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Neuromyelitis optica spectrum disorders (NMOSDs) and myelin oligodendrocyte

glycoprotein-antibody-associated disease (MOGAD) are autoimmune inflammatory

disorders of the central nervous system (CNS). Pain is highly prevalent and debilitating

in NMOSD and MOGAD with a severe impact on quality of life, and there is a critical

need for further studies to successfully treat and manage pain in these rare disorders. In

NMOSD, pain has a prevalence of over 80%, and pain syndromes include neuropathic,

nociceptive, and mixed pain, which can emerge in acute relapse or become chronic

during the disease course. The impact of pain in MOGAD has only recently received

increased attention, with an estimated prevalence of over 70%. These patients typically

experience not only severe headache, retrobulbar pain, and/or pain on eye movement

in optic neuritis but also neuropathic and nociceptive pain. Given the high relevance

of pain in MOGAD and NMOSD, this article provides a systematic review of the

current literature pertaining to pain in both disorders, focusing on the etiology of their

respective pain syndromes and their pathophysiological background. Acknowledging

the challenge and complexity of diagnosing pain, we also provide a mechanism-based

classification of NMOSD- and MOGAD-related pain syndromes and summarize current

treatment strategies.

Keywords: aquaporin 4, headache, myelin oligodendrocyte glycoprotein-antibody-associated disease,

neuromyelitis optica spectrum disorders, neuropathic pain, pain, painful tonic spasms

INTRODUCTION

In 1894, Eugène Devic (1858–1930) and his doctoral student Fernand Gault (1873–1936) reported
a historical case on a patient with optic neuritis (ON) and myelitis and proposed the name “neuro-
myélite optique” for this syndrome. The patient, a 45-year-old woman, was admitted for suspected
“neurasthenia,” suffering from disturbed sleep, gastrointestinal symptoms, neuromuscular asthenia,
palpitations, and, especially, headache: “The pain occurs in attacks, both during the day and night.
Pain attacks may be long or short, affecting one side of the face and the head, sometimes the right side,
mostly the left, but the highest intensity is always at the occipital region: the neck and eyeballs. The
pain is sometimes so strong that it causes the patient to cry.”
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One month after admission, the patient suddenly developed
acute complete paraparesis and visual loss. It is currently a matter
of debate whether the patient suffered from a neuromyelitis
optica spectrum disorder (NMOSD) or a myelin oligodendrocyte
glycoprotein-antibody-associated disease (MOGAD) (1).
Terrible, agonizing, and unbearable pain can arise as an acute or
chronic symptom in both pathologies (2–4) (Table 1).

Neuromyelitis optica spectrum disorders (NMOSDs) are rare
and, in most cases, relapsing inflammatory diseases of the
central nervous system (CNS) (10). In the majority of cases,
NMOSDs are associated with serum immunoglobulin G (IgG)
autoantibodies (Abs) targeting the astrocyte aquaporin-4 (AQP4)
water channel (11, 12). Patients typically suffer from recurrent
attacks of severe optic neuritis and/or myelitis (13, 14) and, less
frequently, brainstem or brain involvement (15, 16), leading to
a diverse range of symptoms, of which severe pain is one of
the most frequent and disabling (2, 17–26). Chronic pain occurs
in NMOSD with an estimated prevalence between 72 and 86%
(2, 18, 27, 28). Over 50% of NMOSD (82% APQ4-Ab positive)
patients recalled an increase in pain intensity as the first indicator
of a relapse (26) and 25% of patients with NMOSD (82% AQP4-
Ab positive) reported pain as their worst symptom, despite also
experiencing severe weakness and bladder or bowel dysfunction
(26). Neuropathic pain is the most common type of chronic pain
with a prevalence of up to over 80% (2, 26), and painful tonic
spasms occur with a prevalence of 25–40% (29–32).

MOGAD is another inflammatory autoimmune condition of
the CNS, defined by IgG antibodies against conformationally
intact myelin oligodendrocyte glycoprotein (MOG) localized on
the surface of the myelin sheaths (13, 33, 34). Although there
is some phenotypic overlap with AQP4-Ab-positive NMOSD,
most researchers consider MOGAD to be a distinct disease
entity (35–37). Affected patients may develop any combination of
acute disseminated encephalomyelitis, transverse myelitis (long
or short), optic neuritis (ON, typically anterior, often bilateral),
brainstem pathology often affecting cerebellar peduncles, cranial
nerve involvement, and, less frequently, brainstem encephalitis,
encephalitis mimicking small vessel CNS vasculitis, and cortical

TABLE 1 | Characteristics of different pain types.

Pain Pain is defined as an “unpleasant sensory experience

associated with actual or potential tissue damage or

described in terms of such damage” (5).

Nociceptive

pain

Nociceptive pain occurs as an appropriate encoding of

noxious or potentially noxious stimuli. It represents a

physiological response that the patient becomes

conscious of when nociceptors in bone, muscle, or any

body tissue are activated, warning the organism of tissue

damage. In response, coordinated reflexes and

behavioral responses are elicited (5, 6).

Neuropathic

pain

Pain caused by a lesion in, or disease of, the

somatosensory nervous system (7).

Acute pain Physiological response to an acute disease-related

damage (8, 9), here NMOSD- or MOGAD-attack related.

Chronic pain Pain that persists or recurs for more than 3 months (9),

(https://www.iasp-pain.org/).

disease with seizures (33, 38–44). Pain is also becoming
increasingly recognized as a common and debilitating symptom
in MOGAD. However, data in pain in MOGAD are scarce and
have to be verified in larger studies: mild chronic pain has a
reported prevalence of 86% (2), and severe acute pain in the
context of attacks has a prevalence of 70% (38). Furthermore,
in addition to the typical retrobulbar pain and/or pain on eye
movement, severe and sometimes migraine-like headache can
precede visual loss in MOG-Ab-related ON (45, 46), the most-
common clinical feature at onset and subsequent relapse (33, 37,
38, 47, 48).

Pain is a very common feature of both diseases and has a
higher prevalence and severity compared to multiple sclerosis
(MS), where estimates of pain prevalence are ∼50% (18, 27, 49).
It also has a severe impact on the quality of life of affected
patients (2, 18, 26, 27), interfering with physical, emotional, and
cognitive aspects of well-being (2, 27, 50), as well as activities of
daily life in NMOSD (60–83% AQP4-Ab positive) and MOGAD
(2, 18, 26, 27). The higher the pain intensity, the worse the
physical and emotional quality of life (2, 51).

The alleviation of pain through careful management and
treatment should lead to significant improvement in the quality
of life of patients with NMOSD and MOGAD. However,
successfully controlling pain is highly challenging in these
disorders (2, 26–28), and there is relatively little published
literature on therapeutic intervention or treatment of pain
as a primary outcome in these patient groups. In order to
highlight this and facilitate future research in this critical area,
we conduct a systematic review of the current literature on
different pain syndromes in NMOSD and MOGAD. Based on
this, we propose a mechanism-based classification of NMOSD-
and MOGAD-related pain and additionally evaluate current
treatment strategies.

METHODS

We performed a search of PubMed (last updated on June 09,
2020), combining neuromyelitis optica or neuromyelitis optica
spectrum disorders AND pain, as well as myelin oligodendrocyte
glycoprotein AND pain. Additional searches were performed
combining neuromyelitis optica and myelin oligodendrocyte
glycoprotein, respectively, AND headache or dysesthesia or
dystonia or Lhermitte’s sign or neuralgia or spasms or spasticity.
This search was limited to English language publications and
yielded a total of ∼200 articles including case reports, original
clinical studies, and reviews, which were reviewed by title and
abstract for potential relevance to this topic. When the title
and abstract did not clearly indicate the degree of relevance
to the topic, the article itself was reviewed. Bibliographies of
topic-relevant articles were also examined to discover additional
references not identified in the primary search. Finally, the
authors’ personal knowledge of the literature as well as congress
contributions to ECTRIMS 2019 were used to supplement the
above references.

As the impact of pain in patients with AQP4-Ab-positive and
Ab-negative NMOSD is similar, we document both disease types
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together and report the percentage of AQP4-positive NMOSD
patients whenever available. We note that some MOG-Ab-
positive patients may have been included in former NMOSD
studies. However, the percentage of MOG-Ab-positive patients
within groups of Ab-negative NMOSD patients should be low.

RESULTS

We identified 18 studies evaluating pain in NMOSD (n= 17) and
MOGAD (n= 2, one overlapping with NMOSD) (Table 2).

The studies focused on pain without diagnostic specification
(18, 25, 51), neuropathic pain (26, 28, 49, 50, 53, 55, 56), one study
on neuropathic pruritus (52), painful tonic spasms (29–32), ON-
related headache (54), and a description of diverse pain types (2,
27). One randomized single blind sham-controlled trial studied
the effect of Scrambler therapy in NMOSD patients with central
neuropathic pain (55). All other studies (n= 17) were descriptive
and non-interventional. Two reviews on pain in NMOSD are
available, one focusing on potential mechanisms underlying the
pathogenesis of pain in NMOSD and another focusing on the
impact of neuropathic pain medication on patients’ quality of
life (3, 57). Moreover, we included 12 case reports describing
pain as part of the patients’ symptom complex (4, 58–68). We
additionally reviewed studies (n= 131) in NMOSD that included
pain but where it was not the primary outcome. Where available,
we provide the information on the percentage of AQP4-Ab-
positive patients of the respective NMOSD cohort. Our review is
the first to provide an overview of (1) disease-associated lesion
locations in relation to different pain syndromes, (2) different
types of NMOSD- and MOGAD-related pain, (3) possibilities to
classify acute and chronic pain in NMOSD andMOGAD, and (4)
the impact of the currently available immunotherapy on pain.

PATHOPHYSIOLOGICAL BACKGROUND
OF PAIN IN NMOSD AND MOGAD

Inflammatory attacks in the CNS occur in both NMOSD
and MOGAD and can lead to acute pain via the release
of pronociceptive brain-derived neurotropic factor (BDNF),
cytokines and chemokines [interleukin (IL)-1ß, IL-6, IL-17,
and tumor necrosis factor (TNF)] (3, 69–71). Cytokine release
enhances glutamatergic signaling, the main pronociceptive
neurotransmitter in the spinal dorsal horn (3).

