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Background: Mobility impairment is common in persons with multiple sclerosis (pwMS)

and can be assessed with clinical tests and surveys that have restricted ecological

validity. Commercial research-based accelerometers are considered to be more valuable

as they measure real-life mobility. Smartphone accelerometry might be an easily

accessible alternative.

Objective: To explore smartphone accelerometry in comparison to clinical tests,

surveys, and a wrist-worn ActiGraph in pwMS and controls.

Methods: Sixty-seven pwMS and 70 matched controls underwent mobility tests and

surveys. Real-life data were collected with a smartphone and an ActiGraph over 7 days.

We explored different smartphone metrics in a technical validation course and computed

afterward correlation between ActiGraph (steps per minute), smartphone accelerometry

(variance of vector magnitude), clinical tests, and surveys. We also determined the ability

to separate between patients and controls as well as between different disability groups.

Results: Based on the technical validation, we found the variance of the vector

magnitude as a reliable estimate to discriminate wear time and no wear-time

of the smartphone. Due to a further association with different activity levels,

it was selected for real-life analyses. In the cross-sectional study, ActiGraph

correlated moderately (r = 0.43, p < 0.05) with the smartphone but less

with clinical tests (rho between |0.211| and |0.337|). Smartphone data showed

stronger correlations with age (rho = −0.487) and clinical tests (rho between

|0.565| and |0.605|). ActiGraph only differed between pwMS and controls (p <

0.001) but not between disability groups. At the same time, the smartphone

showed differences between pwMS and controls, between RRMS and PP-/SPMS,

and between participants with/without ambulatory impairment (all p < 0.001).
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Conclusions: Smartphone accelerometry provides better estimates of mobility and

disability than a wrist-worn standard accelerometer in a free-living context for both

controls and pwMS. Given the fact that no additional device is needed, smartphone

accelerometrymight be a convenient outcome of real-life ambulation in healthy individuals

and chronic diseases such as MS.

Keywords: smartphone, multiple sclerosis, accelerometry, physical activity, ambulation

INTRODUCTION

Multiple sclerosis (MS) is the most common autoimmune
disease of the central nervous system (CNS) and leads
to an accumulation of disability by chronic inflammation
and neurodegeneration (1). The patterns of disability are
heterogeneous, but impaired mobility occurs in up to 75% of
persons with multiple sclerosis (pwMS) (2) and represents one
of the most disrupting physical features of MS (3). Regarding
the perceptions of bodily functions, ambulation is rated as
one of the three most valuable abilities (4). Besides, walking
is the most frequent type of self-selected physical activity (5)
and represents with over 50% of dynamic activity over a 24-
h period, the primary mode of physical activity in pwMS
(6). Walking impairment could cause physical inactivity, which
results in physical deconditioning, and in this negative feedback
mechanism, walking impairment could be driven further down
(7). In the clinical setting, walking impairment can be used to
monitor disability progression, and ambulatory improvement
can be used as an indicator of efficacy in therapeutic trials (8).
However, while the importance of the walking ability in MS is
widely accepted, the ideal measurement approach is still under
discussion (9).

The Extended Disability Status Scale (EDSS) is an accepted
standard of disability measurement in MS and relies in its middle
range mainly on walking abilities in the range between 20 and
500m (10). However, the scale suffers for its increased variability
for longer walking distances and other factors like fatigue,
patient’s mood, and the time the test was performed (11). EDSS
also has limitations to measure small but clinically meaningful
changes in ambulation, and it fails to capture the performance
fluctuation over time in the natural environment (12). Standard
clinical performance-based measures, such as the Timed 25-
Foot Walk (T25FW), 2-Minute Walking Test (2MWT), and 6-
Minute Walking Test (6MWT) (13), provide objective snapshots
of the day-to-day variable ambulatory capacity (14). They may
not reflect the continuous walking activity in the real-world
environment due to the lack of ecological validity (15). Patient-
reported outcome measures (PROMS) (e.g., 12-Items Multiple
Sclerosis Walking Scale (MSWS-12) (16) or Godin Leisure-Time
Exercise Questionnaire (GLTEQ) (17) are limited by recall bias
and variability in self-perception of physical activity.

