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In response to NIH initiatives to investigate sex as a biological variable in preclinical

animal studies, researchers have increased their focus on male and female differences

in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the

identification of novel areas for therapeutic and scientific exploitation. Here, we review

the organizational and activational effects of sex hormones on recovery from injury and

how these changes impact the long-term health of spinal cord injury (SCI) patients. When

determining how sex affects SCI it remains imperative to expand outcomes beyond

locomotor recovery and consider other complications plaguing the quality of life of

patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for

basic science research which contrasts most other male-biased research fields. We

discuss the unique caveats this creates to the translatability of preclinical research in the

SCI field. We also review current clinical and preclinical data examining sex as biological

variable in SCI. Further, we report how technical considerations such as housing, size,

care management, and age, confound the interpretation of sex-specific effects in animal

studies of SCI. We have uncovered novel findings regarding how age differentially affects

mortality and injury-induced anemia in males and females after SCI, and further identified

estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually

dimorphic responses to therapy are also discussed. Through a combination of literature

review and primary research observations we present a practical guide for considering

and incorporating sex as biological variable in preclinical neurotrauma studies.

Keywords: gender, stroke, traumatic brain injury (TBI), estrogen, testosterone, bladder, pain

INTRODUCTION

In most areas of scientific study, knowledge gained from both pre-clinical and clinical research
is based upon a disproportionate inclusion of male subjects. Implications of this male-dominated
research are that guidelines developed from medical literature often neglect sex-based differences
in basic pathophysiology of disease and treatment responses. Modeling medical practice on such
limited demographics and failure to advance our understanding of disease, injury, and treatment
in the context of sex-based differences have manifested into practices that are emerging as not
just ineffective, but sometimes dangerous, to the health of women. For these reasons, in 2015 the
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National Institute of Health (NIH) has announced the
expectation that “scientists will account for the possible role of sex
as a biological variable in vertebrate and human studies” (1). In
recent years, likely owing to this mandate, findings from animal
models of many neurological conditions have begun exposing
exactly how important sex-dependent effects in medicine can
be. This manuscript evaluates work that has considered sex as
a biological variable in neurotrauma with specific emphasis on
spinal cord injury (SCI). Further, we provide novel primary data
demonstrating that sex effects in SCI can depend on age at time
of injury. Because pre-clinical work comparing male and female
responses to SCI is limited, outcomes are frequently paralleled
to findings in traumatic brain injury (TBI). A recent and more
thorough review of sex effects on TBI can be found elsewhere
(2). Finally, methodological considerations for assimilating
sex as a biological variable in SCI studies are discussed owing
to a substantial increase in the complexity of study design
and interpretation.

MATERIALS AND METHODS

Materials and methods used to construct Figures 2–5 have
been provided in Supplementary Materials. Data provided in
Figures 2–5 is primary data used to articulate sex-dependent
relationships important for the consideration of studying sex in
pre-clinical models of SCI.

RESULTS AND DISCUSSION

Clinical Observations Support That
Females Recover Better Following
Neurotrauma
The first observations of sex differences in neurotrauma found
that men experience a higher frequency of cerebral infarcts
(3) and increased mortality compared to women (4, 5). Meta-
analyses of clinical data in SCI patients have found mixed
results, with a tendency for females to experience improved
recovery compared to male counterparts in measures of motor
capabilities and independence (6). Differences in demographic
characteristics between males and females, however, introduce
several caveats that complicate the interpretation of how
sex affects SCI recovery. Historic incidence rates of SCI
disproportionately affect males, with over 80% of SCI occurring
in males between 25 and 45 years of age (7). In contrast,
on average females tend to receive SCI at an older age (8,
9). Older age at time of SCI can exacerbate injuries (10–
12) and mechanisms of primary trauma at older ages are
often caused by less forceful events such as slip and fall
accidents compared to vehicular and sporting accidents or
acts of violence (13). However, even when age is controlled,
in the clinical setting, females recover better than males (6).
Finally, emergent work in animal models has also reproduced a
small but significant protective effect of being female following
SCI (14–16).

Pre-clinical Data Indicate That Sex-Differences Are

Outcome Specific
The extent to which sex influences outcomes following SCI
remains controversial based on existing clinical and pre-
clinical data. Several rodent studies have confirmed a female-
biased protection on locomotor outcomes after SCI (14–17),
while others have found no differences (18, 19). Most prior
work supporting sex-dependent effects after SCI have limited
evaluations to locomotor outcomes and white matter sparing,
which found marginal improvements favoring females. However,
problems facing patients suffering from SCI extend beyond an
inability to walk. Most patients suffering from thoracic/lumbar
SCI report the largest depreciation in quality of life arising from
secondary complications such as developing neuropathic pain
(20), urinary and bowel incontinence (21), as well as sexual
dysfunction (22), rather than an inability to walk. Following
cervical SCI, which makes up 54.5% of all reported SCI
conditions (13), disability is expanded to dysfunction of upper
limbs and potentially to respiratory control, both of which further
depreciate quality of life after injury (23). Indeed, relieving these
secondary complications is of highest priority for individuals
with SCI (24). Therefore, it is necessary to expand pre-clinical
outcomes beyond locomotor disability to determine if sex
differences exist in other modalities of SCI-induced dysfunction
and to understand what underlying biological processes mediate
these effects.

Unlike reports of locomotor functions, clinical reports suggest
that no differences exist between males and females in the
development or severity of bowel or bladder incontinence (25),
or in the frequency of developing urinary tract infections
(26). However, females do have a higher clinical incidence for
reporting development of SCI-induced pain (27, 28). What
little work has been done in animal models to compare a sex-
dependency of pain development after SCI has also demonstrated
controversial results. Female rats have been reported to both
increase (29) and decrease (30) the prevalence of developing
mechanical and thermal allodynia after SCI, while no sex-
dependent effects have been found in mice (31, 32). Importantly,
several studies investigating analgesic strategies to reduce pain
caused by peripheral nerve injury have converging evidence
that many pain-relieving agents exert sexually dichotomous
effects (33–38). A similar sex-dependent effect was found using
pioglitazone to treat SCI-induced pain in mice which found a
female-specific analgesic influence (31). These findings suggest
that while the experience of SCI-induced pain may not differ
between sexes in mice, biological mechanisms regulating pain
may differ between males and females. Extrapolating these
findings to other outcomes may suggest that despite small
sex-dependent effects in outcomes of locomotion or pain, the
biological mechanisms underlying dysfunction may differ and
require different strategies for treatment.

