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Stroke is one of the leading causes of morbidity and mortality worldwide, and it is

increasing in prevalence. The limited therapeutic window and potential severe side effects

prevent the widespread clinical application of the venous injection of thrombolytic tissue

plasminogen activator and thrombectomy, which are regarded as the only approved

treatments for acute ischemic stroke. Triggered by various types of mild stressors or

stimuli, ischemic preconditioning (IPreC) induces adaptive endogenous tolerance to

ischemia/reperfusion (I/R) injury by activating a multitude cascade of biomolecules,

for example, proteins, enzymes, receptors, transcription factors, and others, which

eventually lead to transcriptional regulation and epigenetic and genomic reprogramming.

During the past 30 years, IPreC has been widely studied to confirm its neuroprotection

against subsequent I/R injury, mainly including local ischemic preconditioning (LIPreC),

remote ischemic preconditioning (RIPreC), and cross preconditioning. Although LIPreC

has a strong neuroprotective effect, the clinical application of IPreC for subsequent

cerebral ischemia is difficult. There are two main reasons for the above result: Cerebral

ischemia is unpredictable, and LIPreC is also capable of inducing unexpected injury

with only minor differences to durations or intensity. RIPreC and pharmacological

preconditioning, an easy-to-use and non-invasive therapy, can be performed in a variety

of clinical settings and appear to bemore suitable for the clinical management of ischemic

stroke. Hoping to advance our understanding of IPreC, this review mainly focuses

on recent advances in IPreC in stroke management, its challenges, and the potential

study directions.

Keywords: cerebral ischemia, ischemic tolerance, ischemic preconditioning, local ischemic preconditioning,

remote ischemic preconditioning, cross preconditioning

INTRODUCTION

Cerebrovascular disease is one of the main diseases that lead to human death and disability
worldwide, which endangers the health and life of middle-aged and elderly people (1, 2).
About 795,000 new or recurrent cerebrovascular diseases occur every year, among which 87%
are ischemic cerebrovascular diseases (1). Ischemic cerebrovascular diseases are mainly cerebral
infarctions caused by the interruption of cerebral blood flow due to thrombus, embolism, or other
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reasons in the cerebral blood vessels, resulting in energy
metabolism depletion and disorders of ion homeostasis;
membrane depolarization; inhibition of high-energy phosphates;
cellular potassium efflux; and water, sodium, and chloride
influx, followed by a subsequent host cascade of mechanisms,
including excitotoxicity, calcium overload, oxidative/nitrative
stress, free radical generation, apoptosis, and inflammation,
which trigger irreversible brain injury (3). Therein, neurons, glial
cells, endothelial cells, and their interconnections are severely
damaged and trigger each other in a positive feedback loop and
eventually lead to damage and death of nerve cells.

The currently approved treatments for acute cerebral ischemia
include the venous injection of thrombolytic tissue plasminogen
activator (tPA) within 4.5 h and thrombectomy within 24 h
after the appearance of neurological symptoms, which, however,
could inevitably induce ischemia/reperfusion (I/R) injury (1, 4).
However, the narrow therapeutic window and potential side
effects limit their clinical application. In the past few decades,
researchers have also carried out a large number of experimental
studies on cerebral ischemic neuroprotective agents, but the
results were not as expected when these agents were used
clinically. Therefore, it is necessary to further fully understand
the complex cascade mechanism of its pathological process
and advance cost-effective and neuroprotective strategies for
ischemic stroke treatment.

Being challenged by nutrient and oxygen deprivation, the
brain starts potent endogenous defensive mechanisms against
the complex deleterious cascade mechanism, which is also an
underlying mechanism leading to irreversible lethal ischemic
injury (5). Thus, the endogenous defensive mechanisms that
protect the brain against ischemic stimuli and recovers from
injury become an increasing hot spot. Ischemic preconditioning
(IPreC), referring to a non-injurious and sublethal ischemic
insult, can mediate complex endogenous protective mechanisms
and provide ischemic tolerance and potent protection against a
subsequent, otherwise lethal, ischemia (6, 7). IPreC is considered
to be a potential and powerful neuroprotective mechanism
that can cope with extreme metabolic stress, such as hypoxia
or ischemia, which has aroused great interest in neurological
experiments and clinical fields (8). In addition, studies have
found a variety of physical and pharmacological stimuli can
also induce ischemic tolerance (9–13). Over the past decades,
researchers have made significant progress in signifying the
endogenous mechanisms of IPreC and in applying the above
mechanisms of action to routine clinical practice.

UNDERSTANDING CEREBRAL ISCHEMIC
PRECONDITIONING

In the past 30 years, ischemic tolerance, as an effective protective
strategy for ischemic diseases, has attracted wide attention
and in-depth research. According to the time and process of
sublethal ischemic injury and ischemic stroke, ischemic tolerance
can be divided into the following three types: (1) ischemic
preconditioning (IPreC), when sublethal ischemia insult is
performed before ischemic disease; (2) ischemic perconditioning,

when the ischemic stroke occurs and sublethal ischemia insults
should be initiated at the same time; and (3) ischemic post-
conditioning, when sublethal ischemia insult is implemented
after the ischemic stroke. The above three methods may be
involved in different endogenous protective mechanisms. In
1986, Murry et al. first described IPreC in myocardiac tissue,
and most IPreC research focused on enhancing the resistance
of the myocardium to subsequent fatal ischemic injury (13, 14).
Studies have found that ischemic tolerance caused by IPreC is a
common phenomenon and can be observed in various organs
and tissues, such as heart, central nervous system (CNS), liver,
retina, skeletal muscle, kidney, and intestine (15–17). Among
them, tissues that are sensitive to hypoxia, such as myocardium,
brain, and kidney, are the most promising targets for clinical
application of IPreC (17–19).

Initially, an in vitro model of hippocampal slices was used
to confirm the adaptability of rat brain tissue to anoxia, which
caused wide concern in 1986 (20). In 1989, research showed that
brief hypothermia could trigger neuroprotection (21). In 1990,
Kitagawa et al. demonstrated that non-lethal ischemic insult
could afford sufficient neuroprotection against neuronal death
in the hippocampus CA1 region following subsequent lethal
ischemic stress (22). In 1991, Kirino et al. also showed protective
effect of non-lethal ischemic treatment in a global ischemia
model of gerbils (23). During the late 1990s, a large number
of research results consistently signified the IPreC-induced
neuroprotection against lethal ischemic injury in focal and global
cerebral ischemia of different animals (24, 25). One of the
disadvantages of IPreC, which cannot be ignored, is that IPreC
is capable of leading to serious damage with only small changes
in the timing, durations, and location of sublethal ischemic
insults (26). Therefore, researchers work tirelessly to find other
safe and effective methods to safely induce ischemic tolerance.
Remote ischemic preconditioning (RIPreC) is a method in which
cerebral ischemic tolerance is induced after a brief short-term I/R
duration in distant organs or tissue (27). RIPreC was reported
in the myocardium in 1993 (15) and was also confirmed to be
neuroprotective against ischemic stroke in 2011 (28).

