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Objective: Stereoelectroencephalography (SEEG) is a procedure in which many

electrodes are stereotactically implanted within different regions of the brain to estimate

the epileptogenic zone in patients with drug-refractory focal epilepsy. Computer-assisted

planning (CAP) improves risk scores, gray matter sampling, orthogonal drilling angles to

the skull and intracerebral length in a fraction of the time required for manual planning.

Due to differences in planning practices, such algorithms may not be generalizable

between institutions. We provide a prospective validation of clinically feasible trajectories

using “spatial priors” derived from previous implantations and implement a machine

learning classifier to adapt to evolving planning practices.

Methods: Thirty-two patients underwent consecutive SEEG implantations utilizing

computer-assisted planning over 2 years. Implanted electrodes from the first 12 patients

(108 electrodes) were used as a training set from which entry and target point spatial

priors were generated. CAP was then prospectively performed using the spatial priors in

a further test set of 20 patients (210 electrodes). A K-nearest neighbor (K-NN) machine

learning classifier was implemented as an adaptive learning method to modify the spatial

priors dynamically.

Results: All of the 318 prospective computer-assisted planned electrodes were

implanted without complication. Spatial priors developed from the training set generated

clinically feasible trajectories in 79% of the test set. The remaining 21% required

entry or target points outside of the spatial priors. The K-NN classifier was able to

dynamically model real-time changes in the spatial priors in order to adapt to the evolving

planning requirements.

Conclusions: We provide spatial priors for common SEEG trajectories that

prospectively integrate clinically feasible trajectory planning practices from previous
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SEEG implantations. This allows institutional SEEG experience to be incorporated and

used to guide future implantations. The deployment of a K-NN classifier may improve the

generalisability of the algorithm by dynamically modifying the spatial priors in real-time as

further implantations are performed.

Keywords: stereoelectroencephalography, EpiNav, computer-assisted planning, machine learning, spatial priors,

epilepsy surgery

INTRODUCTION

Stereotactic neurosurgery requires precise pre-operative
trajectory planning and accurate implementation to ensure
safety and efficacy. Stereoelectroencephalography (SEEG) is a
diagnostic procedure in which multiple electrodes, typically
10–16, are implanted within the brain in patients with drug-
refractory focal epilepsy to approximate the epileptogenic
zone so that subsequent resective or ablative interventions can
render the patient seizure-free. The most significant risk of
this procedure is intracerebral hemorrhage, which results in
significant morbidity in 2–3% of cases (1). Various surgical
techniques are employed for insertion of SEEG electrodes
including frame-based, frameless and robotic methods with
mean target point accuracies of 2–3mm (2, 3). To maximize
safety, surgeons plan SEEG trajectories to maximize distance
from vasculature. Other important considerations include
accurate targeting of the regions of interest (ROIs), avoidance of
critical structures, maximizing gray-matter sampling, orthogonal
drilling angles to the skull, avoidance of other electrodes,
optimal spatial sampling of the putative epileptogenic zone and
minimizing intracerebral trajectory length. Various computer-
assisted planning (CAP) algorithms have been employed to
optimize these factors. EpiNavTM is one such stereotactic
planning platform that has been applied to SEEG (4–6), laser
interstitial thermal therapy (7, 8) and tumor biopsy (9). Previous
studies have shown external blinded feasibility ratings of CAP
generated trajectories were not significantly different from expert
manually planned trajectories, yet due to the wide variation in
individual surgeon’s planning preferences, these were 62 and
69%, respectively (5). Another potential reason for this is the
reliance on whole-brain parcellations to constrain the entry
and target points, which in many cases are large structures that
require multiple electrodes to pass through them. Furthermore,
the algorithms are static without the ability to adapt or learn
from previous trajectory planning experience.

Here we present the most extensive series to date of patients
that have undergone prospective SEEG planning with CAP. We
provide spatial priors to augment CAP by learning from the
first 12 patients as a “training set” and subsequently applying
this to the prospective planning of a further 20 patients as a
“test set.” To aid in the generalisability of the algorithm, we
additionally utilize K-nearest neighbor (K-NN) clustering as an

Abbreviations: CAP, Computer-assisted planning; K-NN, K-nearest neighbor;

PET, Positron emission tomography; ROI, Regions of interest; SEEG,

Stereoelectroencephalography; SPECT, Single-photon emission computer

tomography; WCSS, Within-cluster sum of squares.

active learning algorithm to dynamically modify the priors based
on individual surgeon’s planning preferences.