Pathological Substrates of Pain in NMOSD
Under healthy conditions, AQP4 is coexpressed with the
excitatory amino acid transporter 2, which enables glutamate
uptake by astrocytes. Loss of AQP4 in AQP4-Ab-positive
NMOSD may lead to an excessive accumulation of glutamate
in the extracellular space. In the context of neuroinflammation
and dysregulation of sensory neurons, persistent excessive
BDNF, and glutamate concentrations affect vulnerable inhibitory
alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and gamma-aminobutyric acid (GABA) neurons,
respectively (72, 73). The resulting imbalance between excitation
and inhibition can then facilitate the development of chronic

pain (3, 74, 75). In addition, astrocytes release endocannabinoid
2-arachidonoylglycerol (2-AG), which strongly enhances
GABAergic inhibition. Loss of astrocytes in NMOSD leads
to 2-AG reduction, likely leading to nociceptive pain and
hyperalgesia (28).

Structural cerebral alterations may also affect chronic pain
perception in NMOSD. Recently, a study on subcortical
abnormalities in female NMOSD patients showed smaller
hippocampus and pallidum volumes in patients with neuropathic
pain compared to patients without neuropathic pain, as well as a
negative correlation between pain intensity and volumes of the
accumbens nucleus and thalamus (56). A study on pain-related
morphological abnormalities in AQP4-Ab-positive NMOSD
described an association of the ventral posterior nucleus (VPN)
volume with several measures of pain intensity (76). Both studies
suggest that subcortical structures are substantially involved in
cognitive, emotional, and modulatory pain processing in AQP4-
Ab-positive NMOSD (56, 76).

Pathological Substrates of Pain in MOGAD
While AQP4-Abs target astrocytes, MOG-Abs bind to myelin-
forming oligodendrocytes. Therefore, inflammation in MOGAD
primarily causes demyelination with a loss of the microtubule
cytoskeleton of oligodendrocytes (13, 77–79). Under healthy
conditions, the neuropeptide nerve growth factor (NGF) has
a high affinity to bind MOG. Moreover, NGF is part of the
nociceptive system: It binds tropomyosin receptor kinase A
(TrkA). TrkA is expressed on unmyelinated nociceptive axons
of the spinal cord and regulates synaptic strength and plasticity
of sensory neurons. Thus, the loss of MOG by antibody-
mediated destruction in MOGAD may cause abundant NGF
concentrations in the CNS, leading to aberrant sprouting of
unmyelinated nociceptive fibers in the posterolateral tract of the
spinal cord and hence nociceptive pain (80).

Lesion Location and Pain in NMOSD
Spinal cord lesions in NMOSD are typically extensive and occur
predominantly in the cervical and thoracic spinal cord (17, 81–
83). As AQP4 is mainly expressed in the gray matter, lesions
concentrate around the central canal, and the adjacent gray
matter in the dorsal and ventral horns, as well as in the dorsal
root entry zone (84). Ascendant and descendent white matter
tracts, including the spinothalamic tract (STT) (52, 85, 86), are
affected by severe lesions (87). Tackley et al. report a significant
relationship between persistent thoracic myelitis lesions and the
severity of neuropathic pain. The presence of cervical lesions, in
contrast, were predictive of lower pain scores (53).

In the brainstem, the dorsal medulla oblongata and area
postrema have the highest distribution of AQP4 (74, 88). It
has been shown that 27% of NMOSD patients with cervical
longitudinally extensive transverse myelitis (LETM) showed
lesions involving the brainstem (89). Such a distribution
could include trigeminal nucleus or periaqueductal gray (PAG)
pathology, causing headaches in affected patients (74). The PAG
is considered to be a migraine generator and a modulator of
headache in NMOSD. Moreover, the hypothalamospinal tract,
localized in the dorsolateral medulla, activates the hypothalamus,
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TABLE 2 | Original publications on pain in neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease (MOGAD) (listed in chronological order).

References Patient sample Portion of

AQP4-IgG

seropositive

patients

Pain and QoL

assessment

Imaging data Pain type Pain medication Main findings

Kanamori et al. (18) 42 NMOSD vs.

51MS

35/42 SF-BPI

SF-36

N.A. N.A. N.A. First study on pain in NMOSD: Pain in NMOSD

is more frequent and severe than in MS and

has a severe impact on the patients’ QoL

Qian et al. (27) 29 NMOSD vs.

66MS

24/29 MPQ

10-point NRS

Interview

SF-36

Spinal cord MRI Retroorbital pain

Dysesthetic pain

Girdle pain

Lhermitte’s sign

Painful

tonic spasms

Tricyclic

antidepressants

Duloxetine

Gabapentin

Pregabalin

Carbamazepine

Lamotrigine

Phenytoin

Sodium valproate

Baclofen

Cyclobenzaprine

Tizanidine

Fentanyl citrate

Hydrocodone

Hydromorphone

Methadone

Oxycodone

Hydromorphone

First study mentioning specific pain syndromes,

including spinal cord MRI and examining

medication use: Pain in NMOSD is more

frequent and severe than in MS, even after

controlling for disability and number of involved

spinal cord segments. Pain in NMOSD appears

insufficiently controlled by pharmacological

interventions

Kim et al. (29) 40 NMOSD vs.

35MS vs. 42 iATM

34/40 N.A. Spinal cord MRI Painful tonic

spasms

Carbamazepine

Gabapentin

Phenytoin

First study on PTS in NMOSD: PTS are a

common and relatively specific myelitis-related

symptom in NMOSD. PTS most commonly

occur during recovery from the first myelitis

episode

Usmani et al. (31) 57 NMOSD 1/57 Clinical history Spinal cord MRI Painful tonic

spasms

Carbamazepine 14% of NMOSD patients had documented

typical tonic spasms

Elsone et al. (52) 45 NMOSD 45/45 Clinical history Spinal cord MRI Neuropathic

pruritus

N.A. First study on neuropathic pruritus in NMOSD:

Neuropathic pruritus seems to be a common

but underrecognized symptom of myelitis

associated with NMOSD

Pellkofer et al. (28) 11 NMOSD vs. 11

HC

11/11 Interview

DN4

NRS

QST

MRI Neuropathic pain N.A. First study on NP in NMOSD, evaluating

endocannabinoid levels in the serum and

somatosensory abnormalities by QST: A total of

91% of the patients suffered from NP within the

previous 3 months and 72% reported ongoing

pain and decreased QoL at the time of

assessment. Plasma levels of 2-AG were

(Continued)
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TABLE 2 | Continued

References Patient sample Portion of

AQP4-IgG

seropositive

patients

Pain and QoL

assessment

Imaging data Pain type Pain medication Main findings

higher in NMOSD patients than in HC,

suggesting its relevance for central

sensitization. QST revealed pronounced

mechanical and thermal sensory loss, strongly

correlated to ongoing pain suggesting the

presence of deafferentiation-induced pain

Zhao et al. (26) 50 NMOSD 41/50 DN4

BPI

SF-36

MRI reports Neuropathic pain Amitriptyline

Duloxetine

Gabapentin

Pregabalin

Carbamazepine

Lamotrigine

Baclofen

Cannabinoids

Paracetamol

Opiates

Specific exploration of NP and its effect on the

QoL. NP was identified in 62% of patients,

affecting ADLs. Pain was associated with

significant reduction in the SF-36 mental

composite score

Mutch et al. (50) 15 NMOSD 9/15 Semistructured

interview

N.A. Neuropathic pain N.A. First qualitative study to explore QoL, including

pain in NMOSD: NMOSD is a difficult condition

to live with due to the unpredictability of

relapses and severe disability of visual or spinal

symptoms. Poor vision, reduced mobility,

bladder dysfunction, and pain affected

participants’ independence and experience of

living with NMOSD

Carnero Contentti et

al. (30)

15 NMOSD 15/15 Clinical history MRI Painful tonic

spasms

Carbamazepine

Gabapentin

PTS occur frequently in patients with NMOSD.

PTS generally appear a month after a myelitis

attack and are associated with extensive

cervicothoracic lesions in MRI

Kong et al. (51) 44 NMOSD 29/44 BPI

HADS

SF-36

N.A: Pain (not specified) Codeine

Ibuprofen

Paracetamol

Amitriptyline

Duloxetine

Diazepam

Clonazepam

Gabapentin

Pregabalin

Carbamazepine

Oxcarbazepine

Baclofen

Pain correlated strongly with quality of life

SF-36 physical composite score. Depression

highly correlated with pain severity. Pain

severity was the most important factor for QoL

(Continued)
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TABLE 2 | Continued

References Patient sample Portion of

AQP4-IgG

seropositive

patients

Pain and QoL

assessment

Imaging data Pain type Pain medication Main findings

Eaneff et al. (25) 522 self-reported

NMOSD

N.A. PatientsLikeMe

online

questionnaire

N.A. Pain (not specified) Duloxetine

Gabapentin

Pregabalin

Baclofen

Moderate to severe fatigue, pain, stiffness, and

spasticity limit activities of over 50% of NMOSD

patients

Tackley et al. (53) 76 NMOSD 76/76 BPI MRI Neuropathic pain N.A. Persistent, thoracic cord lesions in AQP4-Ab

positive NMOSD is associated with high

postmyelitis chronic pain scores, irrespective of

number of myelitis relapses, lesion length, and

lesion burden

Asseyer et al. (2) 35 NMOSD vs. 14

MOGAD

29/35 painDETECT

MPQ

SF-36

BDI-II

MRI Neuropathic pain

Headache/neck

pain

Musculoskeletal

pain

Spasticity

NSAID

Antidepressants

Anticonvulsants

Opioids

First study exploring pain in MOGAD: Pain is a

frequent symptom of patients with MOGAD

and has a severe impact on the patients’ QoL

in NMOSD and MOGAD. Pain is insufficiently

alleviated by medication

Liu et al. (32) 230 NMOSD 181/230 Medical records

Prospective interviews

MRI Painful tonic

spasms

Carbamazepine

Oxcarbazepine

Gabapentin

Pregabalin

Baclofen

22.6% of NMOSD patients experience PTS.

Patients with NMOSD and PTS have a higher

age at disease onset, higher ARR, and a

tendency to experience pruritus. Sodium

channel blocking antiepileptic drugs like

carbamazepine and oxcarbazepine have higher

efficacy than gabapentin in the treatment of

PTS

Asseyer et al. (54) 129 MOGAD No NMOSD Medical records MRI Optic neuritis

related headache

and

orbital/periorbital pain

N.A. First study on severe headache preceding

visual loss in MOG-Ab-related optic neuritis.

