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The Ontario Neurodegenerative Research Initiative (ONDRI) is a 3 years multi-site

prospective cohort study that has acquired comprehensive multiple assessment

platform data, including 3T structural MRI, from neurodegenerative patients with

Alzheimer’s disease, mild cognitive impairment, Parkinson’s disease, amyotrophic lateral

sclerosis, frontotemporal dementia, and cerebrovascular disease. This heterogeneous

cross-section of patients with complex neurodegenerative and neurovascular

pathologies pose significant challenges for standard neuroimaging tools. To effectively

quantify regional measures of normal and pathological brain tissue volumes, the ONDRI

neuroimaging platform implemented a semi-automated MRI processing pipeline that

was able to address many of the challenges resulting from this heterogeneity. The

purpose of this paper is to serve as a reference and conceptual overview of the

comprehensive neuroimaging pipeline used to generate regional brain tissue volumes

and neurovascular marker data that will be made publicly available online.

Keywords: MRI, Alzheimer, Parkinson, amyotrophic lateral sclerosis, frontotemporal dementia, cerebrovascular

disease, stroke, cerebral small vessel disease

INTRODUCTION

The Ontario Neurodegenerative Research Initiative (ONDRI) is a multi-site prospective cohort
study following patients with neurodegenerative diseases including Alzheimer’s disease (AD),
mild cognitive impairment (MCI), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
frontotemporal dementia (FTD), and cerebrovascular disease (CVD). Over the course of 3 years,
multiple assessment platforms acquired comprehensive data from the 520 patients including:
neuroimaging (1–3), clinical and demographic assessments (4), neuropsychology (5), genetic
variations (6, 7), eye tracking and pupillometry, retinal layer analyses using spectral-domain optical
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coherence tomography (8), gait and balance performance (9), and
neuropathology. The multi-modal data collected from ONDRI
will be used to explore earlier detection, guide development of
novel therapy, and improve patient care. ONDRI’s mission is
to bring new diagnostic biomarkers and prognostic tools into
clinical practice in order track disease progression and potential
response to future symptomatic and disease-modifying therapies
targeting dementia/cognitive impairment.

This paper describes the methods implemented to extract
normal and pathological brain tissue volumetric information
from the structural Magnetic Resonance Imaging (MRI)
provided by the ONDRI neuroimaging platform. It includes
a comprehensive methodological overview of the structural
neuroimaging pipeline’s previously published and validated
components, with numerous figures to provide a visual
description of how the measures were obtained from the MRI,
some recommendations for reporting and data analysis, and
a brief section providing some basic descriptive statistics to
illustrate the whole brain volumetrics that can be obtained from
the ONDRI patient cohorts.

Structural MRI processing for volumetrics was performed
by the neuroimaging group in the L.C. Campbell Cognitive
Neurology Research Unit, within the Hurvitz Brain Sciences
Research Program, at the Sunnybrook Research Institute, in
Toronto, Canada. The image processing pipeline (Figure 1)
has been optimized for an aging population, with a particular
emphasis on accounting for chronic stroke and post stroke

FIGURE 1 | ONDRI MRI processing pipeline overview. General workflow moves from left to right for final volumetric output resulting in a comprehensive spreadsheet

in the form of a .csv file. Hippocampal volumes are segmented using the SBHV method (10) which was fully integrated into the pipeline and are included in the final

volumetric spreadsheet. Microbleed Rating, Resting State fMRI Analysis, and Diffusion Tensor Imaging (DTI) analyses are processed separately, however, the DTI and

Cortical Thickness pipelines are dependent on some components of the primary pipeline, thus, results from these processes are provided in separate spreadsheets.

cortical and subcortical lesions, numerous imaging markers of
cerebral small vessel disease, as well as, the focal and global brain
atrophy observed in neurodegenerative patient populations such
as AD and FTD.

The main goal of this paper is to highlight the overall
features of the neuroimaging pipeline that would be of interest
to a neurologist, clinician, or non-imaging researcher seeking
to utilize the ONDRI data that will be made publicly available
through an application process on October, 2020. For more
information on the ONDRI project, please visit: http://ondri.ca/.

METHODS

Study Participants
Ethics approval was obtained from all participating institutions.
Participants were recruited at 14 health centers across six
cities in Ontario, Canada: Hamilton General Hospital and
McMaster Medical Centre in Hamilton; Hotel Dieu Hospital
and Providence Care Hospital in Kingston; London Health
Science Centre and Parkwood Institute in London; Elizabeth
Bruyère Hospital and The Ottawa Hospital in Ottawa; Thunder
Bay Regional Health Sciences Centre in Thunder Bay; and
Baycrest Health Sciences (Baycrest), Centre for Addiction
and Mental Health (CAMH), St. Michael’s Hospital (SMH),
Sunnybrook Health Sciences Centre (Sunnybrook), and
Toronto Western Hospital—University Health Network (UHN)
in Toronto.
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Full study participant details are previously described (4).
Briefly, AD/MCI patients met National Institute on Aging
Alzheimer’s Association criteria for probable or possible AD,
or MCI (11, 12); PD patients met criteria for idiopathic PD
defined by the United Kingdom’s Parkinson’s Disease Society
Brain Bank clinical diagnostic criteria (13); ALS patients met
El Escorial World Federation of Neurology diagnostic criteria
for possible, probable, or definite familial or sporadic ALS
(14); FTD patients included possible or probable behavioral
variants of frontotemporal degeneration (15), agrammatic/non-
fluent and semantic variants of primary progressive aphasia
(16), and possible or probable progressive supranuclear palsy
(17); CVD patients experienced a mild to moderate ischemic
stroke event, verified on neuroimaging, 3 or more months prior
to enrollment in compliance with the National Institute of
Neurological Disorders and Stroke-Canadian Stroke Network
vascular cognitive impairment harmonization standards (18).