Female Sex Hormones Are Potentially
Neuroprotective
The investigation of sex-specific effects in animal models
of neurotrauma has predominately focused on how sex
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hormones mediate tissue protection (39). Due to a higher
prevalence and fluctuation of estrogens and progesterone
in females, it is reasonable to hypothesize that female sex
hormones are neuroprotective. Two major design strategies have
been employed to support this hypothesis in vivo following
neurotrauma. These include ovariectomies to partially deplete
estrogens and progesterone, as well as exogenous delivery of
estrogens and progesterone in both female and male rodents
prior to injury (5, 39–41). Ovariectomies normalize tissue
and functional outcomes between sexes, a finding consistent
following both TBI (40) and SCI (41). This supports female sex
hormones as being modestly neuroprotective. Using estrogens
or high-dose progesterone as treatments for neurotrauma has
persistently improved outcomes following SCI, TBI, and stroke
in both males and females (5, 39, 42–48). The influence of female
hormones on recovery from neurotrauma has led to an appraisal
that inclusion of females adds too much variability to data due to
the fluctuation of estrogens and progesterone during the estrus
cycle, which scientists use as an argument to exclude the use of
females in most pre-clinical research.

Females Persist as the Predominate Sex
Used in Pre-clinical Studies of SCI
A belief that hormonal fluctuations during the estrous cycle adds
variability to research outcomes is contributing to the exclusion
of females in most pre-clinical neurotrauma modeling. However,
contrary to the TBI and stroke fields, female rodents are the
preferred sex tomodel SCI. Data analyses of NIH-funded, rodent,
primary research publications demonstrate that females are the
sole sex used in the vast majority of SCI experiments (Figure 1).
This may change, as our data (compiled from freely available
2018 publications), likely does not yet reflect NIH programmatic
changes enacted in 2016 to consider sex as a biological variable
in vertebrate animal research. Nonetheless, male rodents are not
often used whenmodeling SCI due to more severe post-operative
complications and difficulty with manual bladder expressions
which are required after experimental paralysis. These severe,
male-specific, postoperative complications confound research
efforts by increasing mortality and exclusion of subjects due to
adverse health issues. A bias against male rodents in pre-clinical
models of SCI has created a unique incongruence between
clinical and pre-clinical demographics because the predominant
clinical demographic is young males. In fact, the smallest SCI
demographics seen in clinic are young and elderly females
(8, 9, 49). This would argue that even if females were to
be used, middle-aged female rodents would serve as a more
clinically translatable model. Considering that neither young
males, nor middle-aged females are commonly used to model
SCI, including these additional variables may be essential for
improving translatability of pre-clinical findings.

The importance of including both sexes in pre-clinical SCI
research is emphasized by findings that support sex-dependent
effects in both locomotor (15, 16), and non-locomotor outcomes
such as pain (29, 30). An accumulation of recent work is finding
that the pathophysiology of injury is fundamentally different
between males and females (50, 51). Similarly, males and females

FIGURE 1 | Females are used exclusively in most pre-clinical SCI research

funded by the NIH. Pre-clinical, rodent, primary literature research papers

funded by the NIH, published in 2018, and publicly available through Pubmed

Central were analyzed for inclusion of sex as a biological variable (n = 67;

published studies analyzed are available in Supplementary Table 1). Females

(n = 48) were the predominate sole sex used, followed by males (n = 11), both

(n = 6), and unreported (n = 2). Of studies utilizing both male and female

rodents, only one study explicitly reported on how data between sexes were

compared and included in analysis (32). Search function included: [(rat) OR

mouse] AND [(((Spinal cord injury[Title]) OR spinal cord contusion[Title]) OR

spinal cord transection[Title]) AND (“2018/01/01”[PDat]: “2018/12/31”[PDat])].

have sex-specific considerations for long-term care (27, 52), and
biological differences can alter response to treatment (31, 35, 53).
The rest of this manuscript will discuss how several physiological
processes differ between males and females and highlight how
these differences affect injury, recovery, and living with SCI.

Organizational and Activational Effects of
Sex Hormones in SCI
Perinatal Development Induces Lasting

Organizational Differences on Neuroanatomy, Cell

Distribution, and Epigenetic Profiles
As mentioned above for sex hormones, the investigation of
sex-specific effects in animal models of neurotrauma has
predominately focused on activational changes. These transient
effects on hormone levels throughout life, or “activated”
in response to injury, influence secondary injury cascades,
inflammation, and repair after SCI as discussed in more
detail below. However, sex-specific organizational effects, those
that occur during development and throughout life, shape
the nervous system at a structural and cellular level and
contribute to sex differences in behavior and functional responses
(54). In the brain neuronal cell numbers in discrete areas
differ between males and females which are established during
the organizational period of hormone exposure (55). Similar
sex differences in astrocytes and microglia cell numbers and
morphology have been reported (55). However, little has been
performed evaluating sex differences in the spinal cord outside
of the regulatory centers controlling male and female sex organs
(56). These neuroanatomical differences are hypothesized to be
mediated by perinatal exposure to steroids, specifically a prenatal
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surge of testosterone occurring in males late in gestation and a
second surge occurring immediately after birth (57, 58).

One example of sex differences arising during spinal
cord development is observed in the spinal nucleus of the
bulbocavernosus (SNB); a pool of motoneurons in the lower
lumbar spinal cord. SNBmotoneurons project to striatedmuscles
of the perineum which attach to the base of the penis and
are required for an erection and ejaculation (59, 60). Male
rats have more cells in the SNB compared to females (59).
Developmentally, SNB motoneurons initially form in both sexes
but degenerate in females around the time of birth (56). In
addition to the neurotrophic signals from themuscles, androgens
and estrogens have been shown to permanently establish this sex
difference early in development. The lumbar spinal cord houses
neurons and central pattern generators controlling functions
that are disrupted by SCI including pain responses as well
as locomotor, bowel, and bladder functions. Whether other
organizational effects exist within the spinal cord and contribute
to sex-specific injury responses remain to be determined.

Organizational effects during development also confer innate
sex-differences in epigenetic profiles and cell morphology that
do not depend on ongoing sex hormone signaling (61, 62).
For example, early developmental exposure to sex hormones
is thought to induce a permanent sexual phenotype of glial
cells (62), which recently has been demonstrated in brain
microglia (63). Microglia display a sex-dependent morphology,
with female microglia having a more ramified morphology
compared to males (63). This morphological change corresponds
to a higher expression of pro-inflammatory markers in male
microglia. When circulating sex hormones are reduced through
orchi/ovariectomies differences in genetic profiles are partially
maintained. Further, when femalemicroglia are transplanted into
the male brain, the transplanted microglia maintain their female
pattern of gene expression. Finally, the transplanted female
microglia conferred a more neuroprotective response to ischemic
injury when compared to male microglia transplanted back
into male mice (63). These experiments demonstrate that early
exposure to sex hormones can induce a sexual phenotype that
function independent of circulating sex hormones, suggesting an
epigenetic pattern of gene expression that is established early in
development and affects reactivity to the environment.

Differentiating between organizational and activational
changes is challenging. For decades, neuroendocrinologists have
acknowledged that many experimental and clinical observations
do not fall within a simple, two-process theory (54). This
classification is further confounded in the context of SCI where
the pathophysiology of secondary injury is not fully understood.
Nonetheless, below we consider the activational effects of sex
to begin to structure the framework for understanding sex as a
biological variable in neurotrauma.