To that end, the total ambulatory activity undertaken in
the habitual environment in performing a usual range of daily
activities is recognized as the gold standard for measuring
ambulatory mobility in neurological disorders (18), and there
is an emerging body of research supporting the application

of accelerometry for measuring physical data in MS (19,
20). ActiGraph (Pensacola, FL, USA) is one of the most
common accelerometers used in research (20, 21). Associations
between the output of ActiGraph (i.e., activity counts, step
counts, MVPA, and sedentary time) and clinical outcomes
in the free-living setting have been intensively investigated
(22–24). Nevertheless, there are neither standard protocols
of application of commercially available accelerometers nor
standard accelerometer output—for example, estimates of energy
consumption, step number, or walking speed (19, 25). The
need and burden of wearing an additional device restricts
its use to short-term usage and may, due to the perceived
invasiveness, affect the ecological validity. Smartphone with
built-in accelerometry might overcome this shortcoming and has
been considered as a possible measurement for motion data.
The cost and the burden of measurement are low due to a
high usage rate in the general population and among pwMS
and the lack of need for a further device (26). Studies in recent
years supported the application of smartphones for assessing
mobility and physical activity in clinical as well as in a free-living
setting (27–30). However, there is a lack of studies investigating
smartphone accelerometry as a putative outcome for neurological
diseases such as MS.

Here, we aimed to investigate the value of built-in smartphone
accelerometers as a valid outcome for disability and mobility
compared to a wrist-worn ActiGraph in a representative group
of pwMS compared to healthy controls in a free-living setting.

METHODS

The validation and exploration of the smartphone accelerometry
were done in two steps: first, we performed a technical validation
course for wear time validation and selection of outcomes.
Second, we performed a cross-sectional analysis in pwMS
and healthy controls with clinical outcomes, PROMS, and
ActiGraph measurements. The value of an outcome metric was
estimated by its discriminant ability between different disability
groups (e.g., mild vs. moderate impairment) and its correlation
with self-reported physical activity and clinical performance-
based measures.

Technical Validation Course
To define periods of wear time and non-wear time and to
explore summary measures from the raw accelerometry data, we
performed a technical validation course using 28 smartphones,
Samsung Galaxy (model S4 mini) with a built-in tri-axis
accelerometer. First, we collected no-wear data over 10min while

Frontiers in Neurology | www.frontiersin.org 2 August 2020 | Volume 11 | Article 688

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhai et al. Smartphone Accelerometry in Multiple Sclerosis

all smartphones were lying in different positions on a table.
Then, the smartphones were carried by three members from
the staff for investigating wear time assessments, which included
sitting, standing, walking, running, and stair climbing 10min
each. Passivemovements were recorded in an elevator and during
a bus trip.

Participants
Participants were recruited at the MS outpatient clinic at the
University Medical Centre Hamburg–Eppendorf. The inclusion
criteria for pwMS were (1) age 18–65 years, (2) a confirmed
diagnosis of MS according to McDonald criteria 2010 (31), (3)
an Extended Disability Status Scale (EDSS) (10) score below 6.5,
and (4) no relapse in the last 30 days. The inclusion criteria for
the controls were (1) not reporting disease with potential impact
on mobility and (2) matching the age distribution of the sample
with MS. The exclusion criteria for both samples were severe
medical conditions other than MS, severe cognitive impairment,
or any other condition that might relevantly compromise the use
of a smartphone (e.g., very low visual acuity or severe ataxia).
All participants gave written informed consent prior to any
testing under this protocol, and the local ethical review board
(Ärztekammer Hamburg, PVN 5001) approved the investigation.

Procedures
After inclusion, we collected demographic data and participants
filled in the following questionnaires: Godin Leisure-Time
Exercise Questionnaire (GLTEQ) (17), the Frenchay Activity
Index (FAI) (32), and the International Physical Activity
Questionnaire (IPAQ) (33). pwMS completed also the 12-Item
Multiple Sclerosis Walking Scale (MSWS-12) (16, 34). Clinic-
based measures of ambulation included Five-Times Sit-To-Stand
test (FTSTS), Timed 25-Foot Walk (T25FW), 2-Minute Walking
Test (2MWT), 6-Minute Walking Test (6MWT), and a 3-Meter
Timed Tandem Walk (TTW) (13). EDSS scoring was performed
within the clinical examination by a neurologist (10).

All participants were supplied with an ActiGraph (model
GT3X+) and a smartphone (Samsung Galaxy S4mini).We asked
the participants to wear the ActiGraph on the non-dominant
wrist (35) and the smartphone in the habitual position like their
phones for the following 7 days. They were asked to wear both
devices during the entire day, except for showering, swimming,
or while sleeping.

Data Processing
All the written data, including demography, clinical
performance-based measures, and PROMS were collected
in an electronic case report file. The raw ActiGraph data were
processed, and standard outcomes [mean vector magnitude
(meanVM), daily MVPA, steps/minute] were downloaded with
ActiLife 6 software version 6.13.3 (ActiGraph, Pensacola, FL
USA) in 60-s epoch intervals. Non-wear time was filtered out
with the Choi algorithm (36). The smartphone accelerometer
data were collected via a small Android-based application, which
had been developed by the Institute of Neuroimmunology and
Multiple Sclerosis (INIMS). The raw accelerometer axis (X, Y,
and Z) values were filed at a sampling rate of 2 Hz.