METHODS

Patient Inclusion
A total of 32 patients (17 male) with drug-resistant focal epilepsy,
in whom SEEG was performed as part of their routine care
at The National Hospital for Neurology and Neurosurgery,
London, U.K., were included in this prospective validation study.
Patients underwent SEEG implantation between February 2017
and March 2019.

All patients underwent a standardized multi-disciplinary
assessment consisting of specialist input from neurologists,
neurosurgeons, neurophysiologists, neuropsychologists, and
psychiatrists. SEEG trajectory target selection was based on an
estimation of the seizure onset zone derived from a review of
all pre-surgical investigations, including the clinical history and
semiology, scalp EEG/video telemetry, neuropsychological and
neuropsychiatric evaluations, structural, and functional MRI,
PET, and SPECT imaging. Entry regions were also specified
for SEEG trajectories where the lateral neocortex was also of
electrophysiological interest.

Ethical Approval
Ethical approval for this study was provided by the National
Research Ethics Service Committee London, approval reference:
12/LO/0377. Written consent was obtained from all patients
before inclusion in the study.

TABLE 1 | Computer-assisted planning parameters.

Parameter Value

Intracerebral length (mm) <90

Drilling angle to the skull (deg) <30 to orthogonal

Gray matter sampling ratio Maximize

Minimum distance from vasculature (mm) >3

Risk score <1

Avoidance of critical structures Superficial sulcal model

Vascular model

Basal ganglia/brainstem

Frontal and occipital horns of the

lateral ventricles.

Distance between electrodes (mm) >10
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EpiNavTM

Pre-operative SEEG planning was performed within the
EpiNavTM platform (Center for Medical Imaging Computing,
University College London/King’s College London) which has
been described previously (4). In brief, a single gadolinium-
enhanced T1 acquisition is used as a reference image to which
all other imaging modalities are registered. A whole-brain
parcellation was generated, using Geodesic Information Flow
version 3.0 (GIF) (10), from which models of the cortex, gray
matter and sulci are extracted in an automated fashion. Vascular
segmentations were performed following application of a Sato
filter to the pre-operative digital subtraction angiography and
manual thresholding (11). Digital subtraction angiography was
performed 1–2 weeks before SEEG implantation under local
anesthesia in the biplanar angiography suite. Depending on the
spatial distribution of the SEEG implantation and the patient’s
individual anatomy, injections of the ipsilateral internal carotid
artery and a vertebral artery were performed. The EpiNavTM

algorithm generates SEEG trajectories based on optimization
of user-defined parameters, which include intracerebral length,
drilling angle to the skull, gray matter sampling ratio, minimum
distance from vasculature, risk score, and avoidance of critical
structures (12). For an in-depth discussion on planning
parameter selection see (13). The user-defined parameters
applied during this study are shown in Table 1.

The risk score is a mathematical representation of the size
of the avascular corridor through which the planned trajectory
passes in order to reach the target. It is calculated by fitting 128
nodes along the planned trajectory and measuring the distance
between the trajectory and vasculature at each node (4, 14).
A cumulative score is then provided scaled by the minimum
distance defined by the user. In this study, a 3mm minimum
distance from vasculature was applied, resulting in trajectories
that pass within 3mm of a vessel returning a risk score >1. The
3mm safety margin is a user-defined setting within the software
that can be altered based on the planning preferences of the
neurosurgeon. Based on our previous implantation accuracies
(15) and the recommendations of Cardinale et al. (16), we

calculate the minimum permissible distance from vasculature
using the following equation:

Safety Margin (mm) = Electrode radius (mm) +
6

∥

∥

∥

i− î
∥
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n represents the mean implantation error and σ the
standard deviation of the implantation error.