Males and Females Have Differing Inflammatory

Profiles After Neurotrauma
Parallel bodies of literature in TBI and stroke support a protective
effect of being female. Therefore, it remains likely that a similar,
albeit small, sex-dependent effect exists following SCI despite
inconsistent pre-clinical results. To understand why this may be

the case, investigations have focused on the immunomodulatory
role of sex hormones in neurotrauma. Because more work
has been performed investigating sex-dependent inflammatory
responses in TBI, compared to SCI, findings from TBI literature
will be used to extrapolate interactions that may exert influence
in SCI. There are, however, important differences between
inflammatory responses occurring following TBI and SCI which
have been reviewed in detail elsewhere (64). Briefly, in response
to identical experimental lesions, SCI induces a larger total
inflammatory response acutely following injury that propagates
a greater distance from the lesion site and comprises a
higher proportion of infiltrating leukocytes and myeloid cells
(65, 66). With consideration of these fundamental differences
between SCI and TBI, a sex-dependent inflammatory response
in neurotrauma is supported by increased inflammation in male
mice acutely following TBI (50, 51). Specifically, in response
to TBI, male mice exhibit a larger total inflammatory response
arising from both microglia and myeloid cell infiltration with
a proportionally larger increase in myeloid cells at 1-DPI and
microglial proliferation at 3-DPI relative to females. This acute
microglial-specific inflammatory response in males is concurrent
with what would be expected given a suppressive role of estrogens
on microglial activation (67, 68).

Estrogens have immunosuppressive properties
Estrogens and progesterone have been thoroughly investigated
as neuroprotective agents due to their role in activating pro-
survival pathways as well as by exerting anti-inflammatory and
antioxidant properties directly (43, 69–71). Indeed, estrogens
mitigate inflammation after SCI in part by interfering with
inflammasomes (48). Similarly, estrogens exert both direct and
indirect effects on mitochondrial function regulating cellular
metabolism (72–74) which is becoming increasingly attributed
to inflammatory activation and exacerbation of secondary injury
following neurotrauma (75, 76).

Estradiol, a main estrogenic hormone in mammals, influences
several immune cell types either directly or indirectly, including
B cells, T cells, macrophages, NK cells, and eosinophils
(77). Additionally, estradiol increases Th2 type cytokines and
accordingly decreases cell-based immunity in both animal
models and humans (78). This pattern of immune regulation
suggests that estradiol decreases the expression of pro-
inflammatory cytokines and reduces cell-mediated immunity
and microglial activation. Cell culture studies have shown
that physiological levels of 17β-estradiol in vitro significantly
decrease microglial activation in response to immune stimuli
(78). Recently, estradiol has also been shown to modulate
neuroinflammation caused by TBI via the G protein-coupled
estrogen receptor (GPER), which inhibits the expression of
pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and
upregulates the anti-inflammatory cytokine, IL-4, consistent with
a classically defined M2 phenotype (79). The role of estrogens as
anti-inflammatory hormones does, however, contradict known
clinical literature that suggests females mount a larger innate
and adaptive immune response during infection and disease
(80, 81). This paradox, in the context of neurotrauma, is not well-
understood; however, the effects of estrogens on inflammation

Frontiers in Neurology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 802

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Stewart et al. Including Sex in SCI Research

are postulated to be cell-type specific and dependent upon
concurrent activating stimuli (82). For example, although
estrogen receptors (ER) exist on both monocyte- and microglial-
derived macrophages, estrogens suppress microglial activation
through ERβ while, in contrast, activate monocytes through ERα

(67, 68, 83, 84).

Estrogens modulate the adaptive immune response following

SCI
T-cells, and other adaptive immune cells, may also exert sex-
dependent effects on SCI recovery (16). In the absence of
injury, females exhibit a different resting inflammatory profile
consisting of higher CD4/CD8 T-cell ratios compared to males;
however, overall, males have more total T-cells (85). Despite
lower total T-cells at rest, females mount a stronger adaptive
immune response, stimulating higher levels of T- and B-
cell activity (81). This is evident in the higher prevalence
of autoimmunity amongst females, with reports ranging from
60 to 90% of individuals with autoimmune conditions being
female depending on the condition (86). SCI increases the
likelihood of developing multiple sclerosis, an auto-immune
condition, by 624% compared to the non-injury conditions, a
frequency of 17.6-SCI vs. 2.82-non-injured in every 100,000 (87);
however, whether being female increases this frequency risk
has not been determined. Both B- and T-cells interact during
the adaptive immune response after SCI with B-cells producing
autoantibodies and T-cells reacting to myelin basic protein and
other CNS proteins (88–92). Schwartz and colleagues argue that
the adaptive immune responses to SCI are protective for females.
This has been supported previously as functional differences
between male and female rodents diminish upon experimental
depletion of T-cells (16). Whether T-cells contribute toward
recovery in females, or toward pathology in males, is not
well-understood. However, Schwartz and colleagues report
that injection of auto-activated T-cells against myelin-derived
proteins improves functional and histopathological outcomes
independent of sex (93).

Testosterone may exert sex-specific effects in SCI
Similar to estrogens and progesterone, testosterone also exerts
immunomodulatory influence by suppressing monocyte-derived
macrophages through downregulation of TLR-4 (94). The
immunosuppressive activity of testosterone is suggested to
contribute to more frequent bacterial infections and longer
recovery periods from illness in males compared to females
(95, 96). Low serum testosterone inversely correlates with the
extent of circulating inflammatory cytokines (97), which pre-
dispose men with low testosterone to an increased prevalence of
metabolic syndrome (98, 99). Although it may be compelling to
posit that an anti-inflammatory effect of testosterone canmediate
protection against SCI, little evidence exists to support this
hypothesis. In fact, although limited, publications investigating
the influence of testosterone on functional outcomes after SCI
support the modest immunosuppressive activities as detrimental
to recovery (16). The inflammatory response to SCI facilitates
both repair and exacerbates damage (100). Currently, not enough
is known regarding how testosterone affects inflammation

following SCI to conclude whether these effects mediate a net
toxic or beneficial outcome.

Whether sex-differences in inflammatory profiles persist
chronically after SCI remains undetermined. The data reviewed
above indicating a male-dependent acute microglial proliferation
following TBI, along with a strong link between microglia and
developing neuropathic pain following SCI (101), merits further
investigation to determine if similar sex-dependent inflammatory
events translate into SCI. Due to the influence of sex hormones on
inflammation, it may be necessary to tailor treatment strategies
targeting inflammatory cascades to sex-dependent mechanisms.