Florid intraorbital and perioptic inflammation

was likely to involve meninges and nociceptive

fibers

Hyun et al. (49) 252 NNOSD vs.

248MS

91/99 who

completed

PainDetect

PainDetect

SF-BPI

BDI-II

FSS

N.A. Pain (not specified)

Neuropathic pain

N.A. 60% of the NMOSD patients and 34% of the

MS patients suffered from current pain.

Neuropathic pain was more severe and

pain-related interference in daily life was greater

in NMOSD patients than in MS patients

Mealy et al. (55) 22 NMOSD 22/22 Self-reported NP

attributable to an

inflammatory

spinal cord

lesion

NRS

Details n.a. Neuropathic pain Antidepressants

Anticonvulsants

Opioids

First randomized single-blind, sham-controlled

trial in NMOSD patients with central

neuropathic pain using Scrambler therapy. The

median baseline NRS decreased after 10 days

of treatment, whereas the median NRS score

did not significantly decrease in the sham arm
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and the trigeminovascular system. Both regions are considered to
be involved in the pathogenesis of headache (90, 91).

Dorsal lesions of the medulla oblongata lead to substance P
release, a transmitter that can cause and maintain nociceptive
activation of the trigeminal tract nucleus (92). Besides headache,
neuropathic pain was also reported more frequently in NMOSD
patients with medulla oblongata lesions (85.7% AQP4-Ab
positive) than in patients without such lesions (31.8 vs. 11.1% and
65.9 vs. 29.4%) (93). Increased neuropathic pain frequency could
be explained by the severe and extensive spinal cord involvement
associated with the medulla oblongata (93).

Moreover, AQP4-Ab-positive NMOSD has a predilection to
affect the optic nerve (94–96). Astrocytes surrounding the optic
nerve express high levels of AQP4, but the unmyelinated optic
nerve head also expresses AQP4. Moreover, a high density of
retinal astrocytic Müller cells, expressing AQP4, are located in
the parafoveal area (97–101).

For a further and more detailed pathophysiological
background of possible mechanisms explaining pain in NMOSD,
we refer to a review by Bradl et al. (3).

Lesion Location and Pain in MOGAD
Spinal cord lesions in MOG-Ab-positive myelitis are not always
longitudinal and extensive but can still cause sensory symptoms
like pain and dysesthesia (38). The axial lesion extension
may be crucial for the risk of pain. Depending on the level
of the lesion, aberrant nerve fiber sprouting could lead to
occipital neuralgia or tomore distal neuropathic pain syndromes.
Moreover, it has been shown that central neuropathic pain can be
induced by oligodendrocyte death and axonal pathology in the
spinothalamic tract (102).

The brainstem is a critical region in the pathophysiology of
headache. Brainstem lesions are present in up to one-third of
patients suffering from MOGAD and could promote the risk for
migraine and trigeminal neuralgia (103, 104).

MOG is highly expressed by oligodendrocytes myelinating the
optic nerve (105) and is consequently a predominant target in
MOG-Ab-related ON. ON-related pain is particularly severe in
MOGAD and can present as a migraine-like headache (54). In
these cases, severe edema may lead to irritation of the meningeal
nerve sheath, which surrounds the optic nerve and contains
nociceptive fibers of trigeminal origin (106–108). The trigeminal
nerve provides sensory innervation to the ocular and periocular
area, and its recurrent branches innervate the intracranial dura,
venous sinuses, and cerebral vessels, likely leading to headache
(109, 110).

TYPES OF PAIN IN NMOSD AND MOGAD

Pain can occur during acute attacks and be an indicator of
current damage, or it can become a chronic syndrome over the
course of the disease. The main pain syndromes in NMOSD
and MOGAD comprise ON-related pain, headache, neuropathic
pain, and musculoskeletal pain including spasticity, painful tonic
spasms, and back pain.We discuss these symptoms in the context
of NMOSD and MOGAD below, highlighting any differences
between the two diseases where information is available.
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Optic Neuritis-Associated Pain
Optic neuritis is an inflammation of the optic nerve characterized
by severe visual loss or blindness associated with ocular pain
(111) and occurs in the context of many inflammatory diseases
(112–116). ON-related eye pain and pain on eye movement is
more common in MOGAD, with reports ranging from 65 to 86%
(46, 117, 118), compared to AQP4-Ab-positive ON (28.6–50%)
(46, 117) and idiopathic Ab-negative ON (10–46%) (117, 119).

AQP4-Ab-positive ON is typically accompanied by
retrobulbar pain often worsened by eye movement (2, 27, 46).

MOGAD-related ON pain seems to be particularly severe,
sometimes accompanied bymigraine-like headaches that precede
the visual deficit (54, 120).

Headache
Headache is an unspecific but common symptom in NMOSD
(2, 74) and has also been described in MOGAD, here mainly
associated with optic neuritis (2, 38, 54). It can occur as a
first symptom or persist during the disease course (2, 38,
74). NMOSD-related headache can occur as a cervicogenic-
like headache (2, 58, 74), neck pain (60, 68), paroxysmal
hemicrania (62), or in the context of meningoencephalitis (74,
121). It is typically a mixed pain condition with neuropathic and
nociceptive components (74).

Cervicogenic-Like Headache
Cervicogenic-like headache is caused by a lesion in or disorder of
the cervical spine or soft tissues of the neck. While a few cases
presenting with cervicogenic-like headache following myelitis
have been mentioned in NMOSD and MOGAD (2, 58, 74), only
a single case report has described it in detail: The patient had a
left occipital headache spreading to the posterior neck associated
with numbness and aching. Response to occipital nerve block was
slight, and the headache progressed. MRI revealed an extensive
myelitis from the medulla oblongata to the C5 level, a bilateral
ocular or prechiasmatic lesion, and suspicious bilateral upper
brainstem lesion. Symptoms and MRI pathology improved with
steroid treatment (58).

Note that we suggest avoiding the diagnosis of cervicogenic
headache in NMOSD and MOGAD in favor of the term
cervicogenic-like headache or headache attributed to non-
infectious inflammatory diseases (106). Classical cervicogenic
headache, in contrast, is caused by a disorder of the cervical spine
and its component bony disk and/or soft tissue elements (106).

Paroxysmal Hemicrania
Paroxysmal hemicrania is characterized by severe unilateral pain
attacks, affecting orbital, supraorbital, and/or temporal regions.
The attacks are mostly associated with autonomic features
(ipsilateral conjunctival injection, lacrimation, nasal congestion,
rhinorrhea, forehead and facial sweating, miosis, ptosis, and/or
eyelid edema) (106).We are aware of one case report, describing a
patient presenting with paroxysmal hemicrania as first symptom
of an AQP4-Ab-positive NMOSD. MRI revealed a lesion
extending from the lower medulla oblongata to the cervical cord
(C4), possibly involving the spinal nucleus of the trigeminal nerve
(62). As in primary paroxysmal hemicrania, indomethacin has

been effective in the case of AQP4-Ab-positive NMOSD-related
paroxysmal hemicrania (62), but evidence is limited. No reports
of paroxysmal hemicrania in MOGAD were identified.

Encephalitis-Associated Headache
Meningoencephalitis-like pathology with fever, severe headache,
and pleocytosis in the cerebrospinal fluid (CSF) has been reported
in both disease complexes, NMOSD and MOGAD (74, 121),
most likely due to meningeal inflammation (122, 123).

Neuropathic Pain
Neuropathic pain is particularly severe (2, 53) and patients
typically characterize neuropathic pain as agonizing, shooting,
and distressing (57). Neuropathic pain occurs more frequently
in NMOSD (83% AQP4-Ab positive) than in MOGAD (80 vs.
40%) (2, 27). It can occur as an early myelitis-related symptom
or develop during the disease course (3, 50, 53). Medication
is currently not sufficient to control neuropathic pain (2, 27),
particularly in patients with AQP4-Ab-positive NMOSD (51). A
higher dosage of pain medication was not associated with being
free of pain but rather with greater cognitive dysfunction and
fatigue (27).

Neuropathic pain can be permanent or intermittent like
Lhermitte’s sign (27, 81, 124) and is localized either on the
extremities or on the trunk, the latter often defined as a girdle
sensation (18, 26, 28, 124, 125).

Lhermitte’s sign is often painful and occurs in 35–60% of
AQP4-Ab-positive NMOSD patients (27, 81, 124). It is defined
as a brief, electric-shock-like sensation that runs from the back of
the head down the spine, provoked by inclining the neck forward
(124). It has been proposed that Lhermitte’s sign occurs because
demyelinated sensory fibers are hyperexcitable to percussion or
elongation (124).

The girdle sensation describes an often burning sensation
on the skin, localized with an extension of three or four
dermatomes between T3 and T11 (124). It has been reported
in 45.8–69% of NMOSD (83% AQP4-Ab positive) patients
and can sometimes be misdiagnosed as acute abdomen (27,
124). Schöberl et al. describe an AQP4-Ab-positive NMOSD
patient presenting with typical area postrema syndrome who
developed an unusual painful segmental erythema resulting from
a dorsolateral spinal cord lesion at C6/7 level. A dysregulated A-
beta-fiber-evoked vasodilation has been discussed as a possible
underlying pathophysiological mechanism (126). Pelvic pain has
been reported to occur as an unusual presentation of AQP4-Ab-
positive NMOSD, following a lesion of the conus medullaris (61).

Brainstem pathology can also cause neuropathic pain
syndromes like trigeminal (2, 16, 74, 127) and occipital neuralgia
(2, 128) in NMOSD and MOGAD. Trigeminal neuralgia is
defined by pain in the area of the trigeminal innervation
(usually V3 and/or V3 division). It is typically characterized
by paroxysmal, sudden attacks of short severe stimulus-
triggered and electric-like pain episodes (74). Interestingly,
NMOSD patients with trigeminal neuralgia rarely show MRI
pathology affecting the trigeminal root entry zone (129). It has
been discussed whether or not a dual mechanism including
pontine plaques and consecutive neurovascular compression

Frontiers in Neurology | www.frontiersin.org 8 August 2020 | Volume 11 | Article 778

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Asseyer et al. Pain in NMOSD and MOGAD

may contribute to the pathophysiology (74). Neuropathic
pruritus has also been described following brainstem and spinal
cord lesions (52). Pruritus is defined as “an unpleasant cutaneous
sensation provoking the desire to scratch.” Neuropathic pruritus
is caused by affected pruritogenic neurons in the absence of
a pruritogenic substance (52). Neuropathic pruritus associated
with myelitis has been observed in 27.3% of ACQP4-Ab-positive
NMOSD patients, either as a first symptom or a few days after
the onset of other myelitis-related symptoms. It has a sudden
onset of high intensity with a duration from seconds to minutes,
associated with superficial sensory deficits and/or pain. It can
occur on the trunk, the extremities, or the occipital region of
the head (52). An inflammation-related demyelination involving
second-order itch neurons in the dorsal horn of the spinal
cord has been discussed as an underlying pathophysiological
mechanism. The role of brainstem lesions affecting the spinal
nucleus of the trigeminal nerve or periaqueductal pathways has
also been discussed (52, 130).