For illustrative purposes of the neuroimaging pipeline
outputs, baselineMRI data are included for the following ONDRI
patient cohorts: 126 AD/MCI, 140 PD, 40 ALS, 53 FTD, and
161 CVD.

MRI Acquisition
Neuroimaging was acquired at the following sites using each
site’s respective 3T MRI system: a General Electric (GE,
Milwaukee, WI) Discovery 750 was used at Sunnybrook,
McMaster University/Hamilton General Hospital, and CAMH;
a GE Signa HDxt at UHN; a Philips Medical Systems (Philips,
Best, Netherlands) Achieva system at Thunder Bay Regional
Health Sciences Centre; a Siemens Health Care (Siemens,
Erlangen, Germany) Prisma at Sunnybrook and London
Health Sciences Centre/Parkwood Hospital; a Siemens TrioTim
at Ottawa Hospital/Élisabeth Bruyère Hospital, Hotel Dieu
Hospital/Providence Care Hospital and Baycrest; and a Siemens
Skyra at SMH.

Harmonized with the Canadian Dementia Imaging Protocol
(19), the National Institute of Neurological Disorders
and Stroke–Canadian Stroke Network Vascular Cognitive
Impairment Harmonization Standards (18), full MRI acquisition
protocol details for each imaging site are provided on
Supplementary Table 1. In brief, the following structural
MRI sequences were obtained for each study participant: 3D
T1-weighted (T1), T2-weighted fluid attenuated inversion
recovery (FLAIR), interleaved T2-weighted and proton density
(T2/PD), and T2∗gradient recalled echo (GRE). It should
be noted that additional imaging protocol included a 30/32
direction diffusion tensor imaging (DTI), resting state functional
MRI, and arterial spin labeling (acquired only at one site), but are
beyond the scope of this paper and will be presented elsewhere
(1). Prior to image processing for volumetric quantification, MRI
were fully evaluated by a neuroradiologist (SS) for incidental
findings and for imaging quality by a medical biophysics
scientist (RB).

Structural Image Processing Methods:
Overview
The structural neuroimaging pipeline used in ONDRI is
a component based algorithm commonly referred to as

SABRE-Lesion Explorer (SABRE-LE) (20–23). This is a
semi-automated personalized approach to imaging-based
quantification, as it can provide a comprehensive volumetric
profile at the individual patient level. While it may take longer
to process each individual relative to fully automatic methods,
this careful patient-focused approach is more robust to the large
variability in stroke and neurodegenerative patient population.
This method has been previously validated (23–25) and
implemented in other Canadian studies (26–29). The following
sections describe the SABRE-LE comprehensive pipeline method
and the volumetric data that is extracted in greater detail. Data
visualization was performed using RStudio version 1.2.1335
(RStudio, Inc., Boston, MA) and ITKSnap (30).

Brain Regions of Interest: SABRE
The neuroimaging pipeline integrates a brain region parcellation
process called Semi-Automatic Brain Region Extraction (SABRE)
(20). This method separates the brain into 26 regions of interest
(ROIs: 13 per hemisphere) derived from anatomical landmarks
manually identified per hemisphere on each individual patient
(Figure 2 and Table 1). Each imaging analyst was required
to achieve an intraclass correlation coefficient (ICC) > 0.90
in order to work on ONDRI patient imaging analysis. The
automatic SunnyBrook Hippocampal Volumetry (SBHV) tool
(10) was subsequently integrated into the SABRE pipeline
(Figure 3), resulting in a total of 28 ROIs (left + right
hippocampus) (see following section). The SABRE brain maps
are personalized maps that are unique to each individual
patient and was developed from the Talairach grid system
(31). Relative to many brain mapping methods that implement
non-linear (i.e., “warping”) techniques to register an individual

FIGURE 2 | A 3-D surface volume rendering of T1-weighted MRI showing

right hemisphere SABRE regions in different colours. Left hemisphere regions

were made translucent for illustrative purposes, however, SABRE regions are

separately parcellated for each hemisphere and delineated using individualized

anatomical landmarks for both left and right sides.

Frontiers in Neurology | www.frontiersin.org 3 August 2020 | Volume 11 | Article 847

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramirez et al. ONDRI Structural MRI Methods and Measures

TABLE 1 | SABRE-LE neuroimaging pipeline brain tissue and lesion codes (top),

and detailed SABRE brain region codes (bottom).