Testosterone Mediates Sex Dependent Effects on

SCI Recovery
In contrast to estrogens and progesterone, how androgens
mediate sex-dependent effects in SCI is less studied. Whether
testosterone exhibits an overall neuroprotective or detrimental
effect on recovery from SCI remains controversial (43, 102).
Current evidence supporting testosterone as potentially
neurotoxic comes from the observation that castration of
male rodents pre-SCI improves locomotor recovery, an effect
that was further abrogated following exogenous delivery of
dihydrotestosterone (16). Similarly, providing male rodents
with an androgen receptor antagonist, Flutamide, significantly
improves open-field motor scores when compared to placebo-
treated controls, further suggesting a detrimental effect of
testosterone on recovery from SCI (16). Importantly, this
study replicated effects in both rats and mice, demonstrating
a conservation of a biological process. Additional support for
testosterone’s potential toxicity has been found in vitro. Treating
cultured oligodendrocytes with AMPA receptor agonists induces
a mild excitotoxic response which is amplified when co-treated
with testosterone (103). This may suggest that testosterone can
sensitize white matter to the excitotoxicity that accrues following
SCI. Indeed, testosterone has been demonstrated to exacerbate
neurotoxic effects in other animal models of disease (104).
Testosterone is affiliated with decreasing antioxidant responses
via downregulation of Nrf2 in the presence of oxidative stress
(104). This is in line with reports suggesting that age-induced
decreases in the cellular antioxidant glutathione are significantly
exacerbated in males compared to females (105). Indeed,
glutathione levels are decreased in males compared to females
in Alzheimers-like disease pathologies (106). Collectively these
studies implicate testosterone as exerting net detrimental effects
on SCI recovery, potentially through exacerbating secondary
tissue damage (16, 102).

In contrast, some beneficial effects of testosterone have been
found when analyzing systems away from the SCI lesion. SCI
induces dendritic atrophy of lower motor neurons when de-
innervated from supra-spinal connections (107). Adult female
rats treated with testosterone abrogated this shortening of
dendritic length in lower-motoneurons following SCI (47, 108).
Similarly, exogenous testosterone administration following SCI
protects against muscular atrophy (108) which can aid in
recovery during periods of rehabilitation (109).Muscular support
from dihydrotestosterone administration also improves bladder
voiding capacity in rats, which may or may not be a desirable
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outcome in patient populations (47). Many of these outcomes
support the role of testosterone as beneficial in chronic stages
of SCI rather than as a beneficial mediator of acute injury and
recovery. These contrasting outcomes reflect the complexity of
the organizational and activational effects of sex hormones on
SCI pathophysiology.

Response to Pharmacological Therapy After SCI Is

Sex Dependent

Sex differences in cellular biology effect SCI treatment

responses
Organizational differences between sexes, which arise from
developmental exposure to sex hormones, elude to a probability
that efforts to treat SCI may be sex dependent. This has been
demonstrated in one experiment by treating SCI mice with
pioglitazone, a diabetes drug otherwise used to enhance insulin
sensitivity but also exerts analgesic effects (31, 35, 110). As
mentioned above (section Pre-clinical Data Indicate that Sex-
Differences are Outcome Specific), treating SCI with pioglitazone
significantly attenuates pain in female mice without exerting
a significant effect to male mice (31). This is consistent with
similar sex-specific effects of pioglitazone exerting stronger
insulin-sensitizing responses in females compared to males (35).
Pioglitazone’s biological target, peroxisome proliferator-activated
receptor-γ (PPARγ), is known to interact with estrogen receptors
in several ways. First, cytosolic ERα and ERβ bind and suppress
PPARγ, interfering with its capacity to upregulate genes affecting
adipogenicity (111–114). Next, downstream signaling of estradiol
itself upregulates PPARγ (115), yet despite this interaction, levels
of PPAR expression demonstrate sex-dichotomy in a tissue-
dependent manner (116–118). The antagonistic nature of ER
receptors to PPARγ’s genetic influence may preclude a genetic
mechanism as the underlying analgesic effects of pioglitazone.
This has been supported by co-delivery of anisomycin with
pioglitazone to stop new protein synthesis, which did not affect
pioglitazone’s analgesic effects in a mouse model of peripheral
nerve injury-induced pain (110). This suggests that mechanisms
underlying pioglitazone’s analgesic effects are not acting through
genomic influence and that either activated PPARγ has non-
genomic effects or that pioglitazone acts on other unidentified
targets in a sex-dependent manner. Although several other non-
PPARγ targets have been identified for pioglitazone or other
thiazolidinediones (TZDs) (119, 120), blocking PPARγ with
a specific antagonist, GW9662, does mitigate analgesic effects
derived from pioglitazone (110) confirming a PPARγ dependent
mechanism of analgesia that is not transcriptionally dependent.
Several cytosolic protein kinases have been shown to activate
upon administration of TZDs, which can exert a wide influence
of pioglitazone on cellular functions that may or may not be
PPARγ dependent (119, 120). Why and how TZDs exert a sex-
dependent effect remains unknown, but differential expression of
any targets activated by TZDs may underly the sex-dichotomous
effects that are observed both in clinical patients treated for
diabetes or in animal models of SCI and pain. Taken together,
sex-dependent effects of pioglitazone can serve as one example of
how biological differences between females and males interact to
affect treatment outcomes.

Sex differences in drug metabolism affect pharmacodynamics
Regardless of how sex hormones may influence drug effects,
systemic differences between males and females exist that
influence pharmacodynamics. Sex-based differences in
absorption, metabolism, sequestration by plasma proteins,
and clearance all interact to determine the availability of drugs
on their intended targets post-administration (53). Although
some differences in pharmacodynamic processing may be
attributed to weight alone, standardizing drug delivery by
bodyweight does not account for all disparities between males
and females. Specifically, body composition plays an important
influence, as on average women present with higher body fat
percentages which can interact to affect a drug’s pharmacokinetic
profile (121). Differences in drug metabolism between males and
females can be so large that these innate differences have been
attributed to females experiencing higher frequencies of overdose
and adverse events following drug delivery (122). Implications
for these potential innate differences in drug metabolism extend
into pre-clinical study design. Specifically, when both sexes are
included in drug-delivery research, it is important to consider
that optimal doses may differ, and if separate dose-dependent
responses were not investigated, to consider how differences
in drug metabolism may affect results. Differentiating between
how cellular mechanisms and pharmacological dynamics
affect sex-dependent responses to drugs will be difficult to
elucidate but should be kept in consideration with study design
and interpretation.

Sex Dependent Effects of SCI Change With Age
The combined protective effects of estrogens with potentially
toxic effects of testosterone have important implications for
how additional organizational changes with age may influence
sexual dimorphisms to SCI. Net effects of decreased estrogens
and testosterone with age could reciprocally influence recovery,
however this remains to be determined. Increased age at the
time of injury is known to impair functional recovery following
SCI in female rodents (10–12, 123–128), however, no pre-clinical
work has been done to evaluate if aging changes or exacerbates
sex-dependent differences after SCI. Current ongoing projects
in our lab are seeking to address this literature gap and have
compiled mortality and weight loss data from several ongoing
studies. We find that older age increases SCI-induced mortality
in males and but normalizes sex differences in weight loss
found at younger ages (Figures 2A,B). Specifically, we found
significant main effects of age [F1, 34 = 17.61; p < 0.001] and
sex [F1, 34 = 5.89; p < 0.05) for weight loss at 14-days post-
injury (DPI), with 4-MO males losing significantly more weight
compared to 4-MO females (p < 0.05) and no sex differences
in 14-MO mice (p < 0.53). Previous meta-analyses of clinical
data have supported this increased mortality amongst men
post-SCI (6), with age serving as a strong predictor of early
mortality (129).