By now, numerous studies have shown that different
inducers/stressors can mediate cerebral ischemic tolerance. In
addition to classic mechanical IPreC methods, including local
ischemic preconditioning (LIPreC) and RIPreC, there are still
many types of endogenous or exogenous stimuli that can induce
experimental animals, brain tissue slice and cell cultures develop
ischemic tolerance, named cross-preconditioning, mainly
including chronic hypoxia (29, 30), hyperoxic or oxidative
stress (31), hypothermia or hyperthermia (32), pharmacological
treatment and chemical agent application (33–37), cortical
spreading depression (38, 39), electroacupuncture (40), sports
activity (41), and others [(9, 11, 12); Table 1].

Local Ischemic Preconditioning
LIPreC, one of the earliest mechanical methods for mediating
IPreC, can induce cerebral protective tolerance to the subsequent
prolonged lethal I/R injury by short-term I/R of the brain tissue
(92). Transient ischemic attacks (TIA) and clinical practice of
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TABLE 1 | Representative reported methods of cerebral ischemic preconditioning.

Classic mechanical

preconditioning

Local ischemic preconditioning In vivo Focal ischemic preconditioning Global-Global (20, 42–44)

Global-Focal (45)

Global ischemic preconditioning Focal-Focal (46)

Focal-Global (47)

In vitro Oxygen–glucose deprivation (48, 49)

Remote ischemic

preconditioning

Kidney (50, 51), mesenteric artery (52), liver (53), limbs (54–56), etc.

Cross-preconditioning Hyperoxic/Hypoxic preconditioning (57–82)

Hypothermia and Hyperthermia preconditioning (58–62)

Chemical/Pharmacological preconditioning (63–77, 83–87)

Other methods, including cortical spreading depression (36, 37), electroacupuncture (88), ketogenic diet (89), exercise (90),

transcranial low-level light therapy (91), etc.

surgical protection in organ transplantation provides convincing
evidence for the effectiveness of LIPreC (92–95).

TIAs are caused by thrombosis, embolism, or vasospasm in
the blood supply vessels of the brain tissue, which temporarily
and non-lethally block the blood supply to the target brain,
but do not cause cerebral tissue infarction. TIAs have the same
clinical symptoms as ischemic stroke but do not leave permanent
neurological impairment (96). Some previous clinical research
concerning stroke patients has shown that TIAs can mediate
the protective ischemic tolerance of brain tissue to subsequent
lethal cerebral ischemia to a certain extent. The results of a
case-control study of stroke patients in Germany suggest that
the occurrence of previous TIAs can reduce the severity of
subsequent lethal ischemic strokes (97). Another study compared
the clinical data of stroke patients with or without prior TIAs,
and the results show that ipsilateral TIA that lasted for 10–
20min before cerebral ischemia can produce significant ischemic
protection (98). Wegener et al. demonstrated that patients with
prior TIAs showed smaller initial cerebral diffuse injury and
smaller final brain infarct volume within 12 h after the onset of
stroke; however, there was no significant difference in the size and
severity of hypoperfusion (99). To further explore the protective
effects and possible neuroprotective mechanisms of IPreC on
subsequent stroke, more clinical and experimental research needs
to be conducted (95, 100, 101). Paradoxically, a cohort study
involving more than 1,000 stroke patients showed that there was
no correlation between prior TIA attacks and disability rates
due to subsequent strokes, and the proportion of neurological
impairment in stroke patients occurring 1–7 days after TIA onset
was even higher (102). Individual heterogeneity among patients
and diversity of the etiology of TIAs and subsequent stroke
may be two important reasons for the discrepant results of the
above studies.

As a means of surgical protection, LIPreC has been studied for
many years and made great progress in organ transplantation,
trauma, aneurysm surgery, and other fields. It was evaluated
whether ischemic tolerance induced by occlusion at the proximal
artery for 2min could reduce the brain tissue damage caused
by the subsequent clipping of cerebral aneurysm during
the operation in 12 patients with aneurysmal subarachnoid
hemorrhage (103). The results showed that the baseline gas

pressure and pH value of the two groups were similar, but the
decrease of oxygen pressure and pH value in the IPreC group
was slower than that in the control group (103). These results
suggest that short-term occlusion of the proximal artery to induce
ischemic tolerance may be an effective protective measure in
complex cerebrovascular surgery.

Protection of Local Ischemic Preconditioning
According to previous research results, LIPreC mainly has two
temporal protective tolerance windows (13). The first is the
short-term window, which is also called the quick window,
which usually appears a few minutes after pretreatment. The
mechanism is formed by the changes of post-translational
modification, and the window of protection is very short, which
usually disappears after a few hours. The second window is
the long-term window, also known as the delayed window,
which usually appears within 1 day of pretreatment and
lasts for a maximum of a week after preconditioning (8,
26). The mechanism mainly involves genetic reprogramming
and epigenetic modifications, which ultimately involve changes
in protein synthesis, and therein, the delay window has
more important protective significance for the ischemic brain
(104, 105). However, current research perspectives regard that
there is usually an unprotected window with little or no
neuroprotection between the first window and the second
window (104). Recent research evidence suggests that repeated
hypoxic preconditioning can even mediate brain tissue to
produce a third protective window that lasts up to 8 weeks of
which the underlying mechanism may be caused by epigenetic
regulation (106, 107).

Methods of Local Ischemic Preconditioning
There are in vivo and in vitro means to locally precondition
the ischemic brain (42, 43, 108). The in vivo methods mainly
include focal IPreC and global IPreC, whether it is rapid
or delayed ischemic tolerance (26, 42). In focal ischemic
preconditioning, ischemic tolerance is caused by a single or
several brief interruptions of the middle cerebral artery blood
flow for several minutes and subsequent reperfusion in between
(8). Global ischemic preconditioning is caused by a single
brief occlusion of the two common carotid arteries that supply
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the forebrain tissue or all the four cerebral vessels, usually
<5min (8, 42). Within the subsequent protective time window
of sufficient ischemic tolerance, the lethal ischemic insults of
a longer duration were established thereafter. It should be
noted that focal and global ischemia can produce interactive
ischemic tolerance, so different preconditioning modes by
varying durations of focal and global ischemia insults were
established (8). There are mainly four different experimental
ischemic duration modes: (1) global ischemic preconditioning
through two- or four-vessel occlusion before final global ischemia
(22, 44–46), (2) global ischemic preconditioning by four-vessel
occlusion before permanent focal ischemia (47), (3) focal
ischemic preconditioning by transient middle cerebral artery
occlusion (MCAO) followed by permanent MCAO in rats (109),
(4) focal ischemic preconditioning induced by unilateral MCAO
followed by global ischemia (25, 110). It should be noted that
not all combinations of ischemic time and reperfusion time can
trigger ischemic tolerance to play a protective role in brain tissue.
Ischemic tolerance can be induced by 3–5min of focal ischemia
and at least 5min of reperfusion but cannot be induced by 1–
2min of focal ischemia (111, 112). Single ischemia-reperfusion
treatment can effectively induce ischemic tolerance, but repeated
transient ischemia-reperfusion treatment also has an obvious
protective effect (17, 48, 49, 113). The safe and effective time
collocation of ischemia and reperfusion still needs a lot of follow-
up experimental research.