Selection of Smartphone Outcomes
For the selection of putative smartphone outcomes in the
technical validation course, we computed and explored the
following summary metrics for epochs of 60 s (same bout length
as for the ActiGraph): Sum of absolute axis values (sumX, sumY,
and sumZ), variance of axis values (varX, varY, and varZ),
Pearson’s correlations between each pair of axes (corXY, corXZ,
and corYZ), sum of all absolute axis values (sumXYZ), mean
absolute correlation (corXYZ), sum of absolute vector magnitude
(sumVM), mean vector magnitude (VM), and mean variance
of the vector magnitude (varVM). Most of the metrics reflect
standard accelerometry metrics—such as the vector magnitude
and sum of acceleration of selected axes (37). However, several
commonly used accelerometry outcomes rely on the proper
orientation in space, for example the vertical axis counts.
For smartphones, such orientation-dependent metrics are not
reasonable under the concept of using the patient’s device in
the future. Thus, we decided to explore orientation-independent
metrics. We hypothesized that increasing physical activity might
translate into the reduced correlation of the axes counts and
increased variance of acceleration measurements.

To compare the potential metrics, the available dataset was
split in a ratio of 1:1 randomly in an explorative and a validation
subset. First, we used the explorative data to visually inspect
boxplots of all measurements for the selection of candidates
with the high discriminant ability of no-wear vs. wear time
and over different activities. The potential metrics were then
formally tested for discriminant abilities of wear and no-wear
time by receiver operating characteristic (ROC) analyses. Finally,
we validated the metrics from the explorative dataset in the
validation sample and defined cutoff values for separation of
wear and no-wear time. For further analysis, all accelerometry
outcomes were wear-time corrected average values.

Statistical Analysis
For the statistical analysis, we divided the total sample into
healthy controls and the pwMS. The pwMS were further divided
into the following subgroups: (1) disease course (relapsing vs.
progressive) representing conceptually early and late MS and
(2) by EDSS <3.5 vs. ≥3.5 representing a cutoff for ambulatory
impairment in MS (10) (minimal ambulatory impaired vs.
ambulatory impaired). We performed descriptive statistics of
the demography with mean/SD, median/range, or number/rates
according to the nature of the data. Student’s t-test was used to
detect the differences of demography, clinical performance-based
metrics, PROMS, wear time, and metrics of accelerometry within
the above-mentioned groups. Associations between smartphone
accelerometry and ActiGraph were first estimated by Spearman’s
rank-order coefficient within the groups. The most correlating
metric of each accelerometer was then chosen to be tested
with the clinical performance-based metrics and PROMS by
Spearman’s rank order. We used Mann–Whitney U-test to
determine the ability of the accelerometers to separate between
groups. In addition, we computed ROC analysis to examine
the predictability of the accelerometers for disease course and
severity of the disability. P < 0.05 was used for judging the
significance level. Due to multiple comparisons, we corrected the
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FIGURE 1 | Technical validation of smartphone metrics: wear time detection. Exploration of different smartphone metrics revealed good discriminant abilities for (A,B)

sumXYZ and varVM that could be confirmed in receiver operating characteristic (ROC) analyses of the (C) explorative and the (D) validation subset.

p-values with the false discovery rate (FDR). All analyses were
performed with statistics in R.

RESULTS

Technical Validation and Selection of
Outcomes
Exploration of smartphone metrics (see Figures 1, 2 and
Figures e1, e2) revealed a high sensitivity and specificity
for wear time detection for sumXYZ [area under the curve
(AUC)= 0.928, p < 0.001, accuracy= 0.901, sensitivity= 0.874,
and specificity = 0.959] and several variance metrics
including varVM (AUC = 0.984, p < 0.001, Figures 1A–C,
accuracy = 0.975, sensitivity = 0.987, specificity = 0.941].
Discriminant abilities could be confirmed in the validation

subset, and the AUC from the validation set did not differ from
the explorative estimation for varVM (p = 0.507). However,
varVM showed significantly higher accuracy than sumXYZ (p
< 0.001) and was chosen for wear time detection. Moreover,
both metrics tended to increase with estimated physical activity
level, and we used these two outcomes for further analyses
(Figures 2A,B).

