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Background: Magnetic resonance imaging (MRI) serves as a cornerstone in defining

stroke phenotype and etiological subtype through examination of ischemic stroke lesion

appearance and is therefore an essential tool in linking genetic traits and stroke.

Building on baseline MRI examinations from the centralized and structured radiological

assessments of ischemic stroke patients in the Stroke Genetics Network, the results of

the MRI-Genetics Interface Exploration (MRI-GENIE) study are described in this work.

Methods: The MRI-GENIE study included patients with symptoms caused by ischemic

stroke (N = 3,301) from 12 international centers. We established and used a structured

reporting protocol for all assessments. Two neuroradiologists, using a blinded evaluation

protocol, independently reviewed the baseline diffusion-weighted images (DWIs) and

magnetic resonance angiography images to determine acute lesion and vascular

occlusion characteristics.

Results: In this systematic multicenter radiological analysis of clinical MRI from 3,301

acute ischemic stroke patients according to a structured prespecified protocol, we

identified that anterior circulation infarcts were most prevalent (67.4%), that infarcts in

the middle cerebral artery (MCA) territory were the most common, and that the majority

of large artery occlusions 0 to 48 h from ictus were in the MCA territory. Multiple acute

lesions in one or several vascular territories were common (11%). Of 2,238 patients with

unilateral DWI lesions, 52.6% had left-sided infarct lateralization (P = 0.013 for χ² test).

Conclusions: This large-scale analysis of a multicenter MRI-based cohort of AIS

patients presents a unique imaging framework facilitating the relationship between

imaging and genetics for advancing the knowledge of genetic traits linked to

ischemic stroke.

Keywords: stroke, imaging, MRI, phenotype, DWI

BACKGROUND

Neuroimaging analysis is the cornerstone of modern stroke
management, with computed tomography (CT) and magnetic
resonance imaging (MRI) being the main modalities (1).
Compared to CT, MRI has greater sensitivity and versatility and
provides an earlier and more precise method for delineating
acute ischemic lesions (2) and also a more detailed assessment
of chronic small vessel disease.

Magnetic resonance imaging differentiates acute ischemic
lesions from subacute or chronic infarcts better than CT (2, 3).
Magnetic resonance imaging can aid in the early etiological
assessment of acute ischemic stroke (AIS), by differentiating
among hypoperfusion injury, lacunar infarction, and cortical
vessel occlusion (4). The addition of magnetic resonance
angiography (MRA) further assists in the characterization of the
cerebrovascular phenotype (5). These properties have made MRI
a common tool in the acute management of ischemic stroke to
guide acute intervention, optimize secondary prevention, and
improve outcomes prediction.

Several population-based MRI initiatives, such as the
Rotterdam and Framingham studies, have provided valuable
insights into the prevalence of cerebral infarcts (6, 7), including
the distribution with regard to laterality (8, 9). However, there
are few large MRI-based stroke registries (10), and additional

insights can be gained in understanding the AIS characteristics
on MRI across a multiethnic, hospital-based cohort.

Building on the extensive data obtained from clinical
stroke patients within the National Institute of Neurological
Disorders and Stroke–funded Stroke Genetics Network
(SiGN), the MRI-Genetics Interface Exploration (MRI-GENIE)
study offers such an opportunity by providing clinical MRIs
from 12 hospital-based cohorts of AIS patients enrolled
internationally. A detailed description of the design and
rationale for both these studies has been published previously
(11, 12). The MRI-GENIE initiative has already resulted in
a number of pioneering studies in automated volumetric
MRI analysis (13–15), posterior-circulation stroke (16), and
several ongoing projects using the imaging data to link genetic
traits, such as the recently discovered RABEP2-gene (17) with
phenotypic outcome.