Very few studies have focused on neuropathic pain in
MOGAD. Lhermitte’s sign (38, 45), band-like girdle sensations
(131), trigeminal and occipital neuralgia, and neuropathic
extremity pain (2, 38) have been mentioned but have so far not
been studied in detail. Myelitis in MOGAD may have a better
tendency to recover (83) and therefore cause less severe central
neuropathic pain syndromes than in NMOSD.

Peripheral Nervous System-Related Neuropathic Pain
Some cases of possible peripheral nervous system (PNS)
involvement in NMOSD have been published. Painful,
flaccid paralysis (63), lumbosacral myelitis (132), clinical
and electrophysiological second motor neuron involvement
(133), and peripheral neuropathy (134, 135) have been described,
and radicular pain has been reported to occur in up to 33%
(81, 136). Recently, a few cases with PNS involvement in
MOGAD have been described. Cranial nerve involvement,
brachial neuritis, multifocal neuropathy, migratory paresthesia,
myeloradicular symptoms, recurrent limb paresthesia, and pain
have been mentioned (41, 64, 137, 138). As described above,
the inflammatory process in the CNS could trigger an immune
cascade targeting myelin-specific antigens in the nerve roots.
Alternatively, low quantities of MOG may be expressed in the
human peripheral myelin and the Schwann cells, as previously
described in rodents and primates (64, 138, 139). However,
current data are too scarce for pathophysiological conclusions.
At present, we can only infer that PNS involvement should not
prevent clinicians from investigating the presence of MOG- and
AQP4-IgG Abs.

Spasticity and Painful Tonic Spasms
Spasticity is defined as “disordered sensorimotor control
resulting from an upper motor neuron lesion, presenting as
intermittent or sustained involuntary activation of muscles.” At
the patient level, it can be defined as an “unusual tightening of
muscles that feels like leg stiffness, jumping of legs, a repetitive
bouncing of the foot, muscle cramping in the legs or arms, legs
going out tight and straight or drawing up” (140). More than
50% of NMOSD patients are reported to suffer from moderate

to severe spasticity (25), but very little is known about spasticity
in MOGAD (1, 38).

Painful tonic spasms are defined as paroxysmal, recurrent
muscle spasms in one or more limbs and/or the trunk, lasting
seconds to minutes, accompanied by intense pain and dystonia
(29, 30, 65). Several case reports and small series describe
PTS in NMOSD (18, 29, 29–31, 65–67, 136, 141–144), but no
reports were identified mentioning PTS in MOGAD. Abboud et
al. reported that all patients with tonic spasms had associated
neuropathic pain (145). PTS and pain occur more frequently in
NMOSD than in MS (18, 29), and PTS-associated myelitis in
AQP4-Ab-positive NMOSD has been described with a specificity
of 98.7% compared toMS (143). Kim et al. showed that transverse
myelitis at disease onset, but not optic neuritis, was predictive of
future occurrence of PTS. PTS develop mainly during recovery
from the first myelitis attack within a mean of 48 days without
occurrence of new MRI lesions (3, 29, 30). A spinal cord
syndrome with paroxysmal tonic spasms may be particularly
suggestive for NMOSD (29, 81). PTS may occur following the
loss of inhibitory motor neurons in the central gray matter of the
spinal cord (142). Abnormal demyelination can cause ephaptic
transmission between the tracts causing spasms (65). As nerve
damage does not affect somatosensory pathways, PTS are not
considered to be of neuropathic origin (146).

Back Pain
Like headache, back pain is an unspecific syndrome but occurs
frequently in NMOSD and MOGAD (1, 38, 131, 147, 148).
It can emerge in the context of myelitis following radiculitis
as described above but is often a mixed syndrome including
central and peripheral neuropathic as well as nociceptive pain
components. Malposition and axial instability following paresis
or spasticity, reduced mobility with wheelchair dependence,
or long-term corticoid therapy leading to osteoporosis are
important secondary aspects to consider in these disorders and
can enhance pain, especially back pain (5).

Comorbidity-Related Pain
Up to 45% of patients with NMOSD and ∼10% of patients with
MOGAD suffer from autoimmune comorbidities (13), including
connective tissue disease, dermatomyositis, rheumatoid arthritis,
Sjoegren’s syndrome, systemic lupus erythematodes, vasculitis,
and myasthenia gravis (2, 51, 148–155), which can themselves
be associated with pain (156). A careful diagnostic workup is
necessary to detect potentially overlapping pathologies.

ADDITIONAL FACTORS ASSOCIATED
WITH PAIN IN NMOSD AND MOGAD

Women are more often affected by autoimmune diseases than
men, with a female/male ratio of up to 10:1 in NMOSD and,
depending on the geographic region, between 1.1:1 and 3:1 in
MOGAD (13, 157). However, no sex differences have been found
concerning pain prevalence or intensity (26). Mixed results have
been found regarding the correlation between pain intensity and
age (18, 26). Severe overall disability, measured by the expanded
disability status scale (EDSS), has been identified as a risk
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TABLE 3 | Classification of pain in neuromyelitis optica spectrum disorder

(NMOSD) and myelin oligodendrocyte glycoprotein-antibody-associated disease

(MOGAD).

Pain condition Examples

Acute pain

ON-related pain Retro- or periorbital pain, increased by eye

movement. In MOGAD: associated

headache possible.

Headache Cervicogenic-like headache, paroxysmal

hemicrania, encephalitis-related headache

Neuropathic pain Myelitis-related neuropathic pain:

dysesthetic extremity pain, neuropathic

pruritus, girdle sensation, pelvic pain

Chronic pain

Intermittent

neuropathic pain

Lhermitte’s sign, trigeminal neuralgia,

occipital neuralgia

Permanent neuropathic

pain

Dysesthetic extremity pain, neuropathic

pruritus, girdle sensation, pelvic pain

Spasticity-related pain Leg stiffness, muscle cramping in the legs

or arms

Painful tonic spasms Paroxysmal, recurrent muscle spasms in

one or more limbs and/or the trunk

Back pain Multifactorial pathology including

nociceptive and neuropathic aspects, e.g.,

following spasticity

factor for more severe pain (27) and increasing disability scores
correlated with pain intensity in NMOSD (83 and 66% AQP4-
Ab positive) (27, 51). Moreover, an association of depression,
fatigue, and NMOSD (66–83% AQP4-Ab positive) as well as
MOGAD has been shown in several studies (2, 19, 27, 51, 158).
Depression and pain are known to interact, and one cannot be
certain whether depression enhances pain, occurs in response to
pain, or both (159).

CLASSIFICATION OF PAIN IN NMOSD AND
MOGAD

The International Association for the Study of Pain (IASP)
defines pain as an “unpleasant sensory experience associated
with actual or potential tissue damage or described in terms
of such damage” (https://www.iasp-pain.org/). We propose a
classification for pain in NMOSD and MOGAD (Table 3), which
is similar to a previously provided MS-related pain classification
(146). Our aim is to present a structure providing

1) the time course of pain development, to distinguish

a. pain as a warning signal of acute damage
b. pain as a self-sustaining chronic syndrome

2) the underlying pathophysiological mechanisms,
to distinguish

a. ON-related pain
b. headache
c. neuropathic pain

i. intermittent (episodic), e.g., trigeminal and occipital
neuralgia, Lhermitte’s sign

ii. permanent (continuous), e.g., pain in the extremities

d. spasticity and painful tonic spasms
e. mixed pain, e.g., back pain
f. comorbidity-related pain

3) a reference for specific treatment strategies
4) a framework to generate future research hypotheses.

Of note, acute and chronic pain syndromes can overlap. For
efficacious treatment, a detailed medical history is necessary.

TREATMENT OF PAIN IN NMOSD AND
MOGAD

Despite the use of multiple medications, pain is currently
not sufficiently managed in NMOSD or MOGAD (2, 26–28),
and there is relatively little published literature on therapeutic
intervention or treatment of pain as a primary outcome in
these patient groups. Three studies on immunosuppressive
treatment in AQP4-Ab-positive NMOSD have shown promising
results when examining pain as a secondary outcome: two in
patients treated with the humanized monoclonal IL-6 antibody
tocilizumab (125, 160, 161) and one in patients treated with
low-dose mycophenolate mofetil (MMF) (162). One study on
the positive effect of Scrambler therapy for the treatment of
neuropathic pain in NMOSD was identified (55). No studies
were found investigating pain treatment inMOGAD.We provide
an overview of current strategies for relapse-related treatments
and effects of immunosuppressive treatment focusing on acute
and chronic pain, respectively. We additionally give a general
overview on the management of chronic neuropathic pain,
spasticity-related pain, and painful tonic spasms, although these
are not specific to NMOSD or MOGAD.

Attack-Related Treatment
Attack-related treatment aims to reduce pain by reducing
the destruction of the CNS. In NMOSD, as well as in
MOGAD, acute attacks are usually treated with 1,000mg
intravenous methylprednisolone (IVMP) for 3–5 days (163).
Prompt treatment initiation should also be considered in patients
who present with pain as their only symptom, in order to avoid
rapid progression and attack-related disability (148). Of note,
attack-related disability can cause the development of secondary
pain, e.g., paresis- and malposition-related pain, reflecting
attack-independent disease progression. Rapid corticoid therapy
showed prompt recovery from pain in NMOSD (120), and
Jarius et al. showed nearly complete recovery in 50% of IVMP-
treated MOG-Ab-related attacks (38). In cases of poor outcome,
IVMP therapy can be increased to 2,000 mg/day. Such a high-
dose IVMP therapy, however, seems to be less effective than
plasma exchange or immunoadsorption (13, 164–166). Especially
in isolated myelitis, it has been shown that clinical response
to immediate plasma exchange (PLEX) was better compared to
high-dose steroid therapy (166). This could be of relevance in the
treatment of patients presenting with neuropathic pain.
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Bradl et al. suggest a multidrug treatment at an early disease
stage to limit the previously discussed complex interactions
of proinflammatory and pronociceptive molecules in order to
avoid pain instauration. They propose an approach similar to
the treatment for traumatic brain injury, involving minocycline,
peroxisome proliferator-activated receptor agonists, cell cycle
inhibitors, statins, and progesterone (3). However, currently,
there are no data on possible preventive effects on pain
development in NMOSD or MOGAD in this regard.