The user inputs the implantation strategy by typing or
selecting the anatomical ROIs. The entry and target regions are
based on the segmentation provided by the GIF parcellation.
For pragmatic purposes, we define the entry region as the most
superficial anatomical structure through which the trajectory
enters the brain and the target region as the deepest point
of the trajectory. The vector between the entry and target
point defines the trajectory vector. We stress that during SEEG
procedures all gray matter contact points along the trajectory are
considered target structures and hence we extend implantations
to deep structures so that as much information as possible
can be gained from each implanted electrode. Constraining the
automated planning algorithm to the target region alone allows
the global minima to be identified for that target region whereas
the additional constraint of the entry region returns the local
minima. An example of a typical strategy and plan generated
from the GIF parcellation is shown in Figure 1. The automated
planning algorithm first removes trajectories that do not adhere
to the length and angle constraints. Next, trajectories that do not
pass through the entry region, if specified, or conflict with critical
structures are also removed. The remaining trajectories are then
optimized for gray matter sampling and returned to the user in
a risk-stratified manner, i.e., lowest risk first. For a more detailed
description of the computer-assisted planning algorithm please
see (4, 6).

After CAP, the user reviews each trajectory to ensure clinical
feasibility and safety. The potential trajectories generated for a
specific target (or entry-target pair) can be iterated through using

FIGURE 1 | (A) A illustrative example of an anatomy-driven multiple trajectory planning strategy (3), with the target and entry points for the trajectory specified by the

user. (B) The 3D segmentation of the whole brain structures outlined in the strategy and (C) the corresponding CAP trajectories optimizing for the

user-defined parameters.
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the “Next Entry” or “Next Target” functions. Manual changes to
the entry and target points can also be performed by the user if
no suitable CAP generated trajectory is found.

Cluster Generation
Following prospective SEEG planning and surgical implantation
in the first 12 cases (108 electrodes), each patient’s reference
image was normalized to the MNI-152 (ICBM 2009a Non-
linear Asymmetric) group template (17). The parameters for
transformation were then applied to the electrode trajectories and
coordinate points for the entry and target points were extracted.
Right and left side trajectories were combined through flipping.
Entry point coordinates were taken at the intersection of the
planned trajectory and the cortical surface. The cluster centroids
for trajectories were calculated from the coordinates in cases
in which the ROI was targeted five or more times to form the
training set. Trajectories targeting patient-specific abnormalities,
such as lesions or PET/SPECT abnormalities were excluded as
these were not generalizable. A total of 13 entry and 14 target
ROIs were included. Within-cluster sum of squares (WCSS)
was calculated to quantify the extent of variance. Based on the
normalized trajectories, spatial priors were then generated to
constrain the entry and target points.

Prospective Validation
Prospective planning was performed in a further 20 patients
(210 electrodes) with spatial priors derived from the training
set. The predictive utility of the spatial priors was determined
by the proportion of trajectories that passed through both the
entry and target priors. In addition, the Euclidean distances
between the cluster centroids from the prospective trajectories
(test set) and those derived from the first 12 cases (training set)
were calculated.

Adaptive Learning
We also implemented a system whereby spatial priors could
adapt to evolving SEEG planning practices. The added flexibility
would allow the priors to adapt and potentially incorporate
new entry or target points outside of the original priors. This
would permit external institutions to use the above spatial priors
as a starting point and, with subsequent SEEG implantations,
enable it to adapt to the individual surgeon’s or institutional
preferences. This was accomplished through the implementation
of a K-Nearest Neighbor (K-NN) classifier to the prospective
validation dataset. The K-NN was deployed using Euclidean
distance from 5 uniformly weighted neighbors to determine the
classifier assignments.

FIGURE 2 | Coordinates of the entry points, shown from a right anterolateral projection for electrode trajectories within the training set (n = 12 patients). Table 2

outlines the ROIs included for the entry and target points. Greater transparency represents trajectory points closer to the midline.
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FIGURE 3 | Coordinates of the target points, shown from a right lateral projection, for electrode trajectories within the training set (n = 12 patients). Table 2 outlines

the ROIs included for the entry and target points. Greater transparency represents trajectory points closer to the midline.