Imaging descripton Code

Supratentorial total intracranial

volume

ST_TIV

Normal appearing gray matter NAGM

Normal appearing white matter NAWM

Sulcal cerebrospinal fluid CSF

Ventricular cerebropsinal fluid CSF

Periventricular white matter

hyperintensities

Pwmh

Deep white matter hyperintensities dWMH

Periventricular lacunes pLACN

Deep lacunes dLACN

Enlarged perivascular spaces PVS

Chronic stroke lesions Stroke

SABRE brain region name Code Lobe

Superior frontal SF Frontal

Middle frontal MF Frontal

Inferior frontal IF Frontal

Medial inferior frontal MIF Frontal

Medial superior frontal MSF Frontal

Medial middle frontal MMF Frontal

Superior parietal SP Parietal

Inferior parietal IP Parietal

Occipital O Occipital

Anterior temporal AT Temporal

Posterior temporal PT Temporal

Anterior basal ganglia/thalamus ABGT Basal

ganglia/thalamus

Posterior basal ganglia/thalamus PBGT Basal

ganglia/thalamus

Hippocampus HP Medial temporal

Note that each regional code will be preceded by an “L” or “R” indicating the left or

right hemisphere.

patient’s MRI to a standardized template, such as the Montreal
Neurological Institute brain (MNI152) (32), the SABRE approach
is essentially reversed, by mapping a brain template onto the
individual patient’s MRI. This method accounts for natural
individual differences in anatomy but more importantly, it
is a method that can compensate for significant focal and
global brain atrophy that is found in stroke, dementia, and
neurodegenerative patients.

Hippocampus
The hippocampus is an important part of the limbic system that
has been studied extensively in dementia, given its significant role
in memory functions (33, 34). The ONDRI pipeline incorporates
the multi-atlas based Sunnybrook Hippocampal Volumetric
(SBHV) segmentation tool (Figure 3) that was developed and
validated using the Sunnybrook Dementia Study and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI1) (10).

For ONDRI, the SBHV segmentation has been fully
integrated into the SABRE-LE pipeline, and includes left

FIGURE 3 | The SunnyBrook Hippocampal Volumetric (SBHV) segmentation

showing left (BLUE) and right (GREEN) hippocampi overlayed on an axial T1

MRI and extracted as 3-D surface volume renderings. Note images are in

radiological convention.

and right hippocampal sub-classifications for parenchyma,
hypointensities, and stroke volumes (when present). Currently,
there is some controversy over the pathophysiological origin
and relevance of small cavities commonly observed in the
hippocampus (35–38), which are particularly relevant in the
ONDRI CVD patients. Additionally, large cortico-subcortical
strokes can extend from the cortex into the hippocampus.
Given these vascular issues potentially affecting the overall
hippocampal volume, ONDRI provides sub-classifications for
parenchyma, hypointensities, and stroke volumes based on the
neuroimaging characteristics (i.e., intensity) using the voxel
segmentation classifications and takes a neutral stance on
the pathophysiological origin of small cavities observed in
this region.

Total Intracranial Volume
The supratentorial total intracranial volume (ST-TIV) is a
measure of all brain matter that is located below the dura
mater. It is referred to as supratentorial because the SABRE-LE
method removes all tissue below the tentorium, including the
cerebellum and portions of the brain stem (20, 22). Although the
removal of infratentorial structures was necessary for technical
segmentation reasons, researchers particularly interested in
the cerebellum, and brainstem can apply additional imaging
tools [e.g., (39)] to obtain these structures from the original
acquisitions upon special request.

In addition to sex-related differences, there are also normal
variations in head size. In order to account for these differences,
most neuroimaging studies implement some form of head-size
correction. This is also particularly important when assessing
brain atrophy in cross-sectional studies, as a true measure of
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FIGURE 4 | Axial views of T1-weighted MRI from an ONDRI FTD patient. Red arrows point to regions with significant focal brain atrophy. The SABRE-LE processing

pipeline accounts for this focal atrophy since it includes a measure of everything below the dura mater, including sub-arachnoid and sulcal cerebrospinal fluid (CSF),

shown in purple.

the total intracranial capacity will provide an indication of
where “there used to be brain and now there is cerebrospinal
fluid (CSF).” The presence of focal atrophy due to stroke
and neurodegenerative processes tends to result in over and
under erosion errors with many fully automated T1-based skull
stripping techniques, due to the similarity in intensity between
background and sulcal CSF. The SABRE-LE method accounts
for the presence of focal atrophy since it includes a measure
of everything below the dura mater, including sub-arachnoid
CSF, thus, providing a more accurate measure of head-size in
neurodegenerative patient populations (Figure 4).

It is important to note that there are numerous acceptable
head-size correction methods reported in the literature (40). A
simple method involves dividing each volume of interest by the
total head size to obtain a proportional volume (41). ONDRI
provides raw volumes and head size volumes (i.e., ST-TIV) for
each individual patient.