Effect of Immunomodulatory Treatment on
Pain in NMOSD and MOGAD
Immunosuppressive therapy is essential to reduce disease
activity and to avoid relapses in NMOSD and MOGAD,
again with the aim to reduce the risk of future CNS damage.
Up to now, although recommendations for treatment of
NMOSD are available, these are not based on a high level
of evidence (163, 167, 168). It is strongly recommended that
patients suffering from AQP4-ab-positive NMOSD should
receive immunotherapy after the first attack. Currently used
preventative treatments in NMOSD include prednisone,
azathioprine, rituximab, MMF, intravenous immunoglobulins
(IVIGs), eculizumab, and methotrexate (163, 168, 169). Data
on the efficacy of IVIG, however, are scarce (13). Of note, in
Canada, the USA, and Europe, Eculizumab is currently the
only approved therapy for the treatment of NMOSD, and all
other medications are used off-label and empirically. In clinical
trials, the positive effects on relapse rates of inebelizumab and
satralizumab NMOSD have been described (13, 160, 169–173).
Satralizumab has shown no benefit on pain intensity in two
phase III studies (171, 174), and no data on pain are available
for eculizumab and inebilizumab (169, 170, 173). As mentioned
above, tocilizumab and MMF in contrast have shown positive
effects on pain in AQP4-Ab-positive NMOSD. Still, evidence
has to be proven in prospective studies focusing on pain as a
primary outcome.

Tocilizumab is an antibody against IL-6, a major cytokine
involved in NMOSD pathophysiology (175). It has been shown
that NMO-IgG binding to AQP4 on astrocytes selectively
induces internalization of AQP4 and production of IL-
6 (70), which is thought to enhance the survival time of
plasmablasts, which generate anti-AQP4 antibodies (71). IL-6
is a pronociceptive cytokine, which plays an important role
in the development of neuropathic pain (176). Treatment
with tocilizumab leads to reduced immunological activity,
as well as neuropathic pain reduction (59, 125, 160),
and should therefore be considered in patients at risk for
neuropathic pain.

MMF is an immunosuppressant inhibiting the inosine
monophosphate dehydrogenase. Consequently, the synthesis
of guanosine nucleotide is reduced, which leads to an
inhibition of B- and T-lymphocyte proliferation. MMF can
be administered in both NMOSD and MOGAD, in the
latter preferably in combination with steroids (13, 162).
MMF reduces immunological activity and has a positive

effect on pain intensity in AQP4-Ab-positive NMOSD patients
(162). Unfortunately, the type of pain was not defined in
this study.

Of note, pain can occur as a side effect of some
immunosuppressive therapy. Eculizumab, inebilizumab,
MMF, and rituximab can lead to headache, MMF can cause
abdominal pain (13, 120, 170), and inebilizumab can cause back
pain, extremity pain, and chest pain (173).

It has to be kept in mind that NMOSD and MOGAD
are distinct nosologic entities regarding their underlying
pathogenesis (36). In MOGAD, long-term immunotherapy is
often considered and recommended only after a second attack in
light of the presumably high proportion of monophasic cases and
the overall good recovery. Empirical data suggest oral steroids
as mainstay of treatment, and slow tapering is crucial to avoid
recurrence of disease activity (33, 177, 178). In contrast to
NMOSD, the efficacy of rituximab in MOGAD is controversial.
Two recent studies showed that up to 45% of the patients under
rituximab treatment still relapsed, despite an effective biological
effect of rituximab. Consequently, memory B-cell depletion
seems to be unable to prevent relapses in a subset of patients
suffering from MOGAD (179, 180). Currently, a long-term
treatment with intravenous immunoglobulins, or in some cases
with methotrexate, may be preferred (13, 38). Like in NMOSD,
treatment of MOGADwith classical MS drugs should be avoided,
as they can worsen the disease course (181). Up to now, no
treatment guidelines with high grade evidence are available for
the treatment of MOGAD, and all medications are used off-
label and empirically. Of note, none of the immunotherapies
have been studied with regard to a potential effect on pain
in MOGAD.

Symptomatic Pain Treatment
Symptomatic therapies aim to treat pain. Of note, the efficacy
of the following treatment strategies have not been specifically
demonstrated in NMOSD or MOGAD-related pain.

Neuropathic Pain
Based on the pathophysiological course of neuropathic pain
development and the mechanisms of action, Bradl et al. suggest
inducing pharmacological inhibition of glutamatergic signal
transduction early in the disease course, e.g., by N-methyl-D-
aspartate (NMDA)-receptor blockade with low-dose ketamine
or memantine. In patients with established lesions and reduced
antinociceptive inhibition in advanced disease stages, Bradl et
al. propose medication with GABA agonists, e.g., baclofen, and
monoamine reuptake inhibitors (3). However, evidence on its
effects is limited, and none of these agents are routinely used
clinically (3, 182).

Regarding the current state of pain research, multidisciplinary
care in combination with tricyclic antidepressants (TCAs),
serotonin norepinephrine reuptake inhibitors (SNRIs),
gabapentanoids, and tramadol are the most effective options
to treat central neuropathic pain (7, 183–185). Depending on
the type of medication, a 3–8-week trial is recommended to
evaluate its effect. If no significant pain relief can be achieved,
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the dosage should be adjusted if the medication is tolerated
by the patient. In a second step, alternative medication,
combination therapy, or evaluation for neurostimulation may be
considered (182, 186).

For the effect of medical neuropathic pain treatment on the
patients’ self-reported quality of life, we recommend the review
by Mealy et al. (57).

First-line therapy
Tricyclic antidepressants like nortriptyline and amitriptyline
show pain-relieving effects by inhibiting serotonin and
noradrenaline reuptake (5, 182, 183, 187–189). Nortriptyline
and amitriptyline should be started with a daily dose
of 10–25mg per os (p.o.) and increased to a maximal
daily dose of 150mg. Side effects comprise falls, cardiac
arrhythmias, orthostatic dysregulation, urinary retention,
and dry mouth, and occur especially in elderly people
(182, 184, 187, 190, 191).

Serotonin and norepinephrine reuptake inhibitors
(SNRIs) like duloxetine and venlafaxine enhance monoamine
neurotransmission in the descending inhibitory spinal pathways,
resulting in decreased sensation of pain (183–185, 187–189).
SNRIs showed positive effects on neuropathic pain in MS
but without a corresponding positive effect on the patients’
quality of life. Duloxetine should be started with a daily dose
of 30mg p.o. and increased to a maximal daily dose of 60mg.
Venlafaxine should be prescribed with an initial daily dose
of 37.5mg p.o. and escalated to a maximal daily dose of
200mg. Side effects include mainly renal and liver pathology
(7, 57, 182–185, 187, 191).

Gabapentanoids are anticonvulsant drugs, including
gabapentin and pregabalin. These drugs inhibit neurotransmitter
release in the dorsal horn of the spinal cord by blocking
presynaptic alpha-2-delta calcium channels, leading to pain
relief. Gabapentin has been shown to effectively decrease pain
intensity and improve quality of life of patients suffering from
neuropathic pain after spinal cord injury. Gabapentin dosage
should also be increased slowly, starting with a daily dose up to
600mg p.o., and escalating to a maximum daily dose of 3,600mg.
Pregabalin should be initiated with a daily dose of 150mg p.o.
and escalated to a maximal daily dose of 600mg. Effective pain
release by gabapentanoids should be evaluated after a 4–6-week
period with 2 weeks at the maximum tolerated dose. Side effects
include mainly renal pathology (57, 182–184, 187–190, 192, 193).

For the treatment of trigeminal neuralgia, carbamazepine is
considered to be a first-line therapy (184). Carbamazepine can
be induced with a daily dose of 200–400mg. Slowly increasing
the dosage by 50 mg/day can be continued up to 600–1,200
mg/day. Especially in elderly people, the tolerance of dosages
above 600 mg/day is often poor with important motor and
sedative side effects. Apart from the treatment of trigeminal
neuralgia, carbamazepine is considered a third-line therapy for
neuropathic pain (5, 194, 195).

Medication of first-line treatment should be trialed over an
average time period of 4–6 weeks. If sufficient pain relief is not
achieved, progression to the next medication or next line of
treatment should occur (182, 184, 187, 189, 191).

Second-line therapy, including tramadol and combination

therapy
Most guidelines consider tramadol as a second-line therapy
(182, 189–191, 196). However, for acute neuropathic pain and
intermittent exacerbations of neuropathic pain, it is considered
first-line medication (182, 189, 191). Tramadol primarily
acts as a weak µ-opioid agonist and inhibits serotonin and
norepinephrine reuptake. One study on neuropathic pain after
spinal cord injury showed a positive effect of tramadol, in
addition to stable regimen (57).

Tramadol should be started with a daily dose of 50mg p.o.
and escalated to a maximal daily dose of 400mg. Side effects
comprise seizure disorder and renal impairment, notably in the
elderly (182).

Combination therapy is common in the treatment of
neuropathic pain. The patient should be closely observed due to
an increased risk for side effects (182, 187).

Cannabinoids have shown a positive impact on pain,
sometimes additionally improving quality of life (5, 57).
Cannabinoids bind to the presynaptic cannabinoid receptor,
reducing calcium influx from voltage-gated calcium channels,
and hyperpolarization. Consequently, cellular excitability
decreases. However, cannabinoids are currently only licensed
in Canada, Israel, and New Zealand for the treatment of
neuropathic pain and the safety profile remains a matter of
debate (5, 57).