There are currently a variety of in vitro IPreC methods, of
which oxygen-glucose deprivation (OGD) is the most widely
used model (114). The OGD model established by neural cell
line culture and brain tissue is a particularly useful tool for
studying its tolerance mechanism under in vitro conditions and
is beneficial to exclude the influence of systemic factors after
stroke (114, 115). Studies have shown that, after being exposed to
OGD pretreatment for a short period of time, the cortical culture
of murine brain tissue was subsequently exposed to OGD for a
longer time, and the death of cortical neurons was reduced by 30–
50%, but this protective effect only lasts between 7 and 72 h (115).

Mechanisms of Local Ischemic Preconditioning
In most cases, various forms of pretreatment stimulation can
trigger endogenous protection or regeneration mechanisms
through various signaling molecules and mechanism pathways,
thereby generating protective ischemic tolerance from
subsequent cerebral ischemic injury (26). IPreC involves a
complex and interacting protective cascade mechanism, which
can effectively reduce nerve cell damage after subsequent
lethal stimuli. The induction of protective ischemic tolerance
by IPreC is usually specific to the applied preconditioning
stimuli and also related to the applied durations (5, 8, 26, 105).
Existing research results support the view that energy depletion,
ion disorders, excitatory amino acid toxicity, and lactic acid
generation can occur immediately after an appropriate non-
lethal ischemic attack, thereby activating the transcription
factors and promoting protein synthesis that plays a protective
role in neural cells (5, 116–121). Moreover, microarray analysis
identified that gene expression is reprogrammed (122), and
epigenetic modifications and post-transcription translation

levels also changed significantly (121), mediating the protective
phenotype so that neurons become responsive to the subsequent
lethal ischemic attack.

Hypoxia inducible factor
Hypoxia conditions can trigger the generation of hypoxia-
inducible factor-1α (HIF-1α), which is an oxygen-sensitive
transcription factor. It can be significantly upregulated
after cerebral ischemia and then participate in regulating
the expression of various genes, thereby triggering various
physiological responses (123–129). IPreC has different effects on
the expression of HIF-1α in different cells, and it can increase
the expression of HIF-1α in neurons quickly and transiently but
slowly and continuously in astrocytes (130). It has been reported
that the inhibition of prolylhydroxylase 2 (PHD2), which can
promote the degradation of HIF-1α depending on the oxygen
level, can promote the expression of neuronal HIF-1α, and is not
involved in the induction of ischemic tolerance (131). However,
astrocytic HIF-1α was independent of PHD2, which allows
astrocytes to cause long-lasting HIF-1α expression and was
rather essential for induction of ischemic tolerance efficiently
(132). IPreC can also attenuate neuronal death induced by
ischemic insults in the gerbil hippocampal CA1 region (CA1)
throughout upregulation of HIF-1α, which enhances vascular
endothelial growth factor (VEGF) expression and nuclear
factor-kappa B (NF-κB) activation (125).

Glutamate pathway
Glutamate excitotoxicity is a chief mechanism of action in
nerve cell injury following stroke (133, 134). After ischemia,
lack of oxygen supply can decrease adenosine triphosphate
(ATP) levels and increase glutamate levels significantly, which
can overactivate the N-methyl-D-aspartate (NMDA) receptor
and result in excessive calcium influx, impaired synaptic
plasticity, and accumulation of glutamate (133, 135, 136).
In neuronal cortical cultures, glutamate preconditioning can
mediate ischemic tolerance while antagonists of NMDA and α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)
receptor can eliminate the protective effect of glutamate
pretreatment preconditioning (104, 106). Appropriate moderate
activation of NMDA receptors is necessary to induce ischemic
tolerance; studies have shown that this mechanism may involve
NF-κB and tumor necrosis factor-α (TNF-α) pathways (137–
139). It has been reported that activation of the NMDA receptor
can inhibit the activation of stress-activated c-Jun N-terminal
kinase (JNK) and protein kinase B (Akt), promote the activation
of extracellular signal-regulated kinase (ERK1/2), and regulate
the activity of normal cyclin adenosine monophosphate (cAMP)
responsive element binding (CREB) activity, which may be key
signaling molecules that mediate protective tolerance (140–142).

Other studies have also shown the specific overexpression
of GLT-1 in astrocytes (35–38). Studies have shown that p38
mitogen-activated protein kinase (p38 MAPK) is involved in
the regulation of GLT-1 upregulation during the induction of
ischemic tolerance.

Upregulation of astrocyte glutamate transporter-1 (GLT-1)
was found to assist in inducing cerebral ischemic tolerance (143).
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Research evidence indicates that IPreC can inhibit the increase
in extracellular glutamate after OGD, promote the uptake of
extracellular glutamate, and increase the GLT-1 expression in
rat cortical cultures (144). Other research results showed that
astrocytes GLT-1 overexpression had significant neuroprotective
effects (35–38). Research has shown that p38 mitogen-activated
protein kinases (p38 MAPK) played an important role in the
induction of GLT-1 upregulation during ischemic tolerance
mediation (145). Gap junctions (GJs), composed of connexin 43
(Cx43), are found at the corresponding position where adjacent
astrocytes contact each other and form channels that allow the
molecular exchange and information transfer between astrocytes.
Recent studies have shown that astrocytes can release excessive
glutamate through GJs after ischemia, which may promote the
expansion of the infarct core and the surrounding penumbra
area (146, 147). It has been demonstrated that IPreC can block
GJs between astrocytes and decrease the extracellular glutamate
content and reduce reactive oxygen species (ROS) injury in
astrocytes, resulting in less neuronal damage (148).