Brain Tissue Segmentation
A robust T1 intensity-based brain tissue segmentation, optimized
for aging and dementia, is performed after skull stripping and

removal of non-brain tissue (24). This automatic segmentation
method deals with scanner inhomogeneities by fitting localized
histograms to Gaussians to allocate voxels into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) tissue classes.
After manual ventricular CSF (vCSF) relabelling, there are four
brain tissue types that are segmented for volumetrics using
SABRE-LE (Table 2):

• Normal appearing gray matter (NAGM)
• Normal appearing white matter (NAWM)
• Sulcal cerebrospinal Fluid (sCSF)
• Ventricular CSF (vCSF).

The T1-based tissue segmentation is further corrected for
misclassified volumes using a PD-T2/FLAIR-based lesion
segmentation algorithm to account for the voxels appearing
as GM or CSF on T1 (42) due to WM changes from stroke
and cerebral small vessel disease. For this reason, the GM and
WM volumes are denoted as “normal appearing” (NAGM,
NAWM) to signify that these volumes have been re-labeled as
normal appearing after having been corrected with an additional
multi-modal MRI segmentation approach (Figure 5). Additional
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TABLE 2 | Data is shown as mean (standard deviation) unless otherwise specified. Raw values are presented for transparency purposes.

Demographics AD/MCI ALS FTD PD CVD

Number of participants 126 40 52 140 155

Age, years 71.0 (8.2) 62.0 (8.7) 67.8 (7.1) 67.9 (6.3) 69.3 (7.4)

Sex, n (%) female 57 (45.2) 16 (40.0) 19 (36.5) 31 (22.1) 48 (31.0)

ST-TIV, cc 1235.6 (144.6) 1203.6 (162.8) 1245.8 (129.6) 1316.6 (127.0) 1224.5 (133.2)

NAWM, cc 395.4 (344.5) 425.0 (78.8) 295.1 (59.4) 446.1 (61.2) 387.4 (54.4)

NAGM, cc 533.3 (51.4) 556.2 (65.7) 252.5 (56.0) 574.7 (47.1) 535.7 (52.3)

sCSF, cc 256.3 (62.1) 195.9 (52.9) 277.0 (57.8) 252.3 (53.3) 242.6 (59.3)

vCSF, cc 45.7 (28.4) 23.8 (11.1) 43.7 (16.6) 38.2 (19.4) 41.3 (23.0)

pWMH*, mm3 2564.5 (2811.2) 1040.0 (1252.5) 2736.0 (1623.8) 2563.5 (2708.0) 4054.0 (7468.0)

dWMH*, mm3 289.5 (424.7) 208.0 (386.5) 138.5 (379.3) 259.5 (225.7) 555.0 (584.0)

LACN*, mm3 15.5 (66.0) 14.5 (12.2) 9.5 (55.5) 17.5 (70.0) 92.0 (291.0)

PVS*, mm3 45.5 (35.5) 17.5 (9.5) 32.5 (36.3) 34.0 (30.0) 44.0 (33.0)

Stroke*, mm3 – 90.0a 393.0 (294.0)b 531.5 (1269.0)c 4644.5 (12963.0)d

*Data is shown as median (interquartile range). aAvailable in 1/40 participants. bAvailable in 6/52 participants. cAvailable in 4/140 participants. dAvailable in 88/155 participants AD/MCI,

Alzheimer’s Disease and Mild Cognitive Impairment; ALS, Amyotrophic Lateral Sclerosis; FTD, Frontotemporal Dementia; PD, Parkinson’s Disease; VCI, Vascular Cognitive Impairment;

ST-TIV, supratentorial total intracranial volume; NAWM, normal appearing white matter; NAGM, normal appearing gray matter; sCSF, sulcal cerebrospinal fluid; vCSF, ventricular

cerebrospinal fluid; pWMH, periventricular white matter hyperintensities; dWMH, deep white matter hyperintensities; LACN, lacunes; PVS, perivascular spaces.

FIGURE 5 | Due to relative intensities on different MRI sequences, WMH (red arrows) on T2 FLAIR are not hyperintense (bright) on T1-weighted images and tend to

appear as GM (gray) or CSF (blue) intensity on T1. Thus, T1-based segmentations tend to inflate the GM and CSF volumes in patients with stroke and cerebral small

vessel disease. To account for this, ONDRI’s imaging pipeline integrates an additional T2/FLAIR-based WMH segmentation to correct for this misclassification error

(42) to produce a normal appearing WM/GM (NAWM/NAGM) volumes.

brain tissue volumes for stroke lesions and cerebral small vessel
disease markers are discussed in the following sections.

The NAGM and NAWM volumes can be summed to obtain
a measure of parenchymal volume or reported individually
for head-size corrected measures to assess potential atrophy.
Additionally, a segmentation mask is generated which is
used for diffusion tensor imaging (DTI) analyses, where
diffusion metrics of the “normal appearing” WM tracts
can be separately analyzed from the diffusion within the
various types of white matter lesions including WMH,
lacunar infarcts, and cortical-subcortical stroke lesions.
Details of ONDRI DTI analysis pipeline are discussed
elsewhere (1).