Third-line therapy
For patients who do not tolerate first- or second-line therapy
or do not benefit from adequate pain relief, medication with
serotonin-specific reuptake inhibitors (SSRIs), anticonvulsants
such as lamotrigine, carbamazepine, topiramate, sodium
valproate, and NMDA antagonists, as well as tapentadol, can be
considered in a specialized setting. Tapentadol is a newer weak
µ-opioid agonist, and strong norepinephrine reuptake inhibitor
that does not affect serotonin reuptake. Due to its increased
potency compared to tramadol, it is currently considered
third- or fourth-line treatment. Evidence grades of third-line
treatments are currently relatively low (182, 184, 187–189, 191).

Fourth-line therapy
Neuromodulation, including intracranial stimulation, spinal
cord stimulation, high-frequency and burst spinal cord
stimulation, and dorsal root ganglion stimulation, is considered
to be fourth-line treatment before starting medication with
long-term opioids (55, 182). As mentioned above, one phase II
study has shown a positive effect of Scrambler therapy for the
treatment of neuropathic pain in 22 AQP4-positive NMOSD
patients (55). Scrambler therapy is non-invasive technology with
Food and Drug Administration (FDA) 510(k) approval for acute,
chronic, and postoperative pain. Scrambler is a transcutaneous
electric nerve stimulation (TENS) technique that stimulates
ascending peripheral C-fibers. It aims to modify nociceptive pain
by reorganizing maladaptive signaling pathways in the sensory
cortex (197). The trial showed pain reduction from a median
baseline numeric rating scale (NRS) pain score of 5.0–1.5 after 10
days of treatment. The median NRS score did not significantly
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decrease in the sham arm (55). Currently, the lack of clear
guidelines regarding the frequency and stimulation amplitude
necessary to achieve sufficient pain reduction currently limits the
use of TENS (57, 198, 199). A phase III study would be necessary
to prove the effect of Scrambler therapy on pain, reduction
in analgesic medication, and QoL in a larger NMOSD cohort
(57, 198, 199).

Fifth-line therapy
Low-dose opioid medication to treat permanent neuropathic
pain is currently considered as fourth- and fifth-line treatment,
if appropriate conservative pharmacological and interventional
management (neurostimulation) has failed (182). Opioids
bind to an opioid receptor, inhibit adenylyl-cyclase, lead to
neuronal hyperpolarization, and decrease neuronal excitability.
However, opioids are considered to have a limited efficacy on
neuropathic pain, and safety concerns require strict monitoring
(7). Combination therapy of gabapentin and opioids provided
better neuropathic pain relief than gabapentin or opioids alone
but was associated with increased levels of adverse events (182).

Other pharmacological options
Baclofen has shown a positive effect on myelitis-related
neuropathic pain in MS patients after intrathecal administration
(5–1,200 µg/day). However, baclofen is currently not licensed
for the treatment of neuropathic pain but rather indicated for
medical treatment of spasticity (5, 146). Some patients may
benefit from its positive overlapping effects.

Spasticity-Related Pain
Spasticity can cause discomfort and stiffness and lead to pain,
e.g., back pain (194). Management should be patient focused
and target function rather than aiming to reduce the degree of
spasticity. Effectively reduced spasticity can accentuate profound
underlying weakness, which contributes to the disability and
potential complications of malposition. To avoid complications
like pain, early treatment of spasticity should emphasize self-
management strategies, education, and physiotherapy (200).

Oral pharmacological agents most commonly used to treat
spasticity are baclofen, tizanidine, benzodiazepines, dantrolene,
and gabapentin (3, 200). If oral medication does not reach
the sufficient effect, antispastic agents such as botulinum
toxin, intrathecal baclofen, phenol, and cannabinoids can be
administered (200, 201). A positive effect on both spasticity and
pain has been shown for baclofen, gabapentin, botulinum toxin,
and cannabinoids (194, 202).

Oral baclofen
Baclofen is a derivate of È-aminobutyric acid (GABA), which can
cross the blood–brain barrier to a limited extent. GABA is amajor
inhibiting CNS transmitter of impulse transmission, and baclofen
is thought have an antispastic effect through the inhibition of
reflex neurological transmissions in the spinal cord. Baclofen
should be administered starting with a daily dose of three times
5mg p.o. and increased to a maximal daily dose of 80–100mg.
Common side effects include drowsiness, weakness, paresthesia,
and dry mouth (194).

Intrathecal baclofen
As oral baclofen crosses the blood–brain barrier only to a small
extent, the administration of baclofen directly to the site of
antispastic action into the spinal canal improves efficacy and
reduces potential side effects. A programmable infusion pump
allows a continuous supply of the drug. Dosage has to be titrated
over time. Long-term dosage used inMS-related spasticity ranged
from 21 to 648 µg/day (194).

Botulinum toxin
The effect of botulinum toxin (botox, dysport) is to inhibit
acetylcholine release at the neuromuscular junction. Despite
permanent blockade, the clinical effect of botulinum toxin
injections is reversible because of nerve sprouting and muscle
reinnervation (200). The total dosage of botox should be ≤200
units and the dosage at one site ≤50 units. Dysport should be
started with a total dosage of 500 units per patient. Depending on
the clinical response, the dosage of dysport can range from 250 to
1,000 units (200).

Gabapentin
Gabapentin is increasingly used as first-line treatment for
spasticity, most particularly since it is licensed for neuropathic
pain. Its mode of action, administration, and side effects are
described in the section of first-line neuropathic pain treatment.

Cannabinoids
The medical use of cannabinoids remains controversial. The two
most studied cannabinoids in cannabis are tetrahydrocannabinol
(THC) and cannabidiol (CBD). THC is the most psychoactive
substance and CBD is the major non-psychotropic substance
in cannabis. Two cannabinoid receptors, CB1 and CB2, have
been identified. CB1 receptors are located in the CNS and
on peripheral nerves. CB2 receptors are found on the cells of
the immune system. Evidence for successful treatment of both
spasticity and pain in MS is available for nabiximols (trade
mark: sativex oral spray), oral cannabis extract (OCE) (trade
mark: cannador), and synthetic THC (trade mark: dronabinol,
nabilone). OCE and THC, however, show only patient-reported
spasticity reduction but were not found to be effective to reduce
objective measures of spasticity (201, 202).

Nabiximols is a natural cannabis extract with a 1:1 ratio of
THC and CBD activating CB1 and CB2 receptors. Nabiximols
is available as oromucosal spray with 2.7mg of THC and 2.5mg
of CBD per actuation (202). Nabiximols has also shown good
efficacy for painful tonic spasms (202).

Cannador is a natural cannabis extract with 2.5mg of THC
and 1.25mg of CBD per capsule and is currently only available
in a research setting in Europe. Dronabinol and nabilone
are currently not licensed for the treatment of spasticity and
pain (202).

Painful tonic spasms
In addition to physiotherapy, most frequent medications used
to treat PTS are sodium-channel-blocking antiepileptic agents
such as carbamazepine, oxcarbazepine, gabapentin, clonazepam,
and phenytoin sodium, as well as benzodiazepines, barbiturates,
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baclofen, and cannabinoids (3, 5, 31, 202, 203). It has been
reported that topiramate at a daily dose of 400mg can lead to
the alleviation of PTS in AQP4-Ab-positive NMOSD (67) and
one AQP4-Ab-positive NMOSD case with a favorable response
to levetiracetam has been described (142). The highest efficacy
for NMOSD-related PTS has been reported for carbamazepine,
oxcarbazepine, and gabapentin (29, 32), with carbamazepine
and oxcarbazepine outperforming gabapentin (32). These
recommendations refer to a daily dose of 600–1,200mg of
oxcarbazepine and 100mg three times a day of carbamazepine
compared to 300 or 600mg three times a day of gabapentin
(32). Carbamazepine and oxcarbazepine act as voltage-gated
sodium channel blockers and decrease neuronal excitability
(32). Considering the emergence of important side effects of
carbamazepine, oxcarbazepine has been recommended as a
first-line treatment, preferably in combination with antispastic
medication or antidepressants such as baclofen, pregabalin, or
duloxetine (32).

Side effects of carbamazepine comprise ataxia, dizziness,
somnolence, leukopenia, Steven–Johnson syndrome, and
hyponatremia (204). In MS, carbamazepine can lead to a
reversible exacerbation of neurological symptoms (205).
Oxcarbazepine is better tolerated and safer than carbamazepine,
especially with respect to CNS secondary side effects (ataxia,
somnolence, and dizziness) and interaction with other
medications (206). Side effects are often resolved after the
titration period or with dosage adjustment. Frequently reported
adverse effects include dizziness, headache, nausea, somnolence,
fatigue, vomiting, back pain, diarrhea, tremor, skin rash, and
blurred vision (206).

Non-pharmacological Treatment
Pain is more than just an unpleasant physical sensation. It can
comprise emotional, social, and spiritual suffering. Therefore,
treatment strategies should not only directly target pain relief.
Besides psychotherapy or behavioral therapy, exercise programs
for physical reconditioning, relaxation techniques, and patient
education should be considered to target functional, affective,

social, and spiritual consequences affecting the patients’ quality
of life (182, 207, 208). Currently, pain syndromes in NMOSD
and MOGAD are insufficiently controlled by medication, and
multidrug therapy has been associated with worse fatigue and
depression (2, 27, 209). Therefore, future studies should explore
the efficacy of a multimodal and multidisciplinary approach of
pain management (27).

SUMMARY

Pain is a very frequent symptom in NMOSD and MOGAD
and has a prevalence of over 80% with a severe impact on
the quality of life of affected patients. Pain syndromes differ
between NMOSD and MOGAD and can be an indicator for
the respective disease type. Acute pain syndromes like retro-
orbital pain, headache, or dysesthetic pain can be indicative
for a first disease-related attack or a relapse of MOGAD-
related optic neuritis, or NMOSD-related myelitis, brainstem,
or cerebral affection. Chronic pain syndromes occur during
the disease course and comprise primarily neuropathic pain
and painful tonic spasms but also spasticity-related pain, back
pain, and treatment-associated pain like osteoporosis. Acute
ON-related pain seems to be particularly severe in MOGAD,
while chronic neuropathic pain is more severe in NMOSD.
Symptomatic treatment is currently insufficient to reduce pain
intensity and improve the patients’ quality of life. However,
disease preventative immunosuppressive agents like tocilizumab
and mycophenolate mofetil have shown a positive effect on
pain reduction and should be further investigated. Patient care
and future research should concentrate on a multidisciplinary
approach of pain management, focusing on the respective
pain type.

AUTHOR CONTRIBUTIONS

All authors contributed equally to the submitted work, analyzed
the literature, wrote the manuscript, critically reviewed and
revised the manuscript, and approved the final manuscript.