Nitric oxide synthase
For both in vivo and in vitro models of IPreC, nitric
oxide (NO) is a crucial member, but the exact mechanism
of action remains unclear. In cortical cultures, activation of
neuronal nitric oxide synthase (NOS) and subsequent other
neuroprotective mechanisms may be an important part of a
series of signaling cascades during OGD preconditioning (149).
Anoxia preconditioning can protect rat hippocampal slices
against the subsequent fatal anoxic injury, and interestingly, the
NOS inhibitor (7-nitroindazole) can abolish the above protective
effects (150). It was found that inducible NOS was involved
in the neuroprotective tolerance induced by IPreC in both in
vivo and in vitro conditions (141, 151–153). In addition, in
endothelial NOS (eNOS) and neuronal NOS knockout mice,
IPreC did not reduce the infarct volume of brain tissue in the
focal ischemia model compared with the preconditioned wild-
type counterpart (151). Recently, eNOS is considered to be a
neurovascular protection mediator against vasospasm caused by
subarachnoid hemorrhage, indicating that IPreC may also have a
protective effect on other forms of stroke (154).

Immune system
Under an ischemia condition, a large number of inflammatory
cells (such as microglia, lymphocytes, neutrophils, etc.) are
recruited to the infarct area, mediating inflammatory damage to
the brain tissue (155–158). The non-catalytic Toll-like receptor
(TLR) signaling pathway can induce the transcription factor
NF-κB to mediate the transcription of cytokines and chemokines
by recognizing foreign signaling molecules, thereby initiating
immune responses and establishing an inflammatory cascade,
thereby causing secondary inflammation damage (158–161). The
mechanism by which IPreC exerts neuroprotection is mainly
through the promotion of anti-inflammatory molecules or
inhibiting the expression of pro-inflammatory molecules. IPreC
can reduce cerebral ischemic injury mainly through inhibiting
TLR4/NF-κB signaling, enhancing interferon regulatory
factor-dependent signaling, and inhibiting TLR4/myeloid

differentiation factor 88 (MyD88) signaling, which resulted in
an anti-inflammatory phenotype (162–164). It is reported that
astrocytic TLR3 signaling plays an important role in IPreC-
induced ischemic tolerance, which increases interferon secretion
but decreased IL-6 secretion, resulting in suppression of the
post-ischemic inflammatory response (160). Pérez-Pinzón et al.
(165) reported that rapid IPreC can inhibit the activation of
microglia after cerebral ischemia, mediating ischemic tolerance
by exerting an anti-inflammatory effect. Chemokines promoting
the migration of inflammatory cells play a vital role in the
recruitment of inflammatory cells to ischemic brain tissue after
ischemia, which direct the progression of inflammatory processes
in stroke (165–167). The enhanced ability of IPreC-induced
microglia to release chemokines can mediate the migration of
leukocyte to protect the ischemic cells (168). In addition, IPreC
can also mediate through the activation of cell surface chemokine
receptor 2 to exert a neuroprotective effect (169).

Enzymes and receptors
sublethal cerebral ischemic insult can activate enzymes, which
are the other group of proteins activated in IPreC. Studies
have shown that the activation of Akt mediated by IPreC
can negatively regulate the JNK signaling pathway (170).
The physiological function of cyclooxygenase-2 (COX-2) is to
promote the oxidation of arachidonic acid to prostaglandin,
which plays an important role in the inflammatory damage
after ischemia (171). Downregulation of COX-2 in IPreC was
previously reported in gerbils, which means obstruction of the
COX-2 pathway might be a therapeutic strategy in cerebral
ischemia (172). IPreC can maintain or even increase the
content of kynureic acid (KYNA) in pyramidal neurons of
the hippocampal CA1 area, which indicates that IPreC-induced
increase in KYNA expression is related to endogenous cerebral
ischemic tolerance (173). The increase of adenosine after stroke is
regarded to be neuroprotective, and the expression of adenosine
receptors was increased after IPreC (174). Nakamura et al.
reported that the adenosine A1 receptor may be related to
rapid ischemic tolerance in rat focal ischemia (167). Adenosine
kinase (ADK) can inhibit the expression of adenosine, and
under-expression of cerebral ADK in transgenic mice can induce
cortical protection, suggesting a promising target for developing
a stroke therapy (174).

The physiological function of monocarboxylate transporter
4 (MCT4) is mainly involved in transferring monocarboxylates
across phospholipid membranes, and recent studies have shown
that it is related to cerebral ischemic injury. It was reported
that IPreC elevated or maintained the expression of MCT4
in astrocytes and protected pyramidal neurons from ischemic
damage in the ischemic CA1 region (175). It has been discovered
that the accumulation of unfolded proteins in the endoplasmic
reticulum (ER) lumen occurs in cerebral nerve cells during
reperfusion following global or focal cerebral ischemia (176, 177).
IPreC can inhibit ER stress-induced apoptosis and play a positive
role in the protection of following focal cerebral I/R injury
(178). Downregulation of adenosine monophosphate-activated
protein kinase (AMPK) contributes toward delayed ischemic
tolerance in aMACOmodel in male mice (179). The endogenous
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protection mechanisms of IPreC may also involve Na+/Ca2+

exchangers (NCXs). HIF-1 can increase the expression of NCX-
1 and Akt signaling participating in mediating the expression of
NCX-3 (180). Finally, many key players such as HIF-2α, silent
information regulator protein 1, and CREB are also important
parts of the preconditioning cascade (142, 181).

Autophagy and apoptosis
Autophagy, a process of internalizing and digesting damaged
organelles or misfolded proteins to produce metabolic substrates
for cell recycling, is believed to be one of the most important
mechanisms in IPreC-induced tolerance (182–184). Studies
have shown that ischemic injury can activate autophagy, and
the activation of autophagy was related to neuroprotection
(184). IPreC can activate autophagy, and 3-MA can abolish the
IPreC-induced ischemic tolerance while rapamycin potentiates
the IPreC-induced ischemic tolerance (185). In contrast to the
neuroprotective function of autophagy, apoptosis mediated cell
death in I/R injury, mainly through the caspase-3-dependent
apoptosis pathway (186). Cerebral ischemia can mediate
the overexpression of caspase-3, and IPreC can attenuate
this overexpression during ischemia (187). Interestingly,
three episodes of IPreC can activate autophagy and exert
neuroprotection against apoptosis in the following ischemia
(187). Therefore, apoptosis may be the therapeutic target,
and inducing autophagy could be expected to become an
important protective strategy. Recent studies have shown that
bone morphogenetic protein 7 (BMP-7), an important regulator
of cartilage and bone formation, is also involved in DNA
synthesis and astrocyte differentiation in the rat midbrain (188).
Studies have found that BMP-7 participates in IPreC-mediated
endogenous protective mechanisms to induce ischemic tolerance
(189). Inhibition of BMP-7 can attenuate apoptosis via inhibiting
Bcl-2 and promoting cleaved caspase-3 (189). Moreover, BMP-
7-mediated IPreC-induced neuroprotection may be through
activation of p38 MAPK signaling pathway (190).