The SABRE-LE method segments sCSF and vCSF into
separate compartments. The initial T1-based segmentation
automatically labels hypointense voxels into a CSF class, and
then the ventricles are manually relabelled to a vCSF class
by neuroimaging analysts following a standardized procedure.
Note that although some vCSF segmentation tools based on
standardized templates use smoothing algorithms that reclassify
all voxels within the ventricular compartment as ventricles,
the SABRE-LE method does not. With the SABRE-LE method,
choroid plexus are not arbitrarily removed or re-classified as
CSF and thus remain as part of the overall tissue segmentation.
Ventricular volumes are often used as a simple indicator
of overall brain atrophy, and have the potential for use
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as a differential indicator of disease and dementia severity
(Figure 6) (43–45).

White Matter Hyperintensities of Presumed
Vascular Origin (WMH)
Also referred to as leukoaraiosis, white matter lesions, subcortical
hyperintensities, and even, unidentified bright objects, WMH are
radiological anomalies commonly associated with cerebral small
vessel disease. Recently, the STandards for ReportIng Vascular

FIGURE 6 | Top row shows axial view of vCSF segmentation overlayed on T1

MRI for patients with AD (left) and FTD (right). Bottom row shows 3D surface

volume renderings of the vCSF segmentation. Note the differences in ventricle

size and the hemispheric differences between the two neurodegenerative

diseases.

changes on nEuroimaging (STRIVE) (46) have established a set
of criteria that recommends the use of the term white matter
hyperintensities of presumed vascular origin (WMH), as the
standard terminology to refer to these regions of hyperintense
(bright) signal found on particular MRI. It is important to note
that as previously mentioned, WMH do not appear hyperintense
on all types of MRIs and often appear isointense to GM on
T1 (Figure 7). Additionally, despite the naming convention,
it is important to note that WMH are not limited to the
white matter regions of the brain, as they are also commonly
observed in subcortical GM structures such as the basal ganglia
and thalamus. However, to avoid confusion between studies,
ONDRI recommends the use of the more popular term “white
matter hyperintensities.”

Periventricular (pWMH) and Deep White (dWMH)

Hyperintensities
Although WMH can be subdivided using SABRE ROIs, the
most common regional delineation of WMH is the separation
between periventricular (pWMH) and deep white (dWMH).
Historically controversial (47, 48), this concept is based on
several theories and research findings which suggest that WMH
in close proximity to the ventricles (hence the term “peri-
ventricular”) have a different pathological etiology (49, 50) and
are differentially correlated with cognitive/behavior deficits in
comparison to the more distal dWMH (despite the confusing fact
that pWMH are technically found in deeper white matter than
dWMH). Additionally, recent imaging-pathology correlations
suggest that a common substrate of pWMH relates to vasogenic
edema due to leakage and increased vascular resistance caused
by venous collagenosis, a small vessel venular disease of the deep
medullary venules (as opposed to the arterial side of the cerebral
vasculature) (51–53). It is also interesting to note that there is no
standard consensus in the literature on how to define pWMH vs.
dWMH, with some papers using a proportional distance to the
dura mater (54), some using an arbitrary cut-off (typically 13mm
from the ventricles) (55), and others using a 3D connectivity

FIGURE 7 | Axial view of various coregistered structural MRI sequences showing the relative intensity differences of WMH. Note that white matter hyperintensities are

not hyperintense (i.e., bright) on T1-weighted MRI.
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FIGURE 8 | Shows different methods for segmenting periventricular and deep WMH. Left image shows a proportional distance from the ventricular lining to the dura

mater; middle image shows an arbitrary distance of 13mm from ventricles, right image shows 3D connectivity algorithm supported by ONDRI, displayed as 3D

volume renderings of pWMH (red) and dWMH (blue) shown in sagittal and slightly tilted anterior views.

algorithm (23, 56)—the method that is currently supported by
ONDRI (see Figure 8).

Lacunes
Lacunes of presumed vascular origin are cystic fluid-filled cavities
in the subcortical brain regions (57, 58). They appear hypointense
(dark) on T1, hyperintense (bright) on PD and T2, and can
appear as a lesion with a hypointense central core surrounded by
a hyperintense rim/halo on FLAIR MRI (Figure 9, bottom row).
The recent STRIVE criteria (46) provides some consensus-based
guidelines regarding their definition, however, previous studies
have used various terms (e.g., “white matter lesions,” “lacunar
infarcts,” “covert strokes”) and radiological descriptions to classify
these lesions (59). Often difficult to differentiate from MRI-
visible perivascular spaces (PVS) (next section), lacunes tend to
be larger and less linear than PVS. They are associated with
increased risk of stroke, dementia, and gait disturbances (60). It
is important to note that due to the poor sensitivity of FLAIR in
thalamic regions (61) (Figure 9, top row), the ONDRI imaging
pipeline integrates an additional T2-based segmentation in order
to capture any potential lesions in this subcortical region thatmay
not appear on FLAIR.