REFERENCES

1. Jarius S, Wildemann B. Devic’s index case: a critical reappraisal
– AQP4-IgG-mediated neuromyelitis optica spectrum disorder,
or rather MOG encephalomyelitis? J Neurol Sci. (2019)
407:116396. doi: 10.1016/j.jns.2019.07.014

2. Asseyer S, Schmidt F, Chien C, Scheel M, Ruprecht K, Bellmann-Strobl
J, et al. Pain in AQP4-IgG-positive and MOG-IgG-positive neuromyelitis
optica spectrum disorders. Mult Scler J Exp Transl Clin. (2018) 4:1–
12. doi: 10.1177/2055217318796684

3. Bradl M, Kanamori Y, Nakashima I, Misu T, Fujihara K, Lassmann
H, et al. Pain in neuromyelitis optica - prevalence, pathogenesis
and therapy. Nat Rev Neurol. (2014) 10:529–36. doi: 10.1038/nrneurol.
2014.129

4. Gault F. De la neuromyélite optique aiguë. (Thèse). Faculté de Médecine et de

Pharmacie. Lyon: Alexandre Rey (1894).
5. Solaro C, Trabucco E, Uccelli MM. Pain and multiple sclerosis:

pathophysiology and treatment. Curr Neurol Neurosci Rep. (2012)
13:1–9. doi: 10.1007/s11910-012-0320-5

6. Treede R-D, Jensen TS, Campbell JN, Dostrocsky JO, Griffin JW,
Hansson P, et al. Neuropathic pain: redefinition and a grading
system for clinical and research purposes. Neurology. (2008)
70:1630–5. doi: 10.1212/01.wnl.0000282763.29778.59

7. Finnerup NB, Haroutounian S, Kamerman P, Baron R, Bennett
DLH, Bouhassira D, et al. Neuropathic pain: an updated
grading system for research and clinical practice. Pain. (2016)
157:1599–606. doi: 10.1097/j.pain.0000000000000492

8. Carr DB, Goudas LC. Acute pain. Lancet. (1999) 353:2051–
8. doi: 10.1016/S0140-6736(99)03313-9

9. Aziz Q, Barke A, Bennett MI, Benoliel R, Cohen M, Evers S, et al.
A classification of chronic pain for ICD-11. Pain. (2015) 156:1003–
7. doi: 10.1097/j.pain.0000000000000160

10. Cook LJ, Rose JW, Alvey JS, Jolley AM, Kuhn R, Marron B, et
al. Collaborative international research in clinical and longitudinal
experience study in NMOSD. Neurol Neuroimmunol NeuroInflamm. (2019)
6:e583. doi: 10.1212/NXI.0000000000000583

11. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W,
Chitnis T, et al. International consensus diagnostic criteria

Frontiers in Neurology | www.frontiersin.org 14 August 2020 | Volume 11 | Article 778

https://doi.org/10.1016/j.jns.2019.07.014
https://doi.org/10.1177/2055217318796684
https://doi.org/10.1038/nrneurol.2014.129
https://doi.org/10.1007/s11910-012-0320-5
https://doi.org/10.1212/01.wnl.0000282763.29778.59
https://doi.org/10.1097/j.pain.0000000000000492
https://doi.org/10.1016/S0140-6736(99)03313-9
https://doi.org/10.1097/j.pain.0000000000000160
https://doi.org/10.1212/NXI.0000000000000583
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Asseyer et al. Pain in NMOSD and MOGAD

for neuromyelitis optica spectrum disorders. Neurology. (2015)
85:177–89. doi: 10.1212/WNL.0000000000001729

12. Paul F, Jarius S, Aktas O, Bluthner M, Bauer O, Appelhans H, et al. Antibody
to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med. (2007)
4:669–74. doi: 10.1371/journal.pmed.0040133

13. Borisow N, Mori M, Kuwabara S, Scheel M, Paul F. Diagnosis and treatment
of NMO spectrum disorder and MOG-encephalomyelitis. Front Neurol.

(2018) 9:888. doi: 10.3389/fneur.2018.00888
14. Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features,

immunopathogenesis and treatment. Clin Exp Immunol. (2014) 176:149–
64. doi: 10.1111/cei.12271

15. Sato DK, Lana-Peixoto MA, Fujihara K, de Seze J. Clinical spectrum and
treatment of neuromyelitis optica spectrum disorders: evolution and current
status. Brain Pathol. (2013) 23:647–60. doi: 10.1111/bpa.12087

16. Kremer L, Mealy M, Jacob A, Nakashima I, Cabre P, Bigi S, et al. Brainstem
manifestations in neuromyelitis optica: A multicenter study of 258 patients.
Mult Scler J. (2014) 20:843–7. doi: 10.1177/1352458513507822

17. Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, et al.
Contrasting disease patterns in seropositive and seronegative neuromyelitis
optica: a multicentre study of 175 patients. J Neuroinflammation. (2012)
9:1–17. doi: 10.1186/1742-2094-9-14

18. Kanamori Y, Nakashima I, Takai Y, Nishiyama S, Kuroda H, Takahashi T, et
al. Pain in neuromyelitis optica and its effect on quality of life a cross-sctional
study. Neurology. (2011) 77:652–8. doi: 10.1212/WNL.0b013e318229e694

19. Chavarro VS, Mealy MA, Simpson A, Lacheta A, Pache F, Ruprecht
K, et al. Insufficient treatment of severe depression in neuromyelitis
optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. (2016)
3:e286. doi: 10.1212/NXI.0000000000000286

20. Oertel FC, Schließeit J, Brandt AU, Paul F. Cognitive impairment
in neuromyelitis optica spectrum disorders: a review of
clinical and neuroradiological features. Front Neurol. (2019)
10:608. doi: 10.3389/fneur.2019.00608

21. Song Y, Pan L, Fu Y, Sun N, Li YJ, Cai H, et al. Sleep abnormality
in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol

NeuroInflamm. (2015) 2:e94. doi: 10.1212/NXI.0000000000000094
22. Penner I, Paul F. Fatigue as a symptom or comorbidity of neurological

diseases. Nat Publ Gr. (2017) 13:662–75. doi: 10.1038/nrneurol.2017.117
23. Beekman J, Keisler A, Pedraza O, Haramura M, Gianella-Borradori

A, Katz E, et al. Neuromyelitis optica spectrum disorder: patient
experience and quality of life. Neurol Neuroimmunol NeuroInflamm. (2019)
6:580. doi: 10.1212/NXI.0000000000000580

24. D’Souza M, Papadopoulou A, Levy M, Jacob A, Yeaman MR, Kümpfel T, et
al. Diagnostic procedures in suspected attacks in patients with neuromyelitis
optica spectrum disorders: results of an international survey.Mult Scler Relat

Disord. (2020) 41:102027. doi: 10.1016/j.msard.2020.102027
25. Eaneff S, Wang V, Hanger M, Levy M, Mealy MA, Brandt AU, et al.

Patient perspectives on neuromyelitis optica spectrum disorders: data from
the patients like me online community. Mult Scler Relat Disord. (2017)
17:116–22. doi: 10.1016/j.msard.2017.07.014

26. Zhao S, Mutch K, Elsone L, Nurmikko T, Jacob A. Neuropathic pain in
neuromyelitis optica affects activities of daily living and quality of life. Mult

Scler. (2014) 20:1658–61. doi: 10.1177/1352458514522103
27. Qian P, Lancia S, Alvarez E, Klawiter EC, Cross AH, Naismith RT.

Association of neuromyelitis optica with severe and intractable pain. Arch
Neurol. (2012) 69:1482–7. doi: 10.1001/archneurol.2012.768

28. Pellkofer HL, Havla J, Hauer D, Schelling G, Azad SC, Kuempfel T, et al.
The major brain endocannabinoid 2-AG controls neuropathic pain and
mechanical hyperalgesia in patients with neuromyelitis optica. PLoS ONE.

(2013) 8:e71500. doi: 10.1371/journal.pone.0071500
29. Kim SM, Go MJ, Sung JJ, Park KS, Lee KW. Painful tonic

spasm in neuromyelitis optica: incidence, diagnostic utility,
and clinical characteristics. Arch Neurol. (2012) 69:1026–
31. doi: 10.1001/archneurol.2012.112

30. Carnero Contentti E, Leguizamon F, Hryb JP, Celso J, Pace JL, Ferrari J, et
al. Neuromyelitis optica: association with paroxysmal painful tonic spasms.
Neurologia. (2015) 31:511–5. doi: 10.1016/j.nrleng.2014.12.015

31. Usmani N. Association between paroxysmal tonic spasms and neuromyelitis
optica. Arch Neurol. (2012) 69:121–4. doi: 10.1001/archneurol.2011.832

32. Liu J, Zhang Q, Lian Z, Chen H, Shi Z, Feng H, et al. Painful tonic
spasm in neuromyelitis optica spectrum disorders: prevalence, clinical
implications and treatment options. Mult Scler Relat Disord. (2017) 17:99–
102. doi: 10.1016/j.msard.2017.07.004

33. Jurynczyk M, Messina S, Woodhall MR, Raza N, Everett R, Roca-
Fernandez A, et al. Clinical presentation and prognosis in MOG-antibody
disease : a UK study. Brain. (2017) 140:3128–38. doi: 10.1093/brain/
awx276

34. Dos Passos GR, Oliveira LM, da Costa BK, Apostolos-Pereira SL, Callegaro
D, Fujihara K, et al. MOG-IgG-associated optic neuritis, encephalitis, and
myelitis: lessons learned from neuromyelitis optica spectrum disorder. Front
Neurol. (2018) 9:217. doi: 10.3389/fneur.2018.00217

35. Jarius S, Paul F, Aktas O, Asgari N, Dale RC, Seze J De, et
al. MOG encephalomyelitis : international recommendations
on diagnosis and antibody testing. J Neuroinflam. (2018)
15:1–10. doi: 10.1186/s12974-018-1144-2

36. Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative
opticospinal inflammatory disease justify a diagnosis of NMO
spectrum disorder? Neurol Neuroimmunol NeuroInflamm. (2015)
2:e62. doi: 10.1212/NXI.0000000000000062

37. Chalmoukou K, Alexopoulos H, Akrivou S, Stathopoulos P, Reindl M,
Dalakas MC. Anti-MOG antibodies are frequently associated with steroid-
sensitive recurrent optic neuritis. Neurol Neuroimmunol NeuroInflamm.