Energy metabolism
With the impaired delivery of glucose and oxygen in ischemia, the
energy metabolism pattern of the brain changed from oxidative
phosphorylation to excessive glycolysis, thereby promoting the
rapid generation of ATP to meet energy expenditure (191).
However, excessive glycolysis increased the production of
lactic acid and ROS, which promoted the expansion of the
ischemic penumbra (192, 193). IPreC can subdue post-ischemic
hyperglycolysis and promote the utilization of β-hydroxybutyrate
and provide a well-adapted metabolic background (192).
A number of studies revealed that IPreC-related metabolic
flexibility was associated with the downregulation of AMPK-
mediated glucose transporter-1 and decreased the mRNA levels
of nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase subunits (194).

Nuclear erythroid 2-related factor 2 (Nrf2) protein can
reduce oxidative stress damage by upregulating the transcription
of antioxidant-related protein under pathological conditions
in astrocytes and may be a novel key player in nuclear-
mitochondrial interaction and IPreC-mediated neuroprotection

(195). Novel evidence indicates that Nrf2 plays an important role
in oxidative phosphorylation supercomplex association, and the
absence of Nrf2 can reduce IPreC-induced protection in astrocyte
cultures (196, 197). Glucokinase (GK) and glucokinase regulatory
protein (GKRP) may be involved in protecting neurons in the
ischemic CA1 region (198). Certain studies have suggested that
IPreC can significantly enhance the immunoreactivity of GK and
GKRP in neurons of the CA1 region after 5min of I/R, suggesting
that an important mechanism for IPreC to promote the survival
of neurons in CA1 region under ischemic conditions may be to
maintain the expression of GK and GKRP (199).

Blood-brain barrier permeability
Blood-brain barrier (BBB) injury occurs soon after cerebral
ischemia (200, 201), which allows infiltration of immune cells and
inflammatory factors and leads to brain edema and hemorrhagic
transformation (202). Tight junctions (TJs) and adherens
junctions (AJs), located between adjacent endothelial cells of the
BBB, is critical for BBB integrity (201). The transmembrane TJs
and AJs are mainly composed of claudin-5 and cadherin 5, which
are involved in regulating paracellular permeability (201). IPreC
can maintain the BBB permeability by directly upregulating the
TJs protein claudin 5 and the AJ protein cadherin 5 (109, 203)
IPreC-induced cytokines, such as TNF-α and interleukin 1β (IL-
1β), may affect BBB permeability (106). IPreC can mediate TJs
and angiogenic factors levels via activating ERK1/2, implying an
essential role of ERK1/2 in paracellular permeability in IPreC
(106). Other studies showed that the underlying mechanisms
of IPreC-mediated BBB protection involve VEGF, Nrf2, or
inflammatory pathways (109, 201).

Electrophysiology
Research indicated that MCAO impaired the expression of long-
term potentiation (LTP) in the hippocampal CA1 region (204).
Moreover, the LTP magnitude remained at a relatively low level
4 months after permanent MCAO (57). IPreC can dramatically
increase the neurotransmitter content in presynaptic neurons
to promote basal synaptic transmission without obvious adverse
effects on the LTP induction (205).

Transcriptional regulation
Recent research on IPreC-related ischemic tolerance has shed
light on the modifications at gene level. HIF-1 can promote the
transcription of survival genes after ischemic injury (123, 124).
After hypoxic stress occurs, HIF-1α and HIF-1β combine to
form a heterodimer HIF-1, and then the heterodimer binds to
the hypoxic response element on the target genes to form a
transcription complex that promotes the transcription of VEGF,
erythropoietin (EPO), and glucose transporters (123, 170, 206).
Studies have found that the HIF-2α subunit in astrocytes can
promote the transcription of EPO mRNA (207); however, the
HIF-2α-mediated transcriptional regulation signaling cascade in
IPreC has not been deeply explored (207, 208). Transcription
factor activator protein 1 (AP-1), composed of c-Jun and c-Fos, is
a dimeric protein that functions in both neuroprotection and cell
death (209). In vivo experiments indicate that the early activation
of AP-1 and its enhanced binding affinity to DNA are involved
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in the neuroprotection induced by IPreC (210). In addition, JNK
and Akt signaling pathways are also involved in IPreC-mediated
transcriptional regulation (211, 212).

Genomic reprogramming
Clarifying the changes in gene expression profiles in
neuroprotective phenotypes after ischemia can help to
understand IPreC-induced tolerance (122). It is worth
mentioning that IPreC-induced changes in gene expression
profiles include not only upregulation of genes related to
neuronal protection and regeneration and also inhibition of
genes related to degenerative pathways during ischemic injury
(122). Various regulatory molecules and processes, for example,
transcription factors and a large number of post-translational
modifications, jointly participate in the change of gene expression
profiles induced by IPreC (213). GeneChip technology was used
to identify genomic reprogramming induced by IPreC, and
molecules involved in inducing ischemic tolerance, such as heat
shock protein 70 (HSP-70) and transforming growth factor
(TGF)-α were confirmed (213). DNA microarray technology,
an efficient method for studying differential gene expression
patterns of ischemic tolerance, were used to imply the genetic
profile in IPreC-stimulated rat hippocampal slices and mouse
cortex (118, 214), by which the genes related to cell survival
and regeneration (such as HIF, insulin-like growth factor, etc.)
are upregulated, and region-specific expression patterns can be
observed apparently (215).

Epigenetic reprogramming
Existing evidence indicates that IPreC-mediated ischemic
tolerance involves epigenetic reprogramming in neuronal cells,
and microRNA (miRNA) plays an important role in this
process. The results of Dharap and Centeno et al. showed
that IPreC can mediate downregulation of 25 miRNAs and
upregulation of 26 miRNAs in rat cortex, and 20 of these
miRNAs maintained expression changes within 3 days (150).
Atochin et al. (151) analyzed miRNAs transcription in mouse
cortex and found that IPreC could upregulate miRNAs expession
while lethal ischemia downregulated miRNA expression. The
results of bioinformatic analysis of IPreC-mediated miRNAs
expression profiles indicated that IPreC preferentially regulates
miRNAs targeting transcriptional regulators (216). miR-132,
which regulates methyl CpG binding protein 2 (MeCP2)
expression, is one of the most notable downregulated miRNAs
in the IPreC brain, and MeCP2 protein expression was increased
while knocking out MeCP2 in transgenic mice abolished the
IPreC-induced tolerance (151).

Although LIPreC does reduce reperfusion injury and related
systemic consequences, its main disadvantages are direct injury
by invasive operation on the target organ andmechanical damage
to the main vascular structure. Moreover, it is difficult to predict
when an ischemic event will occur, and therefore, it is not
clinically possible to perform ischemic pretreatment within the
effective protection time window. The disadvantages limit its
clinical application.