MRI-Visible (Enlarged) Perivascular Spaces
(PVS)
Recent studies suggest that the brain utilizes the glymphatic
system (62, 63) to clear fluid and metabolic waste, using
a complex series of perivascular channels surrounding the
brain’s veins and arteries. It has been suggested that when
the perivascular channels are compromised due to aging,
disease, or trauma, the perivascular space becomes enlarged
and consequently, visible on structural MRI (64–67). MRI-
visible (enlarged) perivascular spaces (PVS) on T2 appear as
small (<3mm diameter), linear, hyperintensities following the
course of the vasculature (Figure 10). Additionally, PVS appear
hypointense (dark) on T1, isointense to GM on PD (vs. lacunes
which are bright on PD), and are very difficult to visualize on 2D

FLAIR, particularly in the basal ganglia region. Current research
suggests that PVS found in the white matter regions may indicate
Cerebral Amyloid Angiopathy (CAA), while PVS in the basal
ganglia may be more indicative of hypertensive arteriopathy (68–
71). Moreover, recent basic science research and limited clinical
evidence supports the theory that clearance of amyloid and other
metabolites occurs primarily during deep sleep (72, 73).

Previously referred to as dilated Virchow-Robin spaces,
measurement of PVS burden is typically accomplished using
visual rating scales under this old naming convention (74,
75). However, the novel quantitative method supported by
ONDRI provides a volumetric measure of PVS. This method
has been previously validated with common PVS visual scales
and has been used to study AD, normal elderly, and stroke
and cerebrovascular disease patients being assessed with sleep
polysomnography (72, 76). Although both lacunes and PVS
volumes are segmented automatically using the SABRE-LE
pipeline, false positive minimization procedures are manually
performed to remove incorrect segmentations and to reallocate
PVS to lacunes or vice versa depending on strict intensity
and shape-based criteria. Only highly trained neuroimaging
analysts achieving ICCs and DICE Similarity Indices (SI) > 0.90
are allowed to perform this procedure. Moreover, a research
neuroradiologist (FG) was consulted when faced with complex
radiological anomalies that were commonly observed in the CVD
patient cohort.

Cerebral Microbleeds
Although the SABRE-LE structural pipeline method used
by ONDRI does not support a cerebral microbleed (CMB)
segmentation algorithm, this brief section has been included to
describe this important measure of cerebral small vessel disease
burden. In ONDRI, CMB, and superficial siderosis burden are
being assessed visually by a highly qualified neuroradiologist
(SS). Cerebral microbleeds (CMB) have been shown to reflect
perivascular leakage of red blood cells that can be visualized as
low signal intensities (hypointense/dark spots) on T2∗-weighted
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FIGURE 9 | Top row shows a thalamic lacune as it appears on different coregistered MRI, hypointense (dark) on T1, hyperintense on PD-T2, and difficult to detect on

FLAIR. In contrast, the bottom row shows a subcortical lacunar infarct that presents with the classic central CSF-like hypointensity with a surrounding hyperintense

halo/rim on FLAIR.

gradient-recalled echo (GRE) (Figure 11) and susceptibility
weighted imaging (SWI) (77). There are two commonly used
methods of assessing CMB burden, the Microbleed Anatomical
Rating Scale (MARS) (78) and the Brain Observer MicroBleed
Scale (BOMBS) (79) visual rating scales. Previous studies
have shown that CMB are associated with an increased risk
of stroke, intracerebral hemorrhage, cognitive decline, and
dementia (80–84). Differences in anatomical distribution suggest
that CMB found in deep centrencephalic brain regions (basal
ganglia, thalamus, and brain stem) are more closely related
to hypertensive arteriopathy (85), while lobar CMB are more
closely associated with CAA and AD pathology (86–89), leading
to the development of the Boston criteria for the diagnosis of
possible/probable CAA (90, 91).

Chronic Stroke
According to recent estimates, stroke is the 2nd most common
cause of death worldwide (92) and the second leading cause
of dementia (93). In a 2013 global report, there were ∼25.7
million stroke survivors, and 7.5 million deaths from ischemic
and hemorrhagic stroke (94). In Canada, ∼62,000 people are
treated for stroke and transient ischemic attack. In a series of
publications, the Heart and Stroke Foundation Canadian Best
Practice Committees have been developing various evidence-
based recommendations to address issues regarding: telestroke

technologies (95); managing transitions of care following stroke
(96); mood, cognition, and fatigue following stroke (97);
hyperacute stroke care (98); secondary prevention of stroke (99);
and stroke during pregnancy (100, 101).

Although the term “stroke” may encompass a wide range of
clinical criteria (102), the Vascular Cognitive Impairment (VCI)
(18) inclusion-exclusion criteria for ONDRI CVD patients was
limited to mild-moderate ischemic stroke patients, defined by a
Modified Rankin Scale (MRS) (103) score of 0–3. It is important
to note that although there are a number of imaging techniques
used to measure acute stroke in the early stages (within a couple
of hours of stroke), the MRI methods applied to ONDRI CVD
patients are measures of post-stroke lesions, often referred to as
chronic stroke, with structural MRI acquired > 3 months post
ischemic stroke event.