We capitalized on the robust MRI-GENIE database of
3,301 ischemic stroke cases with genome-wide genotyping and
MRI scans by systematically reviewing and characterizing the
multimodal clinical scans for specific vascular anatomy and
pathology, ischemic lesion location, lateralization, multiplicity,
and other characteristics according to a predefined structured
reporting protocol. In this article, we report the initial findings
from the structured neuroradiological analysis of MRI scans
within MRI-GENIE.
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METHODS

MRI-GENIE is an international multicenter collaborative study
of ischemic stroke cases for whom clinical MRI scans were
obtained on admission for AIS, in addition to genome-wide
genotyping subsequently obtained. It is a major international
initiative to explore the genetic architecture of MRI traits in AIS
patients. As MRI-GENIE was based on the SiGN collaboration,
participating sites within SiGN were invited to participate.
Participating centers have committed to contribute all available
MRI for the patients included within the SiGN collaboration. To
date, 12 of the 24 centers have contributed data to the project
(Figure 1 and Supplemental Table 1). A Scientific Steering
Committee oversees the MRI-GENIE study and critically reviews
project proposals facilitating collaborative efforts.

Patients
All participants provided signed informed consent. Contributed
data included demographic and stroke risk factor data,
availability of genome-wide genotyping data, and clinical MRI
scan. Stroke subtypes were classified in the parent SiGN Study
according to the Causative Classification System for Ischemic
Stroke (CCS), and Trial of Org 10 172 in Acute Stroke Treatment
(TOAST) classification systems (18).

We deidentified the clinical MRI examinations from
contributing centers, uploaded the DICOM format images in the
MRI-GENIE image repository, and systematically annotated the
imaging sequences (12).

Radiological Characteristics
Two licensed neuroradiologists (J.W. and M.D.) reviewed all
MRI examinations via the web interface (12). They remained
blinded to clinical information, stroke phenotype data, and any
diagnostic information from the contributing center to avoid
bias of image interpretation. A structured reporting protocol was
implemented in close collaboration between the coinvestigators
and utilized for all reviewed cases. Interrater agreement was
measured in a portion of cases (446 cases, 13.5%) reviewed by
both assessors.

The protocol included assigning the ischemic lesions
observed on the diffusion-weighted images (DWIs) to predefined
anatomical categories, arterial supply regions, territories of the

major cerebral arterial branches, and angiographic data to
categories for predefined vascular segments. When assigning
lesions to the predefined anatomical categories basal and vascular
segments, a generally acceptedmap of themajor cerebral vascular
territories was used (Supplemental Figure 1). Ischemic lesions
from DWI were further assigned as cortical and/or subcortical,
single/multiple, and—for the supratentorial subcortical lesions—
lacunar or nonlacunar. A single subcortical, supratentorial lesion
smaller than 1.5 cm was further defined as lacunar. Volumetric
analysis of the DWIs was recently published (14).

The reviewers determined vessel stenosis (stenosis visually
gauged to >50%) and occlusion on MRA images. The reviewers
also determined the proportion of patients with large artery
occlusion (LAO) based on information on occlusion and lesion
location on the DWI sequences.

Unexpected findings such as tumors and aneurysms were
noted, but not categorized further. The structured reporting
protocol is detailed in Supplemental Table 2.

Statistics
Data were processed using SPSS Statistics (version 24; IBM
Corporation, Armonk, NY, USA). Descriptive statistics,
including means with standard deviations (SDs) and medians
with interquartile range (IQR), were reported where applicable.
The χ² test was used to compare proportions of left- vs. right-
sided cerebral infarcts among all patients, as well as patients with
anterior circulation infarcts only. Patients with bilateral infarcts
or no visible infarct were excluded. Level of significance was set
to P < 0.05.

RESULTS

Study Population
Of the 3,301 correctly included patients in the image repository,
183 were unavailable for analysis due to technical errors.
Additionally, 18 patients in the image repository had not been
correctly included and were therefore excluded from the analysis.

A flowchart describing the material, including available MRI
sequences, is shown in Figure 2. Diffusion-weighted image was
available for 2,739 patients (median age = 65 years, IQR
= 53–75 years; 39.4% female), whereas MRA was available
for 1,597 patients (median age = 64 years, IQR = 52–75

FIGURE 1 | Number of MRI, DWI, and MRA in the MRI-Genie image depository by the contributing center.
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FIGURE 2 | CONSORT diagram of the MRI-GENIE study population.

years; 39.3% female). Both DWI and MRA were available
for 1,539 patients (median age = 64 years, IQR = 52–75
years; 39.4% female). Technical specifications such as MRI
manufacturer, model names, and field strengths are shown in the
Supplemental Table 3.