(2015) 2:e131. doi: 10.1212/NXI.0000000000000131
38. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, et al.

MOG-IgG in NMO and related disorders: a multicenter study of 50 patients.
Part 2: Epidemiology, clinical presentation, radiological and laboratory
features, treatment responses, and long-term outcome. J Neuroinflamm.

(2016) 13:1–45. doi: 10.1186/s12974-016-0718-0
39. Biotti D, Bonneville F, Tournaire E, Ayrignac X, Dallière CC, Mahieu L, et al.

Optic neuritis in patients with anti-MOG antibodies spectrum disorder: MRI
and clinical features from a large multicentric cohort in France. J Neurol.
(2017) 264:2173–5. doi: 10.1007/s00415-017-8615-8

40. Papeix C, Moreau T, Biotti D, Pelletier J, Audoin B, Ruiz A, et al. Clinical
spectrum and prognostic value of CNS MOG autoimmunity in adults.
Neurology. (2018) 90:e1858–69. doi: 10.1212/WNL.0000000000005560

41. Cobo-Calvo A, Ayrignac X, Kerschen P, Horellou P, Cotton F, Labauge
P, et al. Cranial nerve involvement in patients with MOG antibody-
associated disease. Neurol Neuroimmunol NeuroInflamm. (2019)
6:e543. doi: 10.1212/NXI.0000000000000543

42. Ogawa R, Nakashima I, Takahashi T, Kaneko K, Akaishi T, Takai
Y, et al. MOG antibody-positive, benign, unilateral, cerebral cortical
encephalitis with epilepsy. Neurol Neuroimmunol NeuroInflamm. (2017)
4:e322. doi: 10.1212/NXI.0000000000000322

43. Matesanz S, Kotch C, Perrone C, Waanders AJ, Hill B, Narula S.
Expanding the MOG phenotype: brainstem encephalitis with punctate
and curvilinear enhancement. Neurol Neuroimmunol neuroinflamm. (2019)
6:e619. doi: 10.1212/NXI.0000000000000619

44. Patterson K, Iglesias E, Nasrallah M, González-Álvarez V, Sunõl
M, Anton J, et al. Anti-MOG encephalitis mimicking small vessel
CNS vasculitis. Neurol Neuroimmunol NeuroInflamm. (2019)
6:e538. doi: 10.1212/NXI.0000000000000538

45. Jarius S, Kleiter I, Ruprecht K, Asgari N, Pitarokoili K, Borisow N, et
al. MOG-IgG in NMO and related disorders : a multicenter study of
50 patients. Part 3 : Brainstem involvement - frequency, presentation
and outcome. J Neuroinflamm. (2016) 13:281. doi: 10.1186/s12974-016-
0719-z

46. Zhou L, Huang Y, Li H, Fan J, Zhangbao J, Yu H, et al. MOG-
antibody associated demyelinating disease of the CNS : a clinical and
pathological study in Chinese Han patients. J Neuroimmunol. (2017) 305:19–
28. doi: 10.1016/j.jneuroim.2017.01.007

47. Narayan R, Simpson A, Fritsche K, Salama S, Pardo S, Mealy M, et
al. MOG antibody disease: a review of MOG antibody seropositive
neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. (2018)
25:66–72. doi: 10.1016/j.msard.2018.07.025

48. Cobo-Calvo A, Vukusic S, Marignier R. Clinical spectrum of central nervous
system myelin oligodendrocyte glycoprotein autoimmunity in adults. Curr
Opin Neurol. (2019) 32:459–66. doi: 10.1097/WCO.0000000000000681

Frontiers in Neurology | www.frontiersin.org 15 August 2020 | Volume 11 | Article 778

https://doi.org/10.1212/WNL.0000000000001729
https://doi.org/10.1371/journal.pmed.0040133
https://doi.org/10.3389/fneur.2018.00888
https://doi.org/10.1111/cei.12271
https://doi.org/10.1111/bpa.12087
https://doi.org/10.1177/1352458513507822
https://doi.org/10.1186/1742-2094-9-14
https://doi.org/10.1212/WNL.0b013e318229e694
https://doi.org/10.1212/NXI.0000000000000286
https://doi.org/10.3389/fneur.2019.00608
https://doi.org/10.1212/NXI.0000000000000094
https://doi.org/10.1038/nrneurol.2017.117
https://doi.org/10.1212/NXI.0000000000000580
https://doi.org/10.1016/j.msard.2020.102027
https://doi.org/10.1016/j.msard.2017.07.014
https://doi.org/10.1177/1352458514522103
https://doi.org/10.1001/archneurol.2012.768
https://doi.org/10.1371/journal.pone.0071500
https://doi.org/10.1001/archneurol.2012.112
https://doi.org/10.1016/j.nrleng.2014.12.015
https://doi.org/10.1001/archneurol.2011.832
https://doi.org/10.1016/j.msard.2017.07.004
https://doi.org/10.1093/brain/awx276
https://doi.org/10.3389/fneur.2018.00217
https://doi.org/10.1186/s12974-018-1144-2
https://doi.org/10.1212/NXI.0000000000000062
https://doi.org/10.1212/NXI.0000000000000131
https://doi.org/10.1186/s12974-016-0718-0
https://doi.org/10.1007/s00415-017-8615-8
https://doi.org/10.1212/WNL.0000000000005560
https://doi.org/10.1212/NXI.0000000000000543
https://doi.org/10.1212/NXI.0000000000000322
https://doi.org/10.1212/NXI.0000000000000619
https://doi.org/10.1212/NXI.0000000000000538
https://doi.org/10.1186/s12974-016-0719-z
https://doi.org/10.1016/j.jneuroim.2017.01.007
https://doi.org/10.1016/j.msard.2018.07.025
https://doi.org/10.1097/WCO.0000000000000681
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Asseyer et al. Pain in NMOSD and MOGAD

49. Hyun J-W, Jang H, Yu J, Park NY, Kim S-H, Huh S-Y, et al. Comparison
of neuropathic pain in neuromyelitis optica and multiple sclerosis. Korean
Neurol Assoc. (2020) 16:124–30. doi: 10.3988/jcn.2020.16.1.124

50. Mutch K, Methley A, Moore P, Jacob A. Life on hold: the experience
of living with neuromyelitis optica. Disabil Rehabil. (2014) 36:1100–
7. doi: 10.3109/09638288.2013.833301

51. Kong Y, OkoruwaH, Revis J, Tackley G, LeiteMI, LeeM, et al. Pain in patients
with transverse myelitis and its relationship to aquaporin 4 antibody status. J
Neurol Sci. (2016) 368:84–8. doi: 10.1016/j.jns.2016.06.041

52. Elsone L, Townsend T, Mutch K, Das K, Boggild M, Nurmikko T, et al.
Neuropathic pruritus (itch) in neuromyelitis optica. Mult Scler J. (2012)
19:475–9. doi: 10.1177/1352458512457720

53. Tackley G, Vecchio D, Hamid S, Jurynczyk M, Kong Y, Gore R, et al. Chronic
neuropathic pain severity is determined by lesion level in aquaporin 4-
antibody-positive myelitis. J Neurol Neurosurg Psychiatry. (2017) 88:165–
9. doi: 10.1136/jnnp-2016-314991

54. Asseyer S, Hamblin J, Messina S, Mariano R, Siebert N, Everett R, et al.
Prodromal headache in MOG-antibody positive optic neuritis. Mult Scler

Relat Disord. (2020) 40:101965. doi: 10.1016/j.msard.2020.101965
55. Mealy MA, Kozachik SL, Cook LJ, Totonis L, Salazar RA, Allen JK, et al.

Scrambler therapy improves pain in neuromyelitis optica. Neurology. (2020)
94:e1900–7. doi: 10.1212/WNL.0000000000009370

56. Wang T, Lian Z, Wu X, Kong Y, Zhou H, Wei M. Subcortical structural
abnormalities in female neuromyelitis optica patients with neuropathic pain.
Mult Scler Relat Disord. (2020) 37:101432. doi: 10.1016/j.msard.2019.101432

57. Mealy MA, Kozachik SL, Levy M. Review of treatment for central spinal
neuropathic pain and its effect on quality of life : implications for
neuromyelitis optica spectrum disorder. Pain Manag Nurs. (2019) 20:580–
91. doi: 10.1016/j.pmn.2019.03.003

58. Choi S Il, Lee YJ, Kim DW, Yang JY. A case of neuromyelitis optica
misdiagnosed as cervicogenic headache. Korean J Pain. (2014) 27:77–
80. doi: 10.3344/kjp.2014.27.1.77

59. Araki M, Aranami T, Matsuoka T, Nakamura M, Miyake S, Yamamura
T. Clinical improvement in a patient with neuromyelitis optica following
therapy with the anti-IL-6 receptor monoclonal antibody tocilizumab. Mod

Rheumatol. (2013) 23:827–31. doi: 10.3109/s10165-012-0715-9
60. Horbinski C, Pollack IF, Wiley C, Murdoch G. A 10-year old girl with neck

pain. Brain Pathol. (2010) 20:519–22. doi: 10.1111/j.1750-3639.2009.00365.x
61. Loschner AL, Snyder JE. Pelvic pain as an unusual first

presentation of a demyelinating disease. J Gen Intern Med. (2008)
23:1917–20. doi: 10.1007/s11606-008-0767-x

62. Mathew T, Nadimpally USUS, Sarma GRKRK, Nadig R. Trigeminal
autonomic cephalalgia as a presenting feature of neuromyelitis optica: “a rare
combination of two uncommon disorders.” Mult Scler Relat Disord. (2016)
6:73–4. doi: 10.1016/j.msard.2016.01.006

63. Grüter T, Ayzenberg I, Gahlen A, Kneiphof J, Gold R, Kleiter I. Flaccid
paralysis in neuromyelitis optica: an atypical presentation with possible
involvement of the peripheral nervous system. Mult Scler Relat Disord.

(2018) 25:83–6. doi: 10.1016/j.msard.2018.07.032
64. Sundaram S, Nair SS, Jaganmohan D, Unnikrishnan G, Nair M.

Relapsing lumbosacral myeloradiculitis: an unusual presentation of MOG
antibody disease. Mult Scler J. (2019) 26:509–11. doi: 10.1177/13524585198
40747

65. Roman-Filip C, Ungureanu A, Cernuşcă-Mitaru M. Painful
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