Participants and Clinical Characteristics of
the Subgroups
We included 137 subjects: 70 HC and 67 pwMS (see Figure 3).
Demographic data are presented in Table 1. Patients with
primary or secondary progressive MS (PP-/SPMS) were elder
(49.6 vs. 35.9 years) than patients with relapsing–remitting
MS (RRMS). pwMS with impaired ambulation had longer
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FIGURE 2 | Smartphone metrics and physical activities. Boxplots of the smartphone metrics (A) sumXYZ and (B) varVM during different activities. Both metrics also

tended to increase with the activity intensity.

FIGURE 3 | Study flow chart. HC, healthy controls; pwMS, patients with MS; RR, relapsing–remitting MS; PP-/SPMS, primary and secondary progressive MS; EDSS,

expanded disability status scale (EDSS > 3 indicates walking impairment).

disease duration (12.9 vs. 6.4) than its comparison group.
Otherwise, we observed no group differences in age, body
mass index (BMI), and waist. Moreover, the median EDSS in
patients with primary or secondary progressive MS (PP-/SPMS)

was 1.8 higher (p < 0.001) than in relapsing–remitting
MS (RRMS).

Table 2 shows the descriptive statistics of clinical tests,
PROMs, and accelerometry measures of ActiGraph and
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TABLE 1 | Demographic and clinical data.

Control pwMS RRMS PP-/SPMS EDSS ≤ 3.5 EDSS > 3.5

N (Sex) 70 (47F/23M) 67 (42F/25M) 34 (18F/16M) 33 (24F/9M) 49 (32F/17M) 18 (10F/8M)

(p = 0.713) (p = 0.155) (p = 0.655)

Age (years) 41.5 ± 12.8 42.9 ± 10.9 35.9 ± 9.1 49.6 ± 7.7 41.6 ± 11.4 46.4 ± 8.4

(p = 0.496) (p < 0.001) (p = 0.067)

Weight (kg) 71.9 ± 15.2 73.3 ± 16.8 72.2 ± 18.5 74.4 ± 15.2 74.4 ± 17.0 70.4 ± 16.6

(p = 0.613) (p = 0.595) (p = 0.396)

BMI 24.0 ± 3.9 24.4 ± 4.7 24.5 ± 5.3 24.4 ± 4.2 24.8 ± 4.7 23.3 ± 4.7

(p = 0.585) (p = 0.905) (p = 0.242)

Waist (cm) 89.1 ± 12.8 92.3 ± 14.8 89.9 ± 16.4 94.6 ± 12.9 93.1 ± 14.7 90.2 ± 15.5

(p = 0.177) (p = 0.197) (p = 0.499)

Disease duration (years) 8.5 ± 8.1 6.5 ± 5.6 9.7 ± 8.6 6.4 ± 6.2 12.9 ± 9.1

(p = 0.097) (p = 0.012)

Median EDSS (range) 3 (1.0–6.0) 2.0 (1.0–5.5) 3.5 (2.0–6.0) 2.5 (1.0–3.5) 5.5 (4.0–6.0)

Values represent mean ± SD, if not otherwise indicated; p-values for group comparison (patients vs. controls, RRMS vs. PP-/SPMS, and EDSS groups) based on chi-square test for

rates or Student’s t-test.

BMI, body mass index; EDSS, expanded disability status score.

smartphone. The average measurement times within 7 days
were 55 h for the smartphone and 76 h for the ActiGraph,
which represent an average active wear time of 7.5 and
10.9 h/day, respectively.

Correlations Between Smartphone Metrics
and ActiGraph
First, we were interested in analyzing the correlation between
standard ActiGraph outcomes, and smartphone-derived
metrics (see Table 3 and Figure e3). Among all metrics,
varVM correlated best with ActiGraph steps/minute within all
participants (rho = 0.44, p < 0.001). However, this association
was mainly driven by the correlation in healthy controls
(rho = 0.478, p < 0.001), while it was clearly weaker but still
significant in pwMS (rho= 0.29, p= 0.022).

Correlations Between Accelerometer
Outcomes, Clinical Performance-Based
Measures, and PROMS
Next, we investigated the association of both accelerometers
with demography, clinical measures, and PROMS (Figure 4).
Among the variables derived from ActiGraph, steps/minute
showed within all participants the strongest but still only weak
to moderate correlations with clinical measures (2MWT, 6MWT,
FTSTS,T25FW rho = |0.21| to |0.34|, p < 0.05) and PROMS
(FAI and IPAQ, rho = |0.27|, p < 0.05). In healthy controls
and pwMS with ambulatory impairment, MVPA had a stronger
association with some of the clinical measures than steps/minute
(rho = |0.28| to |0.59|, p < 0.05). Among all variables derived
from the smartphone, varVM showed the strongest correlations
among all participants. varVM correlated mildly to moderately
with the demography (age and waist, rho = |0.25| to |0.49|, p
< 0.01), the clinical measures (TTW, 2MWT, 6MWT, FTSTS,
T25FW, rho = |0.56| to |0.61|, p < 0.0001), and with PROMS
(GLTEQ and FAI, rho= |0.39| and |0.25|, p < 0.01).