Computational analysis was performed with custom scripts
utilizing functions from the following python libraries: Pandas,
Numpy and SciKit learn. The Matplotlib library was used for
data visualization.

RESULTS

Priors Validation
In total, 13 entry and 14 target point clusters were included in
the training set derived from the first 12 patients (Figure 2). An
entry prior for the posterior insula was not generated due to the
wide dispersion of selected entry points beyond that of a single
GIF parcellation ROI, indicating a lack of consistency during
planning. An overview of color coded priors derived from the
entry and target regions of the training set are shown in Figure 3.

A further 20 patients were then prospectively planned
and implanted using the spatial priors derived from the
previously implanted trajectories within the training set. Of the
prospectively planned trajectories, 79% (129/163) were able to
be planned and implanted using the spatial priors to restrict
the entry and target regions (see Table 2 and Figure 4). The
remaining 21% (34/163) of prospectively implanted trajectories

required entry or target points outside of these priors (see
Figure 5). All prospectively planned and implanted trajectories
sampled the intended ROIs and there were no postoperative
complications or hemorrhages. Coordinates for the entry and
target point cluster centroids from the training set and Euclidean
distance to the cluster centroid from the prospective group
are shown in Supplementary Table 1. On average, the training
and test cluster centroids for the majority of entry and target
points were 10mm apart, with the most notable exception being
mesial prefrontal cortex electrodes. This most likely reflects the
variability of cerebral vasculature between patients and the large
anatomical area for electrophysiological sampling.

Adaptive Learning
Given that 21% of the prospectively planned trajectories were
outside of the spatial priors, a K-NN machine learning classifier
was applied to dynamically refine the boundaries of the entry and
target priors based on the data in the training set. Subsequent
implantations from the test set were then added to the training
set data in 5-folds (random selection of 42 new trajectories
with each fold). The K-NN classifier was iteratively re-applied
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TABLE 2 | Results of implanted computer-assisted planning electrode in relation

to the priors.

No. trajectories Through prior Outside prior

Orbitofrontal 15 13 (87%) 2 (13%)

Amygdala 17 16 (94%) 1 (6%)

Anterior hippocampus 11 8 (73%) 3 (27%)

Posterior hippocampus 13 10 (77%) 3 (23%)

Temporo-occipital junction 6 6 (100%) 0 (0%)

Anterior cingulum 10 10 (100%) 0 (0%)

Middle cingulum 13 7 (54%) 6 (46%)

Posterior cingulum 15 12 (80%) 3(20%)

Mesial pre-frontal cortex 9 8 (89%) 1 (11%)

Anterior SSMA 12 11 (92%) 1 (8%)

Posterior SSMA 8 4 (50%) 4 (50%)

Precuneus 7 4 (57%) 3 (43%)

Anterior insula 17 10 (59%) 7 (41%)

Posterior insula 10 10 (100%) 0 (0%)

Total 163 129 (79%) 34 (21%)

and the dynamic changes in the target priors are shown in
Supplementary Figure 1.

DISCUSSION

We have previously shown that CAP using the EpiNavTM

platform can optimize trajectory planning parameters and
return feasible plans in < one-third of the time required for
manual planning (6). Computer-assisted planning, however,
requires familiarity with the software and algorithms as well
as multimodal image processing. In the present study, we
undertake a prospective validation of spatial priors to further
refine CAP for SEEG electrode trajectories by removing the
reliance on ROIs derived from whole-brain parcellations. Based
on a training set of 12 patients (108 electrodes) in which
the EpiNavTM platform was used for CAP utilizing the GIF
parcellation, we generated entry and target spatial priors
for common ROIs that were targeted five or more times.
Five was chosen as an arbitrary threshold to allow accurate
morphological delineation and cluster centroid calculation for
the prior. The spatial priors were then prospectively used
to restrict the entry and target points instead of the GIF
parcellation for CAP in a further 20 patients (210 electrodes).
The incorporation of spatial priors allowed feasible trajectories
to be returned for 79% of the electrodes. Each of these was
subsequently implanted into patients without complication. For
the remaining 21%, the implemented entry or target points
were outside of the spatial priors. A machine learning classifier
was implemented to dynamically modify the priors to account
for this. We provide the spatial priors in MNI template
space for use by other institutions during CAP or manual
planning and as a potential starting point for standardization of
SEEG trajectories.

