, via post-mortem
studies and animal models of NDD, also conclusively illustrates
changes in interneurons (146). Quite strikingly, in a synaptic
protein knockout model of ASD (PTEN KO), interneuron
transplantation rescues social behavior deficits (247). This study
also questions the established idea that interneuron deficits
associate with NDDs due to negative effects on inhibitory
circuit activation (248), as, although interneuron transplantation
rescued the behavioral phenotype, there were no improvements
in circuit function.

No discussion of the similarities between NDD and EoP could
be complete with highlighting the shared common pathological
process of neuroinflammation, which has, at its core, the aberrant
activation of microglia. Indeed, across NDD and EoP models
and human studies, evidence shows that microglial activities
are altered [thoroughly reviewed in (22, 249–251)]. A chief
function of microglia during development, but also throughout
life, is regulation of connectivity via refinement of synaptic
number [(252–254); and reviewed in (255–257)]. Based on all
the evidence for the role of microglia and the presence of
inflammation (both systemic and central) in EoP and NDD
it is clear that microglia (and their effects on synapses and
neurogenesis) are an important starting point in understanding
GM pathology across NDDs and EoP and also a shared target
for neurorepair.

We outlined above the reasons that EoP can be considered
a synaptopathy, including genetic associations between injury
severity and synaptic genes, connectivity deficits, and that
preclinical studies show synaptic immaturity plus arborization
deficits. These characteristics are also common among NDDs,
and NDDs are clearly characterized as synaptopathies (258–
261). For example, about half of the genes identified as
candidate genes in people with ASD code synaptic proteins
(262). Additionally, animal models of abnormal synaptic pruning
induced by abnormal microglial function (227), or via genetic
perturbation of synaptic structure (263), have cognitive and
behavioral deficits reminiscent of NDDs. Thus, perhaps it is the
collective change in these functional units of the neuron that
give rise to the shared gross volumetric changes and pervasive
behavioral problems in people with NDDs and due to EoP.
Though it should also be said that a great many children
and adults who were born preterm and who had EoP have
typical neurodevelopmental profiles, potentially and interaction
of genetics and environmental challenges in these case lead
to structurally resilient synapses. There is clearly need for a
better understanding of the vulnerabilities leading to NDDs and
negative consequences after EoP.

CONCLUSIONS

Imaging and neuropathological studies indicate changes in
GM are a subtle but substantial contributor to EoP. The full
nature of this injury is probably only just being discovered and

would benefit from more longitudinal MRI studies, with closer
integration of both patient genetics data and neuropathology
where possible. Given the link between GM injury and long-
term cognitive and behavioral disorders, it is important to
therapeutically target this injury, distinct from the WM injury
aspects of EoP. In particular, while preterm birth and EoP
increase the risk of NDD in later life, the current evidence
suggests that preterm born infants may make up a specific subset
of cases in these disorder spectrums and could benefit from a
distinct treatment paradigm. In terms of what this therapeutic
paradigm might look like, it is likely that a combination of
ameliorating (e.g., anti-inflammatory or growth supporting)
agents and restorative agents (e.g., drugs facilitating normal
structural-functional development) will be required. If these
treatments are delivered at optimal periods of brain development,
it may be possible to limit the need for life-long symptom
controlling medication. In this regard, it is necessary to focus
more research on the synaptopathic aspects of EoP. Current
research in this area is only the tip of the iceberg, particularly
lacking in clinical studies, and increased understanding of the
injury mechanisms and plasticity during the post-natal period
may identify new therapeutic targets. Our great hope is actually
that this proposed work becomes redundant. We hope that our
highly skilled and motivated counterparts working on prediction
and prevention of preterm birth have major breakthroughs.
However, pragmatically, even major breakthroughs will take
decades to make it across high and middle/low economic
settings, meaning that millions more babies are going to
need us to better understand the GM and its changes
after EoP.
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