Thus, we will describe the smartphone outcome varVM and
the ActiGraph outcome steps/minute as the most correlating
outcomes in the subgroups more in detail. The association
of both outcomes with demography, clinical measures, and
PROMS are summarized in Figure 4 (for correlations of other
accelerometer outcomes, see Supplemental Material). In healthy
controls, varVM correlated moderately with most clinical
measures (2MWT, 6MWT, F25WT, and FTSTS, rho = |0.30|
to |0.39|, p < 0.05) but not with PROMs. Steps/minute did
not correlate with any clinical measures nor with PROMs.
Within all pwMS, varVM again moderately to strongly correlated
with age (rho = −0.63, p < 0.0001), all clinical measures
(TTW, 2MWT, 6MWT, FTSTS and T25FW, rho = |0.56| to
|0.67|, p < 0.0001), GLTEQ (rho = 0.37, p < 0.01), EDSS
(rho = −0.62, p < 0.0001), and MSWS-12 (rho = −0.73, p
< 0.0001). Steps/minute did not, neither within all pwMS nor
in the subgroups, correlate with any variable. Within minimal
impaired pwMS, varVM showed moderate to strong correlation
with age (rho = −0.74, p < 0.0001), clinical measures (TTW,
2MWT, 6MWT, FTSTS, and T25FW, rho = |0.45| to |0.64|,
p < 0.01), EDSS (rho = −0.602, p < 0.0001), and MSWS-
12 (rho = −0.74, p < 0.0001). Within ambulatory impaired
subgroup, none of the accelerometer metrics correlated with any
variable. Overall, varVM showed in comparison to steps/minute
not only in the healthy subgroup but also in pwMS a stronger
association with age, clinical measures, MSWS-12, and EDSS,
representing walking ability and ambulatory impairment.

The Ability of Accelerometry to
Differentiate Between Subgroups
In addition, we wanted to compare the discriminant abilities
of accelerometry data for MS subgroups. Again, we used
steps/minute and varVM as outcomes of interest. ROC analysis
(Table 4) revealed that varVM was the better classifier for
differentiating pwMS from control (AUC = 0.75 vs. 0.68,
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TABLE 2 | Clinical outcomes and accelerometry data.

Control pwMS RRMS PP-/SPMS EDSS ≤ 3.5 EDSS > 3.5

Clinical test

T25FW (s) 4.0 ± 0.6 5.6 ± 2.8 4.2 ± 0.8 6.8 ± 3.5 4.7 ± 0.8 7.8 ± 3.5

(p < 0.001) (p < 0.001) (p = 0.020)

FTSTS (s) 7.4 ± 1.7 11.7 ± 4.8 9.6 ± 1.7 13.8 ± 5.9 10.4 ± 2.7 15.8 ± 7.4

(p < 0.001) (p < 0.001) (p = 0.039)

TTW (s) 6.6 ± 1.8 11.8 ± 5.6 8.9 ± 3.3 14.4 ± 6.2 10.4 ± 4.1 15.8 ± 7.5

(p < 0.001) (p < 0.001) (p = 0.030)

2MWT (m) 201 ± 35 164 ± 38 179 ± 29 148 ± 40 176 ± 29 131 ± 41

(p < 0.001) (p = 0.002) (p = 0.003)

6MWT (m) 609 ± 75 477 ± 123 530 ± 86 424 ± 132 517 ± 90 362 ± 136

(p < 0.001) (p < 0.001) (p = 0.002)

PROMS

GLTEQ 43.1 ± 27.1 25.1 ± 20.9 30.1 ± 21.6 20.6 ± 19.2 29.5 ± 20.9 13.9 ± 16.4

(p < 0.001) (p = 0.105) (p = 0.014)

FAI 34.6 ± 4.6 32.0 ± 6.1 32.4 ± 5.1 32.1 ± 6.8 33.6 ± 5.1 28.6 ± 6.7

(p = 0.023) (p < 0.868) (p = 0.028)

IPAQ 7,553 ± 7,454 6,314 ± 5,919 6,449 ± 5,451 6,188 ± 6,415 6,459 ± 5,059 5,900 ± 8,099

(p = 0.347) (p = 0.868) (p = 0.805)

MSWS-12 26.4 ± 13.9 18.8 ± 9.7 34.5 ± 12.5 21.0 ± 10.3 42.0 ± 9.4

(p < 0.001) (p < 0. 001)