Remote Ischemic Preconditioning
RIPreC is a systemic protective strategy in which one or more
cycles of ischemia and reperfusion durations in the target
organ or tissues could confer protection against subsequent
more severe ischemia insults in distant organs or tissues (217).
RIPreC was first introduced in an animal cardiac study by
Przyklenk et al. and first demonstrated in global cerebral ischemia
model in rats (15). Experimental and clinical studies have
demonstrated that RIPreC can induce cerebral tolerance to
ischemic injury, augment cerebral perfusion status, reduce the
risk of cerebral infarction, reduce TIA recurrence, promote the
formation of cerebral collaterals, and increase the recovery rate
(218–220). Subsequent studies confirmed that RIPreC decreases
the infiltration of circulating leukocytes and provided a degree
of cerebral protection (221). A large experimental animal model,
has shown significantly better electroencephalogram results,
better behavioral scores and histopathological scores in the
RIPreC group 7 days post-operation (222). Additionally, patients
undergoing carotid endarterectomy or patients undergoing
elective cervical decompression surgery also benefitted from
RIPreC (50, 219).

The Organs or Tissues for Performing Remote

Ischemic Preconditioning
It has been evaluated that many organs or tissues, such as
kidney (51, 52), mesenteric artery (53, 54), liver (55, 56), and
limbs (223–225), can be considered as remote conditioned sites.
Obviously, the most convenient and safest strategy of performing
RIPreC should be on limbs when this preconditioning strategy
is considered to be clinically used (28). Remote ischemic limb(s)
preconditioning (limb-RIPreC), usually via binding the cuff to
the distal limb(s) and inflating the cuff to a pressure that blocks
the blood perfusion of the limb(s), has been used to effectively
induce ischemic tolerance against subsequent I/R damage in
animal experiments (223) and clinical trials over decades (28,
226). It has been found that acute ischemic stroke patients with
a history of peripheral vascular disease (PVD) have significantly
smaller infarct volumes, better clinical outcomes, and a lower
mortality rate than those without PVD (227), also confirming the
efficiency of limb-RIPreC.

Protection of Remote Ischemic Preconditioning
Similar to LIPreC, the results from clinical trials concerning
the protection of RIPreC considered that there might be a
first window (also called early, short window) and second
window (also called later, prolonged window) of RIPreC (228).
The neuroprotection of the first window occurs soon after
pretreatment and is maintained for about 4 h (228). Ren et al.
reported that limb-RIPreC via three cycles of 15min femoral
occlusion and reperfusion durations significantly reduced
cerebral ischemic injury after 30min of bilateral common carotid
artery occlusion in rats (225), the same as the results of Wei
et al. (229). Hu et al. (223) showed that performing limb-
RIPreC 1 h before MCAO can obviously protect the subsequent
cerebral ischemic injury in rats. Once believed to start 24 h after
preconditioning (228), the later phase was corrected to start 12 h
after preconditioning (225) and last for at least 48 h (228). Animal
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studies showed that RIPreC started 24 (230) and 48 h (225)
prior to brain ischemia were both protective. Malhotra et al. also
showed that RIPreC can’t mediate protection when performed
48 h before brain ischemia onset (230).

Mechanisms of Remote Ischemic Preconditioning
At present, there is no unified view on the underlying mechanism
of the protective effect transport to the target organ and the
identity of the tolerance-inducing signal in the brain. There are
three theories about themechanism by which the protective effect
mediated by ischemic preconditioning of distant organs or tissues
is transferred to the brain tissue to protect the brain tissue against
subsequent ischemic injury. It should be pointed out that these
three theories are not mutually exclusive. The first theory holds
that the transmission of neuroprotection is mainly mediated by
various humoral factors in the blood circulation system. The
second theory is that the autonomic nervous system plays an
important role in the transmission of neuroprotection, and the
last one is the immune pathway involving circulating cytokines,
chemokines, and immune cells (231). After the protective effect
is transmitted to the brain through the above three pathways,
the ischemic tolerance is initiated through a common signaling
pathway (Figure 1).

Humoral pathway
The humoral pathway is considered to exist because of two
reasons: (1) a period of reperfusion is needed after ischemia in the
preconditioned site during the RIPreC durations, suggesting that
the protective factors need to be transported via circulation to the
target organs from the conditioned site, and (2) the blood cross-
circulation model identified the existence of protective humoral
factors (232, 233). Similarly, Shimizu et al. (232) reported
that treating the naive hearts with the blood from rabbits or
humans after receiving RIPreC treatment can protect the naive
recipient hearts against subsequent I/R injury, and the protective
effect could be mediated by molecules <15 kDa. Research had
identified that interleukin, prostaglandins, stromal cell-derived
factor-1α, TNF-α, bradykinin-2, adenosine, opioids, NO, EPO,
rich secretory protein 3, HSP, catecholamines, heme oxygenase-1,
miRNA-144, etc. as possible candidate transfer factors (234, 235).
The related signaling pathways or molecular targets of those
humoral factors include G-protein cell surface coupled receptors,
protein kinase C, Notch1, ERK1/2, JNK1/2, p38 MAPK, and
signal transducer and activator of transcription 5 (STAT5) (16,
19, 236).

Nerve pathway
Increasing evidence from experiments about ischemic stroke
confirms that a neuronal pathway is involved in the RIPreC
protection transmission from the remote conditioned organ
to the brain. Research inducing limb-RIPreC in MCAO rats
by different methods demonstrated that a ganglion blocker
(hexamethonium) could abrogate the neuroprotection of RIPreC
(229, 237). Research by Mastitskaya et al. (237) suggests
that the dorsal motor neurons of the vagus in the brain
stem participated in RIPreC-mediated cardioprotection, and
stimulation of these neurons can produce the same protective

effect as RIPreC, indicating that the vagal preganglionic neurons
are involved in the neural transmission mechanism. Activation
of parasympathetic efferent nerves was neuroprotective, and
vagal stimulation reduced cerebral infarct size (238). Animal
research has reported that transection of the femoral nerve
or spinal cord can abolish the protective effect of RIPreC in
rabbits (239). Interestingly, the protective effects of RIPreC seem
to be attenuated in patients with neuropathy, implicating the
dependence on intact neural pathways (237).

However, the neuroprotective effect of RIPreC in mice
was partially abolished when the femoral nerve or sciatic
nerve was scathed, indicating the interaction of neural and
humoral pathways (239). The neuronal mechanism may work
in combination with the humoral pathway: The release of
endogenous humoral factors from the conditioned organ first
activated the afferent nerves in the conditioned organ and
then activated the efferent nerves terminating at the target
organ to induce neuroprotection. For example, limb-RIPreC
allowed the preconditioned limb(s) to release autacoids that can
activate neural pathways (240, 241). Animal studies showed that
the release of humoral factors caused by limb-RIPreC would
be abolished by femoral nerve transaction and the release of
protective humoral factors can be induced by femoral nerve
stimulation, indicating that the integrity of neural pathway is
an important prerequisite for the production of humoral factors
(240, 242, 243).