This is the first prospective study describing the utility
of spatial priors to refine computer-assisted SEEG trajectory

planning. Two main methods for SEEG CAP have been
implemented in the literature. The first is where the user defines
a target point and the algorithm returns a trajectory with the
lowest risk score (18). This has the benefit of ensuring that
the precise ROI within the anatomical structure is targeted, but
this limits the algorithm to return the local, but not global,
minimum risk score. It may also lead to a failure of the CAP
algorithm to return a feasible trajectory, especially if the chosen
target point is adjacent to a critical structure and therefore
contravenes a “hard constraint” within the planning algorithm.
Due to this, some groups suggest “roughly” selecting the entry
and target point (19–21). The algorithm then returns trajectories
within a 1 cm radius allowing for slightly more variation in
the entry and target points. This method still requires manual
user interaction for rough placement. Another method that has
been implemented is to allow the algorithm to define the entry
and target points automatically within predefined anatomical
structures (4). This is reliant on the anatomical segmentation
provided by whole-brain parcellations such as Freesurfer (22)
or GIF (10). In general, whole-brain parcellations are developed
from healthy controls and the accuracy of the segmentation may
fail in patients with gross anatomical abnormalities or following
previous surgery. Another limitation is that in some cases the
anatomically defined entry and target regions may be very
large such as electrodes targeting the anterior cingulum, which
typically enter through the middle frontal gyrus. The computer
planning algorithm then returns the global minimum risk score,
but this may not be practical or feasible. Algorithms have been
able to counter this problem to some extent through maximizing
spatial distribution but only when multiple electrodes pass
through a single ROI (4). One example of this can be seen
with temporal implantations. In such a scenario sampling
the temporal pole, amygdala, anterior hippocampus, posterior
hippocampus and temporo-occipital junction may be required.
Unless the clinical scenario dictates otherwise, it is likely that
that entry points for all of these electrode trajectories will pass
through the middle temporal gyrus. It is beneficial, therefore
for the lateral neocortical sampling to be spatially distributed
along the anteroposterior axis to prevent electrode conflicts and
also aid in the delineation of the lateral neocortical resection
margins. More advanced systems also enable the user to iterate
through the proposed trajectories in a risk-stratifiedmanner until
a feasible trajectory with the lowest risk score is identified (5).
Spatial priors can overcome this limitation as the entry and target
points are confined to previously implemented trajectories. This
removes the reliance on whole-brain parcellations for the entry
and target point constraints and ensures reliable spatial sampling.
Another benefit is that the risk-stratified trajectories returned to
the user are more likely to be clinically acceptable and reduces
the need to iterate through the options. In generating these
priors, we purposefully excluded trajectories that targeted unique
patient-specific abnormalities, such as focal cortical dysplasia, as
these would not be generalizable when considering trajectory
planning in other patients. In such cases, computer-assisted
planning can still be utilized using the segmentation of the
lesion as the target and allow the algorithm to choose the most
appropriate entry point (12).
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FIGURE 4 | Panel of 3D images shown from right lateral projection with color-coded entry (columns 1 and 3) and target (columns 2 and 4) priors within GIF defined

anatomical regions (pink). Color scheme: Amygdala: Cyan, Hippocampus: Yellow, Temporo-occipital junction: Green, Orbitofrontal cortex: Red, Anterior Insula: Brown,

Posterior Insula: Gray, Anterior Cingulum: Dark pink, Middle Cingulum: Purple, Posterior Cingulum: Blue, Mesial prefrontal cortex: Yellow, Supplementary

sensory-motor area: Magenta, Precuneus: Orange.