Wear time of actiGraph and smartphone

Wear time ActiGraph minutes 4,498 ± 1,305 4,556 ± 1,692 4,056 ± 1,715 5,038 ± 1,547 4,638 ± 1,437 4,278 ± 2,407

(p = 0.869) (p = 0.036) (p = 0.740)

Wear time smartphone minutes 3,684 ± 1,390 2,769 ± 1,980 2,783 ± 1,582 2,557 ± 2,315 2,884 ± 2,071 2,081 ± 1,742

(p < 0.005) (p = 0.733) (p = 0.171)

Smartphone outcomes

meanVM 9.86 ± 0.08 9.83 ± 0.07 9.83 ± 0.07 9.88 ± 0.07 9.85 ± 0.07 9.87 ± 0.09

(p = 0.103) (p = 0.007) (p = 0.467)

varVM 0.485 ± 0.26 0.264 ± 0.22 0.430 ± 0.19 0.103 ± 0.10 0.311 ± 0.23 0.138 ± 0.16

(p < 0.001) (p < 0.001) (p = 0.007)

ActiGraph outcomes

meanVM 2,405 ± 714 2,286 ± 583 2,375 ± 580 2,205 ± 583 2,275 ± 592 2,319 ± 575

(p = 0.347) (p = 0.309) (p = 0.805)

Daily MVPA 218 ± 80 216 ± 83 189 ± 77 240 ± 81 213 ± 82 223 ± 88

(p = 0.869) (p = 0.023) (p = 0.791)

Steps/minute 13.5 ± 3.43 11.6 ± 2.80 12.1 ± 2.24 11.0 ± 3.17 11.8 ± 2.94 10.9 ± 2.24

(p < 0.001) (p = 0.165) (p = 0.421)

Values represent mean ± SD if not otherwise indicated. p-values for group comparison (patients vs. controls, RRMS vs. PP-/SPMS and EDSS groups) based on chi-square test for

rates or Student’s t-test. p-values are corrected p-values through Benjamini–Hochberg.

T25FW, Timed 25-Foot Walk; FTSTS, Five-Times Sit-to-Stand Test; TTW, 3-Meter Timed TandemWalk; 2MWT, 2-Minute Walk Time; 6MWT, 6-Minute Walk Time; GLTEQ, Godin Leisure-

Time Exercise Questionnaire; FAI, Frenchay Activity Index; IPAQ, International Physical Activity Questionnaire; MSWS-12, 12-Item MS Walking Scale; meanVM, mean vector magnitude;

varVM, variance of vector magnitude; daily MVPA, daily moderate to vigorous physical activity.

Figure 5). Moreover, only varVM was able to differentiate
between relapsing–remitting and progressive MS (AUC = 0.946,
p < 0.0001, Figure 6) and to differentiate between severe
ambulatory impairment and mild ambulatory impairment
patients (AUC= 0.728, p < 0.01, Figure 7).

DISCUSSION

This study examined smartphone accelerometry as an outcome of
real-life ambulation and physical activity in healthy individuals
and pwMS. To follow this aim, we analyzed the relationship of
putative smartphonemetrics with a research-grade accelerometer

(ActiGraph) during free-living conditions, with objectively
measured walking ability and with self-reported physical activity.
Overall, results showed that the smartphone accelerometer
correlated only moderately with ActiGraph in HC and pwMS.
However, the smartphone accelerometer seems to be more
closely associated with walking ability, represented by the clinical
performance-based measures, such as TTW, T25FW, 2-/6-
MWT, FTSTS, and with ambulatory impairment, represented
by MSWS and EDSS. Moreover, the smartphone accelerometer
differentiated the levels of ambulation among all participants
and ambulatory impairment among the pwMS better than the
ActiGraph. In our study, smartphone metrics seem more reliable
than a wrist-worn research-grade accelerometer.
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FIGURE 4 | Association of clinical outcomes and questionnaires with smartphone varVM and ActiGraph steps/minute. Correlogram of Spearman rho; corrected

p-values for multiple comparisons through FDR; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

TABLE 3 | Spearman rho rank correlations between ActiGraph and smartphone

data.

Control pwMS

Smartphone vs. actiGraph

Smartphone (varVM) ActiGraph (steps/minute) 0.478**** 0.288*

ActiGraph (meanVM) 0.378** 0.201

ActiGraph (daily MVPA) 0.169 −0.128

Smartphone (meanVM) ActiGraph (steps/minute) 0.003 0.058

ActiGraph (meanVM) −0.077 0.173

ActiGraph (daily MVPA) −0.162 0.327**

Within accelerometer itself

Smartphone (varVM) Smartphone (meanVM) 0.102 −0.243

ActiGraph (steps/minute) ActiGraph (meanVM) 0.828**** 0.796****

ActiGraph (steps/minute) ActiGraph (daily MVPA) 0.533**** 0.325*

ActiGraph (meanVM) ActiGraph (daily MVPA) 0.727**** 0.443**

FDR corrected p-values: *p < 0.05, **p < 0.01, ****p < 0.0001.