Inflammatory pathway
It has been reported that RIPreC has a systemic anti-
inflammatory influence via suppression of proinflammatory
genes in immune cells. Microarray analysis of blood samples
showed downregulation of proinflammatory genes and
upregulation of anti-inflammatory genes within 15min of
RIPreC and at 24 h after preconditioning, confirming that
limb-RIPreC inhibited systemic inflammation (244). RIPreC
can also reduce circulating neutrophil activation, inhibit the
release of proinflammatory cytokines, and downregulate the
expression of adhesion molecules in healthy adults (245).
Recently, it was reported that RIPreC resulted in the reduction of
CD3+/CD161a+ natural killer T cells and CD3+/CD8+ T cells
and elevation in the percentage of B cells and CD43+/CD172a+

monocytes in circulation (246). Interestingly, the inflammation
changes are associated with improved neurological functions,
implying the direct evidence that the immune pathway
participates in RIPreC-induced neuroprotection (246). It was
suggested that the activation of immune cells and regulation of
inflammatory genes were related to the release of endogenous
opioids; therefore, the immunological pathway is also linked to
the humoral pathway (247).

Final common mechanism
Based on the above evidence, we can conclude that the three
neuroprotection transmission pathways via humoral, neural, and
inflammatory mechanisms may be a relationship of mutual
influence and promotion in RIPreC. After being transmitted to
the brain, these protective signals had a final common pathway
to induce ischemic tolerance. Autophagy can promote the
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FIGURE 1 | Possible mechanisms of remote ischemic preconditioning. The protective signals generated from the remote organ(s) are transmitted to the brain possibly

through three pathways: neuronal (pink shading), humoral (purple shading), and immunological pathway (green shading). After being transmitted to the brain through

the above three pathways, these signals induce autophagy activation and functional changes in the mitochondria, which is called a common signaling pathway.

degradation of damaged organelles and accumulated misfolded
proteins to produce metabolic substrates to meet the energy
consumption of the brain tissue after ischemic injury (248).
There is a view that the autophagy regulation may be an
important process in mediating the protective phenotype after
neuroprotection was transmitted to the brain tissue. It was
reported that limb-RIPreC activated autophagy and promoted
the survival of neurons in rat spinal within 24 h after I/R injury
(248). IPreC-mediated autophagy can promote the removal of
harmful substances and inhibit the neurotoxic cascade to play a
neuroprotective role, such as upregulation of B-cell lymphoma
2 (Bcl-2) and HSP-70, reduction in cytochrome c release, and
inhibition of caspase-3 activity (249). Park et al. found that the
activity of autophagy in the penumbra was enhanced, which
was obviously related to the neuroprotective effect of RIPreC in
cerebral ischemia (249). RIPreC can also increase the resistance
of cells to ischemic insults by maintaining mitochondrial
structural and functional integrity, decreasing mitochondrial
degradation and consequently reducing apoptosis to achieve
neuroprotection (250). The possible mechanism of autophagy in
IPreC-mediated neuroprotection still needs further research.

Despite the efficiency of RIPreC, there are still issues that
cannot be ignored. First, animal experiments tend to perform
RIPreC operations on the hind limb(s) of experimental animals
(78, 223, 225) while clinical trials would choose the upper
limb(s) of the subjects (28, 218); it is still unknown whether

the neuroprotective effects mediated by the precondition of
the upper limbs and lower limbs (hind limbs) are different.
Second, we still cannot confirm how many limbs and cycles
of RIPreC should be involved to acquire the optimal efficiency
because the number of restrained limbs, duration of ischemia
in each cycle, and number of cycles of RIPreC were different
among published articles. An animal study by Ren et al.
(225) indicated that three cycles of limb preconditioning could
induce stronger neuroprotection than two cycles. Therefore,
increasing the number of preconditioned limbs and the cycles
of preconditioning ischemia/reperfusion durations may enhance
the protective effect of RIPreC.

Cross-Preconditioning
For ethical reasons, it is not allowed to repeatedly
block the cerebral arteries to mediate neuroprotection
through ischemic preconditioning in humans; cross-
preconditioning, induced by stressors or stimuli other
than ischemia, such as hyperoxia/hypoxia, hypothermia
or hyperthermia, chemical/pharmacological pretreatment,
cortical spreading depression, electroacupuncture, excise, et al.
(29, 38, 58, 105, 205), has gradually become a new research
hot spot hoping to develop a new IPreC strategy in humans.
Interestingly, research suggests that many stresses or stimuli
seem to mediate protective tolerance through a common
signaling pathway (105).
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Hyperoxic and Hypoxic Preconditioning
In MCAO models of rats and mice, hyperoxia was shown
to induce ischemic tolerance via genetic reprogramming (59).
Regular normobaric hyperoxia (95% O2) treatment in rodents
can reduce the infarct volume of brain tissue and exert
obvious neuroprotective effects after cerebral ischemic injury
(60). Hyperbaric oxygenation (HBO) was found to induce
ischemic tolerance by reducing cellular apoptosis (61) and
downregulating the expression of COX-2 in global ischemia
model of rats and murine (60). Studies have shown that
the NF-κB signaling pathway and its regulated target gene
transcription could be activated by exposure to intermittent and
long-term normobaric hyperoxia preconditioning conditions in
rats (206). Repetitive hypoxic preconditioning induced sustained
endogenous tolerance to stroke in a mouse model of stroke,
characterized by upregulation of chemokine (C-X-C motif)
ligand 12 at the BBB and inhibition of leukocyte–endothelial
adherence, contributing to the endogenous, anti-inflammatory
phenotype (62).

Hypothermia and Hyperthermia Preconditioning
Hypothermia treatment, widely used in surgical procedures
and other clinical practice, is safe and practical based on
evidence from randomized clinical trials (63, 64). In focal
ischemic models, hypothermia preconditioning can confer
rapid tolerance; however, merely increasing the duration of
the preconditioning stimulation did not significantly enhance
the neuroprotective effect (64). The underlying mechanism
of the prolonged ischemic tolerance induced by hypothermia
supposedly depends on protein synthesis (64, 65). Hyperthermia
can also bring about protection against cerebral ischemia in
rodent. Hyperthermia preconditioning conducted through a hot
water bath in newborn rats with brain temperatures increased
to 41.5–42◦C, reduced neuronal damage after 2 h hypoxic
ischemic insult (66). Additionally, exposure to hyperthermia (38–
40◦C) for 6 h protected astrocytes against cerebral I/R injury in
mice (67).