As a further analysis, we implemented a K-NN classifier as
part of an adaptive learning algorithm. Here the K-NN classifier
was used to generate the boundaries that define the priors for
the entry and target points of the electrodes in the training set.
Electrode entry and target points were then iteratively added in
five equal folds, each with randomly selected trajectories. The K-
NN classifier then adjusted the priors based on the additional
feasible electrode information. The unique benefit of this
adaptive technique is the ability to dynamically adapt to changing
planning preferences and learn evolving individual surgical
preferences. In this implementation, the weighting was uniformly
distributed, in that the entry and target points contributed to the
classifier equally. Where surgeons prefer entry or target regions
within a specific location, weightings could also be applied to
favor the distribution. Machine learning has previously been
applied retrospectively to SEEG trajectory analysis to identify
stereotyped implantation schema (23). In this work, the authors
reviewed previous manually planned trajectories from their
institution and used a K-NN clustering algorithm to identify

that their implantation practices would be distilled down to 8
unique strategies. This work adds further utility as a potential
recommendation system i.e., where the algorithm can identify
predefined electrode trajectories and suggests where further
electrodes are needed. The authors then show that the manually
implanted trajectories can be further optimized by applying
their computer-assisted planning pipeline once the surgeon has
roughly placed an entry and target point within a 1 cm vicinity.
It is unclear if these stereotype implantations are generalizable
to other institutions that have varying practices. The automated
trajectories in their study have also not been prospectively
implanted in patients and hence there is no clinical validation of
the true safety of the automated trajectories. The work presented
in this manuscript, however, is distinct for the following reasons.
Firstly, we make no suggestions regarding which targets are
included in the implantation strategy as this is defined following
the multidisciplinary review of the presurgical evaluation.
Instead, we focus on improving the reliability, efficiency and
adaptability of precise electrode planning. Secondly, all of

Frontiers in Neurology | www.frontiersin.org 7 July 2020 | Volume 11 | Article 706

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Vakharia et al. Spatial Priors for Computer-Assisted Planning

FIGURE 5 | Panel of 3D cortical images shown from various projections with implanted electrode trajectories from the test set (red) passing through the entry priors

(yellow) and the target priors (blue) derived from the training set. GIF defined anatomical structures are shown in green.

the automated trajectories were prospectively implanted in
our series without complication. Thirdly, the spatial priors
generated from the training set leverages our institutional

experience and the active learning approach mimics the real-
world use of the platform if an external center were to
add their implantation trajectories. Additionally, the spatial

Frontiers in Neurology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 706

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Vakharia et al. Spatial Priors for Computer-Assisted Planning

priors no longer require an anatomical segmentation atlas
once generated.

There are limitations to this study. The entry and target
priors are derived from a single-center incorporating planning
practices from two surgeons. To mitigate this, a K-NN adaptive
learning technique was implemented to dynamically modify the
priors based on varying surgeon and institutional practices. We
also found a considerable variation in the entry points relating
to the posterior insula trajectories preventing the generation
of an entry prior that was more constrained than the GIF
parcellation. The principal reason for this was the between-
patient variability in oblique vs. orthogonal (transsylvian)
trajectories as a result of vascular constraints. In this study,
a K-NN classifier was chosen over other potential learning
algorithms as it allows for 3-dimensional clustering in a
discriminative non-parametric fashion. Further work should also
focus on evaluating other machine learning classifiers. Finally,
the spatial prior and prospectively implanted trajectories are
based on the pre-operative acquisition of a DSA to guide
SEEG trajectory planning, as this is the standard of care
at the study institution. The priors are equally applicable,
however, to centers that do not use DSA for planning as CAP
can be performed with any vascular imaging modality, but
conflicts with non-segmented vasculature may be more frequent
depending on the minimum clinically significant vessel size
considered (24).

CONCLUSION

Spatial priors are a valuable contribution to CAP, allowing
future implantations to be guided by previous planning
experience. Through the prospective application of spatial
priors, we show that feasible trajectories can be planned
and implanted in test cases enabling CAP to be performed
without the reliance on whole-brain parcellations. In
addition, experience from SEEG trajectory planning can
be continually refined and used to update the spatial
priors dynamically, through the implementation of a K-
NN classifier. This opens the possibility of the algorithm
adapting to evolving practices as well as dynamically learning
individual surgeon’s planning preferences from subsequent
implantations. Future work will focus on validating this novel
preliminary approach through external, multi-center SEEG
implantation data.
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