The median time from symptom onset to MRI for the 2,739
patients with available DWI was 1 day (IQR = 1–4 days). In
addition, 1,227, 1,061, and 123 of these patients had an MRI
performed in the time intervals 0 to 48 h, 2 to 14 days, and more
than 14 days, respectively, as shown in Table 1.

Center Differences
The 12 participating centers contributed 70–475 patients. Center-
specific demographics and radiological data are included in
Supplemental Table 1.

Stroke Etiology According to CCS and
TOAST
All 3,301 correctly included subjects in the image repository had
a stroke etiology classification according to CCS, and 89.6% had
a TOAST assessment (Supplemental Tables 1A–D).

Risk Factor Distribution
Hypertension was the most common cardiovascular risk factor,
present among 65% of the 3,301 cases (0.7% missing data).
Additionally, 51% were current or former smokers (0% missing),
23% had diabetes mellitus (0.9% missing), 18% had coronary
artery disease (2.3% missing), and 14% had atrial fibrillation
(1.1% missing).

Radiological Characteristics
DWI Lesion Characteristics

Ischemic lesions on the available DWI (n= 2,739) were assigned
to predefined anatomical categories based on normal cerebral
anatomy and vascular territories (Supplemental Figure 1) with
further classification into solitary or multiple lesions. Ischemic
lesion distributions are described in detail in Figure 3. Interrater
agreement assessed in the 443 cases independently reviewed
by both assessors was 98%, with Cohen unweighted κ = 0.96

TABLE 1 | Diffusion-weighted image lesion characteristics related to time from

stroke to MRI (328 patients lacked information about time to DWI).

DWI parameter 0–48 h 2–14 d >14 d

Number of patients 1,227 1,061 123

Median time to MRI (days) (IQR) 1 (0–1) 3 (2–6) 27 (20–37)

Anterior/posterior circulation/both (N) 762/324/39 676/278/31 64/25/1

Supratentorial/infratentorial/both (N) 886/179/63 759/176/50 71/16/3

Right/Left/both (N) 486/539/104 434/464/86 40/45/5

Brainstem, N (%) 90 (7.3) 103 (9.8) 8 (6.5)

Cerebellum, N (%) 62 (5.1) 59 (5.6) 6 (4.9)

Basal ganglia (%) 189 157 10

Hemisphere (%) 658 563 60

Infarct not seen, N (%) 99 (8.1) 76 (7.2) 33 (26.8)

Multiple infarcts, N (%) 129 (10.5) 103 (9.7) 6 (4.9)

(excellent) and weighted κ = 0.97 (excellent) measured using a
single review criterion (vascular territory).

The most common anatomical category based on DWI was
hemispheric (51.7%). The second most common ischemic lesion
location was deep gray matter (defined as basal ganglia and
thalamus), seen in 14.6% of the examinations.

In 2,044 (77%) of the examinations with lesions on DWIs,
supratentorial lesions were seen; in 561 (17%), infratentorial
lesions were seen, and in 138 examinations (6%), both
supratentorial and infratentorial lesions were seen.

Overall, 67% of the ischemic lesions occurred in the anterior
circulation, 29% in the posterior circulation, 3.5% to both
anterior and posterior circulation, and 0.1% undetermined.
When further stratified by vascular territory according to the
major arterial branches, the middle cerebral artery (MCA)
territory was most common, followed by vertebrobasilar artery
territory and posterior cerebral artery territory.

Of the 2,238 patients with unilateral infarcts seen on DWI,
53% had left-sided infarct lateralization (P = 0.013, Figure 3F).
When comparing the distribution of unilateral infarctions for
supratentorial and infratentorial distribution, a higher frequency
of left-sided lesions was seen only for supratentorial infarcts
(53%; P = 0.018). When comparing the distribution of unilateral
infarctions for the major vascular territories, a significantly
higher frequency of left-sided infarcts was seen only for the MCA
territory (53%; P = 0.032).