Mechanisms underlying a sex-dependent increase inmortality
remain unknown. We postulate that this may be in part due to
an undetermined interaction between decreased testosterone and
age. Both aging and SCI are known to decrease free testosterone
(130–132). Whether or not there is a compounding decrease
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FIGURE 2 | Weight loss, mortality, and injury induced anemia were greatest in 14-MO C57Bl/6J mice after 60 kDyn spinal contusion. Data was accumulated over two

studies evaluating how age and sex affect outcomes after SCI. Mortality among mice were counted if found dead in cage or reached moribund euthanasia criterion. At

28-days post-injury (DPI) blood was extracted from the right atria via cardiac puncture and collected in EDTA tubes prior to trans-cardial perfusion. Red blood cells

(RBC) were pelleted and the volumetric ratio of RBC to plasma was measured. Analyses were performed using two-way ANOVA with Tukey’s post-hoc comparison.

(A) Main effects of age (p < 0.001) and between 4-MO female- and male-mice (p < 0.05) suggest that being an older male facilitates the greatest weight loss after

SCI (n = 9–10). (B) 14-MO males experience ∼ 30% mortality (n = 5/17) after SCI, predominately within the first week after injury, where-as 4-MO male- (6.66%; n =

1/15) and female- (10.0%; n = 2/20), as well as 14-MO female-mice (6.66%; n = 1/15) experience less SCI-induced mortality. (C) After normalizing RBC ratios to

same age sham-controls (n = 5) 14-MO-male mice experienced the greatest injury induced decrease in RBC/Plasma ratios with a significant sex-by-age interaction

demonstrating a sex-divergent response to aging after SCI [(n = 9–10); p < 0.001]. Mean ± SEM. *p < 0.05; **p < 0.01, ***p < 0.001.

in testosterone following SCI in older males has yet to be
determined. This decrease in testosterone with age and injury
has important implications on the maintenance and regulation
of erythropoiesis (133, 134). Indeed, aged male C57BL/6 mice
have been proposed to be used as a model of anemia due to
this reduced testosterone-erythropoiesis interaction (135). We
have found supporting evidence that SCI induces a concurrent
reduction in crude red blood cell/plasma ratios (RBC/plasma)
in aged male mice at 28-days following SCI (Figure 2C).
Specifically, we found a significant sex by age interaction
[F1, 33 = 27.61; p < 0.0001] with 14-MO mice increasing
RBC/plasma ratios compared to 4-MO mice in females (p
< 0.01), but decreasing in males (p < 0.01). This fits our
empirical observations that older male mice appeared colder to
the touch during routine bladder care for a few days following
SCI compared to other groups, during which time an increase
in mortality was observed. A more thorough investigation
is required to follow up on these early findings. Overall,
the reciprocal role of how SCI affects hormone balance and
implications on acute and long-term management of paralysis
has not been well-investigated, and even less has been done to
determine how this might compound with age.

SCI Alters Sex Hormones After Injury
SCI Induces Estrous Cycle Dysfunction and Reduces

Estradiol
In addition to understanding how sex hormones may affect
SCI outcomes, it is also consequential to consider activational
changes in sex hormones after SCI. Because circulating levels
of sex hormones regulate a breadth of health outcomes
ranging from depression to inflammation and osteoporosis,
it is important to better understand how SCI might mediate
acute or chronic perturbations to hormonal regulation. While
the largest regulator of sex hormones arises from coordinated

paracrine activity of the hypothalamo-hypophysial system,
neural innervation of the gonads co-exists as a modest
contributor (136). This leads to multiple possible mechanisms
arising after SCI which can affect both acute and chronic
hormonal regulation. First, systemic inflammation and stress
experienced acutely following SCI elevate glucocorticoids which
regulates estrogens and progesterone production by decreasing
the sensitivity of ovaries to luteinizing hormone and decreases the
effectiveness of aromatase (137–139). Next, direct de-innervation
from brainstem nuclei can permanently abolish supraspinal
control over hormone regulation. Whether changes to the
hypothalamo-hypophysial system are maintained chronically
post-SCI is not well-investigated, however, atrophy of the gonads
(hypogonadism) is frequently reported in men following SCI,
while effects of SCI on ovaries remain unreported in humans.
Two studies report the effects of chronic SCI on rat ovarian
tissue and found an overall decrease in volume, corresponding
to a decreased diameter of the follicle, ovum, and thickness of
granulosa layers, with a concurrent increase in follicular atresia
(140, 141).

SCI dysregulates estrous cycling in rats, resulting in prolonged
cycle duration (142, 143). By blocking time into week intervals
post-SCI, we have found similar results in mice that SCI expands
time spent in the estrous phase of the cycle [F4, 36 = 6.74, p
< 0.001; Figure 3A] with a significant increase found by 28-
DPI (p < 0.001) compared to pre-injury levels when age is
combined. When comparing within an age, 4-MO mice reached
a significant increase in time spent in the estrous phase compared
to pre-injury levels by 21-DPI (p < 0.05) and 14-MO mice
reached significance by 28-DPI (p < 0.05). Correspondingly, we
also found a time by age interaction [F2, 33 = 6.08, p < 0.01;
Figure 3B] in the plasma estradiol response to SCI likely owing
to a modest increase in estradiol in 4-MO-, but a significant
decrease in 14-MO female mice at 3-DPI (p < 0.05). Only
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FIGURE 3 | SCI (60 kDyn contusion) induces estrus cycle dysfunction (A) concurrent with decreased plasma estradiol by 28-DPI (B) in C57Bl/6J female mice. (A)

Estrus cycle monitoring was performed for 28-DPI throughout the week and analyzed for estrous stage as previously described (144). Percent of time spent in estrous

throughout a consistent 5-day block each week was assessed and used for analysis. Two-way repeated-measures ANOVA was used for analyses and revealed a

significant main effect of time (p < 0.001) with both 4- and 14-MO mice demonstrating a significant increase in time spent in estrous compared to pre-injury conditions

(p < 0.05; n = 9–10). Mean ± SEM. *p < 0.05; **p < 0.01, ***p < 0.001.

14-MO mice had a significant decrease in plasma estradiol
levels at 28 days post-SCI compared to pre-injury values (p <

0.001). An inverse relationship between increased cycle duration
and decreased estradiol is compatible with hormonal feedback
mechanisms. Estrogens increases during pro-estrus until critical
concentrations trigger an LH surge and ovulation, facilitating a
transition into estrus. Therefore, decreased plasma estradiol will
result in prolonged cycle duration which may delay the onset of
an LH surge (145–147).