As there are currently no reliable automatic ways to
quantify the range of cortico-subcortical stroke lesions, ONDRI
neuroimaging analysts manually delineate the stroke under
the direct supervision of a highly experienced research
neuroradiologist (FG). This manual delineation is strictly limited
to cortical strokes appearing as hyperintense (bright) on FLAIR
and hypointense (dark) on T1, although the entire stroke
volume often extended into the subcortical regions of the brain
(Figure 12). Although this total volume does not separate the
hypointense necrotic stroke core from the surrounding partially
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FIGURE 10 | Examples of the PVS segmentation (red and yellow) over-layed

onto structural MRI in axial (top 2 rows) and coronal views (bottom row).

infarcted hyperintense region indicating varying degrees of
gliosis and encephalomalacia, future automatic segmentation
techniques are currently being tested in ONDRI to include
this sub-segmentation.

RECOMMENDATIONS FOR REPORTING
AND ANALYSIS

Here we provide some general guidelines for reporting and
analysis that can be useful for researchers wishing to use
ONDRI data.

First and foremost, when reporting data for characterization
of the sample being analyzed, we recommend that the
original raw volumes are reported in tables for transparency

FIGURE 11 | Axial view of iron-sensitive T2* gradient echo (GRE) with red

arrow pointing to cerebral microbleeds visualized as hypointensities (dark).

and between-study comparisons; however, statistical analyses
should generally be performed on head-size corrected volumes.
Head size correction accounts for individual variations in
intracranial capacity and sex-related differences in head size
(104). Additionally, depending on the research question, the
volume of interest (i.e., NAWM, NAGM, CSF, or WMH)
could also be reported as a proportion of the total volume
within each SABRE region, or they can be reported as a
proportion of the total head-size (ST-TIV) for age-independent
normalization/correction. The version or date of the data release
should also be reported.

There are several ways that WMH can be analyzed and it
depends on the research question inmind. The simplest approach
is to sum the dWMH and pWMH, which results in a whole
brain measure of small vessel disease burden. Regional analyses
of WMH can also be performed to assess WMH burden within
a SABRE ROI. Additionally, WMH within different ROIs can
be combined by simply summing the volumes from different
SABRE regions to generate a larger ROI (e.g., sum all pWMH
and dWMH volumes within all frontal SABRE brain region
parcellations using the Frontal Lobe Codes shown on Table 1).

It is important to note that many measures of cerebral
small vessel disease, such as pWMH and dWMH, are typically
non-normally distributed (105), often inter-correlated (54), are
known to be age-related (106), and commonly associated with
vascular risk factors such as hypertension (107). Thus, careful
attention to these factors and previous research findings highlight
ONDRI’s recommendation to consider these additional factors
when analyzing imaging-based markers of cerebral small vessel
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FIGURE 12 | Axial view of coregistered structural MRI sequences (left to right): T1, PD, T2, and FLAIR. Images illustrate relative intensity differences of a large

cortico-subcortical stroke lesion across various types of MRI. The last pane shows ONDRI’s manual segmentation of the entire stroke core and surrounding

hyperintense partially infarcted tissue volume in green.

FIGURE 13 | Descriptive violin plots of the ONDRI disease cohorts showing median and interquartile range volumetrics for whole brain supratentorial total intracranial

volume (ST-TIV), normal appearing gray matter (NAGM), normal appearing white matter (NAWM), sulcal cerebrospinal fluid (sCSF), ventricular CSF (vCSF), MRI-visible

enlarged perivascular space (PVS) volumes, periventricular white matter hyperintensities (pWMH), deep WMH (dWMH), and lacunes (LACN).

disease. Given the skewed, non-normal distribution of WMH
(even after head-size correction), WMH volumes are typically
transformed (e.g., log) prior to standard parametric analyses.
For this reason, approaches designed to deal with complex
distributions should be considered (108).

Since the pipeline automatically segments lesions in the
periventricular region from the deep white regions, the lacunar
volumes are also provided in this manner. While some future
studies may argue a pathophysiological difference between these
two locations of lacunar presentation, there are currently limited
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studies to suggest this anatomical delineation. Given this, we
recommend that the two volumes be summed together prior to
analysis. Interestingly, lacunes and PVS volumes are not typically
head-size corrected in the clinical/scientific literature, however,
age, sex, WMH, and a measure of brain atrophy (e.g., BPF or
vCSF), and proper accounting of vascular risk are recommended
covariates when analyzing lacunes and PVS (109, 110). Note that
in many publications, lacunes, and PVS are reported as counts
(i.e., number of), because they are often measured using visual
rating methods that require the user to count the number of
lacunes or PVS observed on an MRI—often leading to wide
variations in definitions and conflicting findings in the literature
(59, 111). Since the lacunes and PVS in ONDRI are quantified
using segmentation based imaging analyses, PVS and lacunar
volumes are provided rather than counts.