Chemical/Pharmacological Preconditioning
The underlying mechanism of chemical/pharmacological
preconditioning and their neuroprotective potential as strategies
for clinical prevention and treatment of cerebral ischemia
are gradually being explored (68–72). Isoflurane, halothane,
and other inhalational anesthetics could lead to a subsequent
protective phenotype against subsequent ischemic injury via
promoting the antagonism of NMDA and AMPA receptors
(68, 73). For example, adult male rats with 2% isoflurane
inhalation preconditioning for half an hour showed smaller
brain infarct sizes after focal ischemia (79). It is considered
that sevoflurane possesses smaller infarct sizes and better
motor coordination after ischemia (73). Halothane has no
clinical feasibility due to the likelihood of hepatotoxicity and
other systemic side effects although it could be potentially
neuroprotective (73). Using combined inhaled anesthetics might
be an alternative for extended neuroprotection (80). Low dose
of lipopolysaccharide (LPS) preconditioning can later impart
ischemic tolerance in the brain in rats (81, 82). Exposure to

LPS for 4 consecutive days could significantly reduce neuronal
death in mice (74). Interestingly, although LPS functioned
by suppressing TNF-α signaling, TNF-α is also a necessary
prerequisite for LPS-mediated neuroprotection, predicting
the dual roles of TNF-α in LPS-mediated neuroprotection
(75–77, 81, 83). Exogenous agents that protect the tricarboxylic
acid cycle energy metabolism pathway can effectively induce
neuroprotection. The pretreatment of chemical reagents to
inhibit oxidative phosphorylation of neurons in the CA1 region
of the hippocampus slices in rats can significantly reduce
the oxidative stress damage mediated by a large amount of
oxygen free radicals generated after hypoxia (84). Transient
ischemic stimulation resulted in the release of adenosine and
activates the ATP-sensitive K+ channels in the brain to mediate
neuroprotection, and pharmacological preconditioning with
adenosine receptor agonist can mimic the neuroprotective
effects (85). 5-methoxyindole-2-carboxylic acid preconditioning
contributed to the neuroprotective effects through regulating
the Nrf2 signaling, which decreased dihydrolipoamide
dehydrogenase activity and increased nicotinamide adenine
dinucleotide: ubiquinone oxidoreductase-1 expression
(86). Research results indicated that 3-nitropropionic acid
preconditioningmediated obvious neuroprotection after cerebral
ischemia in rats (87). However, nitrous oxide preconditioning
had little or no neuroprotective effect in focal or global ischemia
models, it may even repress the neuroprotective effects when used
in conjugation with other inhalational anesthetics (73). Jackson
et al. (88) preconditioned rats with daily metformin treatments
for 2 weeks before transient forebrain global ischemia. They
found that metformin preconditioning increased mitochondrial
biogenesis and reduced apoptotic cell death (88). Research
showed that dexmedetomidine preconditioning could protect
against global cerebral ischemic injury following cardiac arrest
and was associated with increased HIF-1α and VEGF expression
(89). Preconditioning with recombinant high-mobility group
box 1 (rHMGB1) can protect the brain against ischemic
damage, which is associated with activated TLR4/interleukin-
1R-associated kinase-M signaling in microglia. The lipid
kinase sphingosine kinase 2 (SPK-2), an important mediator
of ischemic tolerance induced by isoflurane and hypoxia
preconditioning (90), can upregulate sphingosine-1-phosphate
that promoted the expression of chemokine (C–C motif) ligand
2 to mediated tolerance (91). Several in vivo studies have
shown that metformin and estrogen involve in preconditioning
neuroprotection (251).

Other Methods of Preconditioning
Continuous electroacupuncture pretreatment can reduce
infarct size and improve motor function after ischemia in
mice (252). CSD preconditioning of rat brain can resist I/R
damage and elicit improved prognosis by activating AMPK-
mediated autophagy (38). A 3-week preconditioning period
with a ketogenic diet elevated extracellular adenosine levels,
improved rCBF, and increased HIFs and HIF-regulated genes
in mice with MCAO (253). Other ischemic tolerance-inducing
stimuli include exercise and transcranial low-level light
therapy (254, 255).
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CLINICAL USES AND CONCERNS

IPreC strategies involve the application of non-lethal but
noxious stressors or stimuli, but an inevitable problem is that
preconditioning stimuli also have the potential to cause fatal
damage. Therefore, preconditioning strategies applied to clinical
patients must ensure their security and effectiveness. In spite of
its apparent popularity and the largely flourishing trials in the
experimental and clinical scenario, the next challenge of research
in the area of ischemic neuroprotection is to find the most
effective IPreC method, concerning the time window and proper
dosage for clinical application.

At present, the results of studies on the protective effect of
RIPreC in cerebral ischemia are not consistent: Some studies
have shown the effectiveness of LIPreC, and some results are
contrary to the above results (27, 256, 257). Limb-RIPreC is
seen as a more promising neuroprotective strategy in terms
of better tolerance and improved safety of the brain to I/R
injury (218, 258, 259), and limb-RIPreC might be the future
choice of clinical ischemic adjuvant treatment. For example,
subarachnoid hemorrhage (SAH) can lead to delayed cerebral
ischemia due to vasospasm, which is considered to be a suitable
clinical situation for RIPreC (260). It is reported that the glycerol
level and the ratio of lactic acid:pyruvic acid all decreased in
SAH patients receiving limb-RIPreC, and these neuroprotective
effects lasted up to 2 days (28, 261). Recently, it was found
that, in patients with symptomatic atherosclerotic intracranial
arterial stenosis, bilateral arm IPreC could reduce the occurrence
of stroke (218). Cross-preconditioning provides new ideas for
clinical ischemia treatment, especially chemical/pharmacological
pretreatment strategies. For example, inhaled anesthetics can
effectively mediate neuroprotection and have been already used
in surgical procedures (262). Further experimental or clinical
research on the mechanism of IPreC-induced cerebral ischemic
tolerance are especially necessary.

CONCLUSION

Proper stimulus can trigger ischemic tolerance; however,
it should be noted that there is no clear line between
preconditioning stimuli and lethal stimuli. For safe and regular
development of ischemic tolerance, various mutually cross-
linked factors that influence the deleterious effect of IPreC
need special attention, for example, the endogenous signaling
pathways for neuronal survival, the exact window of protection
after the final insult, the duration of tolerance, the safety margin,
and possible side effects in patients. Every IPreC stumili has
its advantages as well as limitations, and choosing the most
effective preconditioning inducer for clinical use is not always
easy. Extensive studies with different combinations of stimulus
should be conducted, especially cross-preconditioning, and the
strategy of RIPreC combined with chemical or pharmacological
pretreatment might be the future trend in clinical practice as they
seem to hold more promise for combating stroke and related
neurological disorders.
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