Decreased estrogens post-SCI may exert chronic influences
over maintaining bone mass, as well as regulating metabolism
and weight. First, reduced estrogens decreases bone density
and is strongly associated with developing osteoporosis in
postmenopausal women (148). After SCI, decreased bone
density and osteoporosis are known consequences of reduced-
weight bearing, however, women lose significantly more bone
density compared to men by 5-years post-injury (52). Whether
SCI-induced decreases in estrogens underlie these sex-based
differences has not been determined. Decreased estrogens may
also play a role in slowed metabolism that occurs following SCI
(72, 149). Although a slowed metabolic rate is consequential
to decreased physical activity, muscular atrophy, and limited
weight-bearing after paralysis, a decrease in estrogens after SCI
may exert a significant contribution tometabolic dysfunction and
chronic health complications in women.

SCI Decreases Testosterone
Similar to female sex hormones, testosterone levels in males
decrease acutely following SCI (150) and maintain at lower levels

in somemen throughout a lifetime (130, 131). However, the levels
of testosterone measured among men with SCI is varied across
studies. Most reports suggest men with SCI have significantly
lower testosterone levels than uninjured counterparts (130, 131,
151) with testosterone levels being lower in motor complete
compared to incomplete individuals (151). In contrast, older
reports found no differences in testosterone levels after SCI
(152, 153). Indeed, Kikuchi et al. (152) found that all but one
male SCI patient (n = 15) were within normal range when
compared with age-matched controls. A possible explanation for
this discrepancy comes from evidence showing that testosterone
is lowest acutely after SCI and gradually increases over 18
months’ time (154). A recent review found the prevalence of
men with low testosterone acutely after SCI ranged from 69
to 83% of patients, which contrasts a prevalence of 10–46%
of men with chronic SCI (155). Why testosterone decreases
acutely following SCI and/or maintains at low levels has yet to
be elucidated. However, elevated levels of corticosterone/cortisol
may drive a decrease in testosterone acutely following injury
(156), while chronic decreases in testosterone may arise from
physical inactivity and muscular atrophy.

Implications for an acute decrease in testosterone following
SCI are not well-defined, however chronic decreases in
testosterone can result in increased visceral adipose tissue,
metabolic syndrome, and depression (130, 155). Men with SCI
and low serum testosterone (defined as <400 ng/dL) have
higher total body fat percentage, particularly in the trunk area
(9.6 and 12.7% higher compared to normal range testosterone,
respectively), while men with SCI and normal serum testosterone
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levels have decreased muscle atrophy (108), increased motor
function (157) and a better cardiometabolic profile when
compared to men with SCI and low testosterone (158). Whether
these findings aremore indicative of the extent of physical activity
and rehabilitative training after SCI is not clear.

Incorporating Both Sexes in SCI Research:
Experiences and Recommendations
Role of Monitoring and Manipulating Sex Hormones
As basic and pre-clinical neurotrauma research data accumulates
on both males and females, there will likely be a surge of
unexpected sex-dependent interactions that will help guide
efforts to develop personalized medicine. When a research
question is not aimed at understanding sex-based differences
it may be not be feasible to incorporate thorough analyses
beyond just including both sexes. Manipulation of sex hormones
through orchi/ovariectomies, pseudopregnancies, or injection of
male/female hormones need not be included in studies that
do not have a central hypothesis about understanding sex-
dependent effects. However, simple additions to data collection
can help gather vital information regarding how sex hormones
affect outcomes of biological phenomena and treatment, even
if significant effects are underpowered in any given study. The
field of SCI has established an open data commons for depositing
information from research studies which is being used to mine
big-data sets gathered across multiple neurotrauma centers [(159,
160), ODC-SCI1]. The more data which enters these public
domains, the higher probability exists to derive meaningful
relationships that may have not been directly evident within the
scope of a given study. For example, mining of clinical data
of patients with SCI revealed a significant relationship between
mean arterial blood pressure and functional outcomes; this has
yielded re-consideration of clinical guidelines for maintaining
blood pressure acutely after SCI (161).

Regarding collecting data and monitoring of sex hormones
and/or estrous cycles, there are simple ways to incorporate these
elements into a research design without substantial increases
in time or cost. A simple method to determine the stage of
the estrous cycle is through vaginal lavage and visual analysis
of cellular morphology, which takes only seconds to perform
per animal (144). As mentioned above, drugs can interact with
sex-hormone signaling in robust ways, therefore determining
the state of estrous at time of SCI and/or intervention can aid
in better predicting how estrous cycles can affect therapeutic
efficacy. To measure specific hormone levels, small volumes of
accumulated plasma can be used to determine concentrations
of sex-hormones using commercially available ELISA kits or
services available within university/hospital departments, or
available at other institutions for small fee’s (e.g., see University
of Virginia’s Center for Research in Reproduction Ligand Assay
and Analysis Core). Data derived from such efforts in collection
and reporting may quickly accelerate our understanding of how
biological diversity can affect outcomes to injury and treatment.

1ODC-SC. Open Data Commons for Spinal Cord Injury [WWW Document].
scicrunch.org. Available online at: https://scicrunch.org/odc-sci (accessed April 9,
2020).

Age or Weight Matching in Analysis
Male rodents are larger than female rodents by nature. This
creates complications for interpreting sex-based studies in a
number of ways and leaves unresolved questions about whether it
is most appropriate to age or weight match.While aging mice can
appropriately equalize weights between groups, aging is known
to negatively affect many biological processes that will interfere
with recovery and is therefore not a recommended strategy for
comparison. However, heavier animals often mean larger spinal
cords. Different size spinal cords between groups may affect
injury dynamics and leave questions regarding how increased
muscle mass or weight may affect recovery potential. One study
has evaluated how different sizes of spinal cords affect injury
dynamics and suggested that larger spinal cords arising from
increased age at time of injury did not affect displacement of
the cord during injury (162). Because a similar displacement
of a larger cord would mean that a smaller percent is being
displaced, these findings leave ambiguity regarding how injury
dynamics are affected by spinal cord size. Larger cords can also
introduce systematic bias when analyzing histopathology’s that
need to be considered. For example, if using total amount of
spared tissue surrounding the lesion epicenter as an outcome, it
remains possible for a larger cord to have the same total area of
spared tissue as a smaller cord, but less percentage of spared tissue
based on original volume (162).

Whereas, it may appear appropriate to standardize obtained
area values to the percent of the total section, this may not be
possible or advisable for several reasons. First, if performing work
in animal models of SCI that form cystic cavitation, the extent
of atrophy and cavitation surrounding the lesion epicenter will
interfere with deriving an accurate percentage of spared tissue
and can be unintentionally manipulated during staining. This is
a complication previously discussed when comparing rats with
different size cords as a confound of age (162). If performing SCI
work in a mouse, which forms fibrotic lesion cores, the extent
of inflammation and swelling within the lesion can interfere
with deriving an accurate percentage. It may be possible for the
lesion core to expandwhilemaintaining a consistent spared tissue
volume, resulting in a perceived lower percent of spared tissue if
standardized to the total area of that particular section. For these
reasons and others, when comparing between sexes it is best to
obtain tissue from uninjured areas of the cord or ideally from
sex-matched naïve/sham-injured mice for normalization and to
control for unpredictable error that can confound interpretation.