MRA Characteristics of Intracranial Vessels

Among the 1,597 patients with available MRA of the intracranial
vessels, moderate to severe vessel stenosis (stenosis visually
gauged to >50% luminal diameter reduction) was most common
in the basilar artery and the vertebral arteries (4% and 3%,
respectively). Stenosis was observed in 1% to 2% of the large
vessels of the anterior circulation and the posterior cerebral
artery. Vessel occlusion was most common in the MCA (14%)
and the vertebral arteries (12%), whereas occlusion of the basilar
artery was least common (2%).

Figure 4 illustrates the distribution of stenosis in the major
intracranial arterial branches and LAOs with or without
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FIGURE 3 | Charts summarizing DWI lesion distribution according to (A) anatomical region, (B) vascular region, (C) vascular territory, (D) supratentorial and

infratentorial location, and (E) lateralization. In chart (C), multiple infarcts were recorded once per vascular territory, and therefore the number of infarcts (2,713)

exceeds the total number of patients with visible DWI lesions (2,467). Chart (F) shows the difference between right- and left-sided lesions for all lesions and specified

for supratentorial and infratentorial lesions and specified for the major vascular territories [χ2 test after excluding patients with bilateral infarcts and with no infarcts

(270 cases)].

FIGURE 4 | Distribution of stenosis and occlusions in the large intracranial vessels on MRA (N = 1,597). (A) shows the distribution of stenosis (visually graded as

>50%). (B) shows the distribution of large-vessel occlusions. (C) shows the distribution of large-vessel occlusions with corresponding DWI lesions. (D) shows the

distribution of large-vessel occlusions without corresponding DWI lesions. ACA, anterior cerebral artery; MCA, middle cerebral artery; ICA, internal carotid artery;

ICA-T, top of internal carotid artery; PCA, posterior cerebral artery; BA, basilar artery; VA, vertebral artery.

corresponding DWI lesions, as well as the distribution of LAOs
in relation to the time from stroke onset to MRI. Of the 1,539
patients with available DWI and MRA, 423 (28%) had an large
vessel occlusion (LVO) relevant to the localization of an infarct
on DWI (Table 2). The proportion of patients with LAO was
higher in MRAs performed within 48 h of stroke onset (37%)
compared with MRAs performed later than 48 h (23%) after
stroke. Middle cerebral artery occlusions accounted for more
than a third (34%) of all LAOs, whereas basilar artery occlusion

and anterior cerebral artery occlusion were the rarest occlusion
types (4.7% and 4.2% of all LAOs, respectively).

DISCUSSION

In this systematic radiological analysis of clinical MRI scans of
3,301 AIS patients enrolled in 12 international hospital-based
cohorts, we identified that anterior circulation infarcts were most
prevalent (67%), that infarcts in the MCA territory were the most
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TABLE 2 | Large artery occlusions (LAO) in the 1,507 patients with DWI and MRA

(32 patients lacked information about time to DWI).

Arterial segment 0–48h

(n = 803)

2–14 days

(n = 635)

>14 days

(n = 69)

Proximal internal carotid, N (%) 21 (2.6) 20 (3.1) 7 (10.1)

Distal internal carotid, N (%) 25 (3.1) 15 (2.4) 3 (4.3)

Middle cerebral artery, N (%) 100 (12.4) 41 (6.5) 2 (2.9)

Anterior cerebral artery, N (%) 11 (1.4) 5 (0.8) 2 (2.9)

Vertebral artery, N (%) 31 (3.9) 19 (3.0) 0

Basilar artery, N (%) 11 (1.4) 8 (1.3) 1 (1.4)

Posterior cerebral artery, N (%) 31 (3.9) 20 (3.1) 0

Multiple arteries, N (%) 32 (4.0) 17 (2.7) 1 (1.4)

No occlusion visible, N (%) 541 (67.3) 490 (77.2) 53 (76.8)

common, and that the majority of LAOs 0 to 48 h from ictus were
in the MCA territory. It was also observed that the proportion of
large-vessel occlusions decreased with increasing time from onset
to imaging, especially for the MCA territory.