For this study, we used a new metric to capture ambulation
and body motion based on accelerometry data—the variance
of the vector magnitude. From a conceptual point of view,
the metric represents the movement of the smartphone in all
dimensions in a given time. The metric was chosen based
on a technical validation course and provided two important
features: high specificity and sensitivity to identify wear time

periods and a positive association with increased ambulation. An
advantage of this metric is its independence from the orientation
of the smartphone. The value of this metric was evaluated in
comparison to a battery of different outcomes and was chosen by
applying a strict selection methodology based on an explorative
and a validation data set. Moreover, the promising results of
being a good discriminator between ambulation levels and
its association with ambulatory impairment metrics indicate a
successful proof-of-concept.

The rather weak to moderate association between smartphone
varVM andActiGraph outcomes in bothHC and pwMS contrasts
one study that android smartphones provided similar raw counts
as ActiGraph in a free-living setting (29). Although ActiGraph
is a validated tool, most of those validating studies chose
the hip-worn position (20, 21), and the literature provides
controversial data for the wrist-worn position of accelerometers
(12, 23, 38–40). However, the acceptance for the wrist-worn
position may be higher (39). In this study, we also used wrist-
worn ActiGraph data, which might explain the unexpected low
to moderate correlations with clinical measures and PROMS.
Another reason for the lower correlation could be explained by
the arm movements during the non-walking time included in
the high active wear time, while the participants might move the
smartphone mostly when they were walking.

Regarding the ecological validity, ActiGraph could influence
the exercising behavior and, for example, increase the physical
activity, since the notable visibility and discomfort on the
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TABLE 4 | Sensitivity and specificity of accelerometry metrics to differentiate subgroups.

Groups Accelerometry AUC Sensitivity Specificity NPV PPV Delong’s test

p-value

Control vs. patient ActiGraph steps/minute 0.683 0.746 0.586 0.618 0.719 p = 0.286

Smartphone varVM 0.750 0.567 0.843 0.776 0.670

RRMS vs. PP-SP/MS ActiGraph steps/minute 0.613 0,767 0.484 0.696 0.575 p < 0.001

Smartphone varVM 0.946 0.939 0.853 0.935 0.861

Impaired vs. minimal impaired ActiGraph steps/minute 0.567 0.426 0.750 0.308 0.833 p = 0.153

Smartphone varVM 0.728 0.694 0.833 0.500 0.919

ROC analyses. The area under the curve (AUC) results were compared with Delong’s test.

AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.

FIGURE 5 | Group differences between healthy control and patients with multiple sclerosis (pwMS). Left: Boxplots showing smartphone and ActiGraph metrics for

controls and pwMS, ***p < 0.001, ****p < 0.0001. Right: receiver operating characteristic (ROC) curves of smartphone (red) and ActiGraph (blue) showing the ability

of differentiation between the groups.

FIGURE 6 | Group differences between relapsing–remitting and progressive multiple sclerosis (MS). Left: Boxplots showing smartphone and ActiGraph metrics for

controls, progressive (or late) MS and relapsing (or early) MS. *p < 0.05, ***p < 0.001, ****p < 0.0001. Right: receiver operating characteristic (ROC) curves of

smartphone (red) and ActiGraph (blue) showing the ability of differentiation between the MS groups.

wrist could be perceived invasive as a “reminder.” On the
other hand, the possibly perceived invasiveness of a wrist-worn
accelerometer could be intentionally used to motivate users for
more exercising. Eventually, using smartphones as an ubiquitous,
available measuring tool might overcome these shortcomings as
usual smartphone positions such as handbags, rucksacks, or pants

pocket, which are less perceivable and provide a high accuracy
(40, 41). These positions are closer to the body’s center of mass
that has been recommended as the best sensor position (42).
Thus, smartphones could refer more to real life and offer higher
ecological validity. However, the perceived invasiveness was not
studied here and needs to be addressed in future studies.
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FIGURE 7 | Group differences between ambulatory minimally impaired and ambulatory impaired patients with multiple sclerosis (pwMS). Left: Boxplots showing

differences between controls minimally ambulatory impaired pwMS [Extended Disability Status Scale (EDSS) < 3.5] and severely impaired pwMS (EDSS > 3.5), **p <

0.01, ***p < 0.001, ****p < 0.0001. Right: receiver operating characteristic (ROC) curves of smartphone (red) and ActiGraph (blue) showing the ability of differentiation

of levels of ambulatory impairment.