Housing Considerations and Effects of Single vs.

Group Housing on Outcomes
Housing conditions in rodent models of SCI can exert large
influences on recovery. Effects of environmental enrichment
have demonstrated that single housing significantly decreases
SCI recovery relative to group and environmentally enriched
conditions (163). In many animal models it is common to single-
house males due to aggression, or limit group housing of males
due to size restrictions in the home cage (164). When comparing
between sexes it is therefore necessary to consider how animals
will be housed and to ensure a standard of housing for all sexes.
Most importantly, if animals will be group-housed, determine
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FIGURE 4 | Single housing of female C57Bl/6J mice receiving moderate (60

kDyn) contusive SCI recovered less motor functions compared to group

housed mice by 28-DPI. Data was compiled from two independent studies

utilizing the Basso Mouse Scale [BMS; (165)] as an assessment of locomotor

recovery in single and group housed conditions. Although differences were

marginal (p = 0.056; n = 9–10), this data demonstrates how single housing

may affect motor recovery and emphasizes the importance of housing all

groups comparably if between group comparisons will be made. Mean ± SEM.

apriori how aggressive conflicts will be resolved in a manner
that does not result in isolation of a large proportion of one
sex. In most published rodent studies that have evaluated for sex
differences after SCI, no statements were made regarding if both
sexes were housed comparably. We have compiled locomotor
data at 28-DPI from two independent studies, one with group-
housed females (4–5 mice/cage), the other with single-housed
mice. Although marginal, differences in locomotor function
[BMS scores; (165)] at 28-DPI were smaller in single-housed
mice (p = 0.056; Figure 4). To ensure that observed sex-based
effects are not actually a manifestation of differences in housing
conditions, it is imperative to treat all animals of both sexes the
same and not overlook small details such as housing conditions.

Statistical Concerns and Study Design
Several design strategies exist to account for adding sex as
a biological variable, however, the best approach is often the
most rigorous: performing multi-factorial design such as two-
way ANOVA instead of combining sexes or presenting one-
way ANOVAs by group. Consequently, especially if the study
is powered for a sex effect, this may require increased sample
sizes to compensate for a loss of power, demand more financially,
and require more time to complete a study. Because this does
increase design complexity, there are emerging demands unique
to both authors and readers for appropriate interpretation of
study results.

A strategy often used to circumvent more complicated
multi-factorial statistical methods is to test for the existence
of a biological phenomenon or treatment effect by limiting
comparisons within a single sex and running analyses in males
and females in parallel. Whereas, this strategy may sufficiently

reduce a need for more complicated multi-factorial statistics,
conclusions derived from this study design are limited and do
not allow for an accurate comparison of between-group effects,
nor does it allow for detecting meaningful interactions (166,
167). Indeed, established journals are increasingly considering
such statistical strategies as erroneous and are asking for direct
comparisons to be made between groups if conclusions will be
drawn about between-group effects (168). In other words, it is
becoming increasingly unacceptable to make a claim that “drug
A exerted a significant effect in group X, but not group Y” as a
statement to suggest that a drug was only or more effective in one
group. This criticism holds merit and can be understood using
an extreme hypothetical situation. Assuming males have less
variability in outcomes compared to females, a neuroprotective
drug could improve motor outcomes consistently by 10% in
males but inconsistently by 30% in females, resulting in a
significant improvement in males only. Where-as this may
make a statement about the reliability of a drug exerting an
effect, no consideration to effect size was given, and likely the
increased variability in females could dictate that the study was
merely underpowered. Similarly, this statistical strategy leads to
an ease of misinterpreting P-values as a magnitude of effect.
Where-as using a two-way ANOVA in this hypothetical situation
may result in similar within-group effects, data would also be
gained regarding an interaction or magnitude of effects between
sexes which could better articulate that females responded more
robustly to the drug. If single within-group comparisons are to
be used, it remains important for authors to disseminate data in a
manner appropriate for the dataset, and properly articulate if one
group was underpowered by providing outcomes of effect size,
variance, and observed power.

A second commonly employed method is to combine sexes
and/or use sex as a categorical covariate in analysis. Using
sex as a covariate can determine whether sex is a significant
predictor of variability in outcomes and perform an adjustment
of mean values based on variability explained by sex. In some
circumstances combining sexes can be a method to improve
power, such as when little sex differences exist and is evidenced
by sex not explaining much variability in a model. However, even
when sex is not a significant contributor of variance, combining
sexes can be problematic for several reasons. First, direct
comparisons are not made between sexes. Next, adjusted means
caused by both merging data and from covariate adjustments
may wash out sex-dependent effects and lead to false conclusions
that a response is either present or absent in both sexes. Here,
again, the key idea is the inability for combined or covariate
analysis to detect significant interactions. The pitfalls of merging
data between sexes can be best articulated using an example
from data provided in this review (Figures 2C, 5A). As this
data is currently presented, a two-way ANOVA demonstrates a
significant sex-by-age interaction (p < 0.0001), indicative of an
increasing RBC/plasma ratio with age in females, but decreasing
in males. If data from sexes were combined to only test for
the effects of age, then the resulting T-test would not detect a
difference between 4- and 14-MO mice (p = 0.76; Figure 5B).
Similarly, when utilizing sex as a categorical co-variate to adjust
mean values, the resulting ANCOVA would also not detect an
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FIGURE 5 | Analysis of RBC/plasma ratios using two-way ANOVA (A) demonstrates a significant sex-by-age interaction (p < 0.0001). When males and females are

combined (B), no effects are found either alone (p = 0.76), or when using sex as a categorical covariate (p = 0.73). While more power can often be gained by

combining groups, sex-dependent interactions can mask main effects even when sex does not significantly explain variance in the model. This exemplifies problems

that can emerge when combining sex to test a main hypothesis and argues for using factorial design strategies as a first approach to statistical analysis. Mean ±

SEM. Tukey’s post-hoc used for pairwise comparisons. *p < 0.05; **p < 0.01, ***p < 0.001.

effect of age (p= 0.73). The concepts emphasized in this example
can be applied to situations where even moderate trends toward
an interaction may obscure sex-dependent effects if data were to
be combined.