Multiple acute lesions in one or several vascular territories
were common (11%), and this prevalence was comparable
with other current studies (8.8–9.8%) (19). However, the two
major etiologies for multiple acute DWI lesions, large artery
atherosclerosis and cardioembolic, were notably common in the
cohort (36 and 40%, CCS and TOAST), suggesting that most
patients with stroke attributed to cardioembolic and large-artery
atherosclerosis present with a single DWI lesion.

We also showed a higher prevalence of left-sided ischemic
lesions compared to right-sided lesions and that this difference
in prevalence also could be observed for the largest subgroups
of patients with supratentorial lesions and lesions in the MCA
territory. Left-sided lesions were also more common on CT in
a recent population-based cohort (8, 9). In our material, this
difference is caused mainly by a difference in supratentorial
lesions in the MCA territory.

These results highlight how “big data” allow for stratification
of patients into smaller but more homogeneous subgroups
based on lesion appearance on MRI, an important step to
individualizing stroke care. Our structured data on imaging
and clinical characteristics provide baseline information to
assess the feasibility of studies on specific MRI phenotypes
such as patients with multiple lesions or lesions in a certain
vascular territory. Additionally, our data can be used in the
further development and validation of automated segmentation
software by providing a very large annotated data set based on
standardized neuroradiological assessment.

This unique database also provides an analytical platform
for novel, large-scale studies of genetic architecture of MRI-
based phenotypes in patients with AIS. To date, there are limited
data on the genetics of imaging phenotypes, such as white
matter hyperintensities (WMH) and DWI volumes (13, 14).
Furthermore, there are limited large-scale studies of genetic
architecture and MRI-based phenotypes from hospital-based
multicenter stroke populations (20). These data are critical to
obtain to advance knowledge of underlying mechanisms of

ischemic tissue injury and for developing targets for future
interventions and therapeutics. MRI-GENIE offers a novel
approach to developing such type of data, and systematic
review and radiological analysis of the MRI data are the
first steps toward detailed characterization of clinical MRI
phenotypes. We will continue our work by combining this
work with recently developed automated volume segmentation
algorithms (14) to assess the combined effect of risk factors
and vascular anatomy with lesion characteristics. We will also
assess the effect of genetic traits that may alter the MRI stroke
phenotype in general, or in specific conditions such as in
the presence of certain neurovascular conditions or certain
risk factors.

Limitations of the current approach include known and
potential differences between the individual contributing
sites. Because this is a hospital-based study, the use of
MRI may have varied with clinical practice over time and
between centers. The low mean patient age at several centers
(Supplemental Table 1A) suggests that MRI may predominantly
have been used for younger patients. For example, MRI may
have been used predominantly for cases where CT had not
been conclusive, thereby underrepresenting cases of large
infarcts, or for suspected ischemic strokes in the posterior
fossa where CT is of limited diagnostic value because of
artifacts in this region (21). However, the proportion of
posterior circulation lesions in our cohort matches previous
estimates (15–35%) (16, 22). Another limitation is that the MRI
scanners and examination protocols varied between centers and
over time.

The strengths of our approach include a large sample of
MRI scans from multiple international centers obtained as part
of hospital-based care for patients with AIS, thereby likely
generalizable to global stroke patient population as compared to
previously published single-center studies. Additional strengths
include the large number of DWI and MRAs, as well as detailed
stroke subtype characterization using validated TOAST and
CCS classifications.

CONCLUSIONS

In this article, we report baseline data from the MRI-GENIE
study and the initial neuroradiological findings describing
ischemic lesions, vascular anatomy, and vascular lesions
according to a structured reporting protocol.

This work will provide an imaging framework for genetic
studies of the MRI-GENIE cohort, facilitating the linkage
between imaging and genetics in advancing the knowledge of
ischemic stroke. It may also serve as a reference material for
automated analysis of ischemic lesions or vascular characteristics.
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