An important result supporting the value of our smartphone-
based approach is the clear association with age. Walking
abilities, and especially walking speed, are known to be an
important indicator of health status and associated with age
(43). Interestingly, this important coherence with age was well-
reproducible with our smartphone metric but not with the
ActiGraph. Proving a well-known and fundamental relationship
emphasizes the reliability of smartphone accelerometry as an
outcome of real-life ambulation. Furthermore, the discriminating
ability of smartphone varVM confirmed the assumption that
smartphones could differentiate levels of walking ability and
ambulatory dysfunction. However, these findings are based on a
cross-sectional study, and its sensitivity to disability progression
or improvement must be analyzed in a longitudinal setting.

However, it remains uncertain which dimension of physical
activity or ambulation is captured explicitly by smartphones in
general: There are controversial results addressing this issue in
the literature of former research (27, 29, 44). Here, our approach
using a research-grade accelerometer as a reference failed.
However, varVM correlated much stronger with the clinical
measures, representing walking ability than with the PROMs
and representing self-reported physical activity. Thus, we assume
that smartphone measures rather the walking ability than the
physical activity. It might be due to a measurement gap during
exercising or other vigorous activities performed without the
smartphone. Conceptually, this assumption is supported by the
fact that smartphones are usually worn during habitual activities
like traveling, shopping, and walking outside. At the same time,
it is preferably placed aside during exercising and other vigorous
activities. However, this assumption needs further investigation.

The association between smartphone metrics and clinical
outcomes was, in general, higher than for the ActiGraph.
However, both smartphone and ActiGraph correlated with
clinical measures or PROMs more among the ambulatory mildly
to moderately impaired pwMS than those with severely impaired
ambulation. This links to the still open question of whether
accelerometry can generally measure walking ability or rather

physical activity in patients with very low activity levels and
variable gait patterns, such as in progressive MS. However, the
ability of the clinical test to mirror real-life ambulation and
motion is also limited, and they have a rather low ecological
validity (15, 45). Thus, a poor association might be due to
the low performance of the real-life device or shortcomings
of the clinical tests. Further research is needed to provide
better objective estimates of low activity levels in more severely
disabled patients. Moreover, our technical validation indicated
a meaningful increase in the chosen smartphone metric with
increasing physical activity. However, these findings could not be
validated in the real-life setting in this study.

One of the limitations in our study was the wear time of the
devices that might have been too short for reliable estimates of
real-life walking or activity. The original wristlet of ActiGraph
was often reported as unfeasible during specific exercising like
weightlifting; on the other hand, the smartphone has a relatively
short battery life and needed to be charged at least once a
day. Wear time alone cannot be considered as evidence for
the smartphone as an outcome of real-life activity. However,
smartphone covered∼72% of the ActiGraph measurement time.
Future studies need to validate against other outcomes or devices.
Moreover, we asked the participants to wear the smartphone
in their habitual wearing position, aiming to simulate the real-
life condition and to avoid the possibly perceived invasiveness.
Although the usual position like handbag, backpack, and pants
pocket probably does not have differences in the accuracy of
measurement (40), the smartphone secured on the upper arm
showed a lower accuracy (41). Another limitation is that it is
impossible to determine if the phone estimates would remain
comparable with other phone models that have not been tested.
However, one of the most prominent android brands was used in
this study. Finally, we only investigated a rather simple summary
metric of 60-s epochs, which reduces the complexity of the
raw data. Advanced algorithms, for example, estimating walking
speed, might improve the validity of smartphone accelerometry,
as it has been shown for research-grade devices (25).
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Even with these limitations, there seems to be a strong
opportunity for smartphone accelerometry in the context of
several diseases and healthy living (27, 30). It might help
clinicians to monitor ambulatory dysfunction, disease progress,
or rehabilitation in diverse clinical conditions with high
ecological validity. It could also help patients to monitor
their individual changes of walking ability from a personal
baseline over time and to achieve ability goals. Combined with
motivational, educational tools, it may as well help to improve
physical activity independent from diseases.

CONCLUSION

Smartphone accelerometry provides better estimates of mobility
and disability than a wrist-worn standard accelerometer in a free-
living context for both controls and pwMS. Given the fact that
no additional device is needed and despite further validation,
smartphone accelerometry might be a convenient outcome of
real-life ambulation in healthy individuals and chronic diseases
such as MS. Moreover, activity estimates from smartphones
might be more ecological valid as the perceived invasiveness of
assessment is lower than for additional and clearly visible devices.
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