In the example provided above, the interaction between the
independent variables, age and sex, exert a reciprocal influence
on the dependent variable, RBC/plasma ratio. In this case,
combining sexes masked all effects in the model, which would
lead to the false interpretation that neither age nor sex effect the
RBC/plasma ratio after SCI. However, when combining sexes,
it may also be possible for the reciprocal response to be true.
Specifically, the magnitude of an effect from a single sex could
carry a significant main outcome effect in the model, falsely
indicating that the dependent variable increases in both sexes
equally. In both of these conditions, when combining sexes,
little to no information can be appropriately gained on sex
effects, which can either eliminate detecting a main effect or
mislead to suggest that an effect is ubiquitous between sexes. It
is important to note that while this information can be obtained
by utilizing multi-factorial approaches, often there may actually
be no sex-dependent effects, whereby combining sexes can lead
to a beneficial increase in power. However, in cases where sexes
are combined, reporting the mean value and measurements of
variance in each sex will help readers better understand sex-
dependent relationships that may exist but were underpowered
for detection in the study.

While multi-factorial approaches such as two-way ANOVA
are recommended to test for both a sex effect and for
possible interactions with the other independent variable, there
are complications that may arise from additional pairwise
comparisons. First, main effects in ANOVA can detect sex effects
with greater power compared to individual comparisons. Next,
if the method of post-hoc is not chosen carefully, irrelevant
comparisons may be made resulting in further loss of power.
Again, data provided in this manuscript (Figure 4) can be used

to exemplify these points. Although this data was not comparing
between sexes, our conclusion of a marginal group effect (section
Sex Dependent Effects of SCI Change with Age, Figure 4, p
= 0.056) is based on two-way ANOVA followed by pairwise
comparisons using a Sidak correction for multiple comparisons.
While technically correct, this use of pairwise comparisons is
misleading and suggests that no differences between groups
exist. From the two-way ANOVA model below (Table 1), we
see that the statistically correct conclusion is that there is a
significant group effect after adjusting for a strong time effect
(p < 0.05). More specifically, being group housed, instead of
single housed, increases the mean response by 0.42 (0.066, 0.78).
Note that the confidence interval does not include zero. Further,
in this particular example, time post-injury provides little value
for individual pairwise comparisons within a group, because
a significant recovery after SCI is common knowledge in the
field. Similarly, comparing 4-week single housed to 24-h group
housed, or vice-versa, provides no useful information. This can
result in making several irrelevant comparisons if all groups are
analyzed to each other during post hoc analysis, which results in a
significant loss of power. Because this relationship between a loss
of power from irrelevant comparisons can be amplified in more
complicated studies, post hoc comparisons must be carefully
selected. When sex is not the main hypothesis in a study, but is
nevertheless included in analysis, it may often be may be best to
limit pairwise comparisons within a sex and leave main and/or
interaction ANOVA effects to determine between sex-effects.

Considering limitations to statistical strategies described
above, it is still recommended to use multi-factorial approaches
as a first pass to analyze data that includes sex as a
biological variable. This will require more careful a priori
power analyses which may be best approached by estimating
animal requirements using groups and comparisons with the
highest expected variability. When studies are not focused on
detecting differences between sexes, power analyses should focus
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TABLE 1 | Two-Way ANOVA Model Single vs. Group Housing.

Term Estimate 95% Confidence

Interval

P-value

Intercept 3.65 3.30, 4.01 <0.0001

Housing condition

[Group vs. Single]

0.42 0.066, 0.78 0.0215

Label [24-h] −2.38 −2.73, −2.02 <0.0001

on finding within-group comparisons and powering studies
accordingly to still use multi-factorial analysis. It may not
be necessary to always power studies for between-sex effects,
especially considering such small sex differences being reported
in some outcomes after SCI. Although not encouraged, if data
from both sexes must be combined, it should still be reported
separately. Performing multi-factorial analyses will be the best
methods moving forward to detect potentially meaningful sex-
dependent effects.

With a more complicated statistical design conferred from
including sex as a biological variable, both authors and readers
assume a greater responsibility to appropriately interpret results.
Including sex as a biological variable will complicate statistics and
may result in studies that are insufficiently powered to detect a
sex effect. An assumption that insignificant P-values mean no sex
effects are present should not be inferred without excluding the
possibility that the study is simply underpowered. This should be
kept in consideration for interpreting both between and within
sex effects. The NIH initiative to include sex as a biological
variable will indubitably result in an emergence of studies that
are underpowered to detect a sex effect. It is therefore important
to interpret data with caution as to not ignore sex effects that may
exist but were underpowered, or worse, erroneously interpret
an effect as only present in a single sex if trends in the other
sex suggest a mere lack of power. Finally, even when sound
statistical measures are performed, if no differences between
sexes are found, it is important to consider that biological
mechanisms underlying those net effects may significantly differ,
as described above, but were not revealed within the scope of
the study.

SUMMARY AND CONCLUDING REMARKS

In summary, both clinical and pre-clinical reports find that
females recover more locomotor abilities after SCI. Much of this
sex-dependent recovery has been attributed to the role of sex
hormones on both neuroprotection and immune modulation.
However, because inflammation mediates several modalities of
SCI-induced dysfunction, there is an increased need to expand
sex-based investigations into outcomes of pain, bowel, or bladder
dysfunctions. Sex-differences in acute inflammation have been
reported following TBI and similar effects are likely to be found
following SCI. It remains to be determined if sex differences in
acute inflammation are causal to a greater frequency of SCI-
induced pain that is reported in females. Treating neuropathic

pain arising post-SCI, however, can be sex dependent. A sex-
dependency in treating SCI-induced pain with pioglitazone raises
important concerns regarding the lack of inclusion of both sexes
in pre-clinical SCI research. This is particularly concerning due
to the incongruence between a male-dominated clinical base,
and a female-dominated pre-clinical base. Inclusion of both
males and females in pre-clinical SCI research is, therefore,
essential to improve the translatability and predictability of
treatment effects.

The contribution of sex hormones to the injury response has
been the primary area of investigation when considering sex
as a biological variable. However, SCI has also been reported
to chronically reduce the circulation of sex hormones, which
may have long term health consequences. How sex hormones
effect injury, recovery, and the long-term health after SCI
are mediated by differences between the actions of androgens
and estrogens. The influence of sex hormones on neural
development in utero, and throughout a lifetime, leaves both
an organizational and activational footprint in the nervous
system that may be important to better understand the sex-
dependency of injury and intervention. Further, with advancing
age comes a decrease in sex hormones that may exert unique
sex-dependent considerations to injury, recovery, and health
after SCI.

Ultimately, our ability to consider sex as a biological
variable in the study of SCI will depend upon open and
rigorous data reporting and interpretation. There are several
technical confounds that should be considered in a study
design including differences in anatomy, behavior, housing,
and drug metabolism. Similarly, there are practical concerns
regarding the appropriate statistical analysis for including
sex as a biological variable that need to be accounted
for, lest an inappropriate rejection of sex-dependent effects
may be made, or important interactions may be missed.
We have argued that sex should be included as a factor
in SCI experiments and reporting should include results
from multi-factorial analysis including interactions. As a
field we must remain sensitive to the possibilities that
underlying biological mechanisms of dysfunction can deviate
substantially despiteminimal differences in observable functional
outcomes. Collective efforts to understand how sex affects SCI
pathophysiology are emerging as new and exciting frontiers
in neurology.
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