Finally, any analyses using ONDRI’s CVD cohort should
consider the common comorbidities of depression, obstructive
sleep apnea, and cognitive impairment (112), as well the
subcortical silent brain infarcts/lacunes, WMH, and potentially,
CMB, which have recently been acknowledged as playing an
important role in primary stroke prevention (113).

RESULTS AND CONCLUSION

Of the n = 520 patients with MRI acquired, the ONDRI
neuroimaging pipeline was unable to process n = 1 FTD patient
due to extreme motion artifact (despite 2 baseline attempts
on 2 separate occasions), and n = 6 CVD patients due to
poor imaging quality (n = 3 FLAIR not usable, n = 2 T1
not usable, n = 1 PD/T2 not acquired). To illustrate whole
brain data extraction volumetric results from this pipeline,
neuroimaging summary statistics for each ONDRI disease cohort
are summarized on Table 2, and descriptive violin plots showing
median and interquartile ranges are provided for whole brain ST-
TIV, NAGM, NAWM, sCSF, vCSF, pWMH, and dWMH PVS,
and LACN are displayed on Figure 13. Stroke volumes were not
graphed due to the limited number of ONDRI patients with
cortico-subcortical stroke lesions.

It is important to note that the details in this manuscript focus
on ONDRI’s baseline data that will be released in October 2020,
the longitudinal follow-up data will be forthcoming.

Additionally, a cohort of cognitively normal older adults
recruited from the Brain-Eye Amyloid Memory (BEAM)
study (clinicaltrials.gov—NCT02524405) with harmonized
neuroimaging, neuropsychology, and data acquisition protocol,
will be included in ONDRI for comparative analyses. Participants
in BEAM were recruited from five sites (Sunnybrook, Baycrest,
CAMH, SMH, and UHN) that also participated in ONDRI.

ONDRI is the first multi-site, multiple assessment platform
study examining several neurodegenerative and neurovascular
diseases using a harmonized protocol that includes standardized
structural neuroimaging. The wide range of complex, and often
overlapping, brain pathologies represented in this cohort of
neurodegenerative patients included a number of comorbid
cerebral small vessel disease markers, cortico-subcortical stroke
lesions, combined with focal and global atrophy, posing

significant challenges to common imaging analysis tools. In
this paper, we presented the neuroimaging pipeline methods
implemented in ONDRI that were used to overcome many of
these challenges.

To further ensure a high level of data quality, the volumetric
data generated by the ONDRI structural neuroimaging team
were further subjected to comprehensive quality control analysis
pipelines including a novel multivariate outlier detection
algorithm developed by the ONDRI neuroinformatics group for
identification of anomalous observations (114, 115). Future work
will include generating longitudinal measures that will also be
made publicly available. As the neuroimaging data are combined
with releases fromONDRI’s clinical, neuropsychology, genomics,
eye tracking, gait and balance, ocular, and neuropathology
platforms, it becomes evident that ONDRI is a gold mine of
data opening the door to an unprecedented broad range of
cross-platform analyses resulting in numerous opportunities for
discovery and advances in diagnosis, prognosis, outcomes, and
care of neurodegenerative diseases.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
info@ondri.ca.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics approval was obtained from all participating
institutions. Participants were recruited at 14 health centers
across six cities in Ontario, Canada: Hamilton General Hospital
and McMaster Medical Centre in Hamilton; Hotel Dieu Hospital
and Providence Care Hospital in Kingston; London Health
Science Centre and Parkwood Institute in London; Elizabeth
Bruyère Hospital and The Ottawa Hospital in Ottawa; Thunder
Bay Regional Health Sciences Centre in Thunder Bay; and
Baycrest Health Sciences, Centre for Addiction and Mental
Health, St. Michael’s Hospital, Sunnybrook Health Sciences
Centre, and Toronto Western Hospital (University Health
Network) in Toronto. The patients/participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

JR: conceptualization, data curation, formal analysis,
investigation, methodology, software, validation, visualization,
writing (draft, review, and editing), and supervision. MH:
data curation, formal analysis, investigation, methodology,
software, validation, visualization, and writing (draft, review,
and editing). CS: conceptualization, data curation, formal
analysis, investigation, methodology, software, validation,
visualization, writing (review and editing), and supervision.
MO: data curation, methodology, software, visualization, and
writing (review and editing). SA: data curation, software,
validation, visualization, and writing (review and editing).
GS: conceptualization, data curation, methodology, and

Frontiers in Neurology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 847

https://www.clinicaltrials.gov
mailto:info@ondri.ca
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramirez et al. ONDRI Structural MRI Methods and Measures

software. MG: data curation, investigation, methodology,
software, validation, and writing (draft, review, and editing).
FG: conceptualization, data curation, investigation, validation,
visualization, writing (review and editing), and supervision.
SA and DB: data curation, formal analysis, investigation,
validation, and writing (review and editing). JL-D: investigation,
resources, validation, writing (draft, review, and editing), and
funding acquisition. SCS: conceptualization, investigation,
writing (draft, review, and editing), supervision, and funding
acquisition. DM, MM, and RS: conceptualization, resources,
investigation, writing (review and editing), supervision, and
funding acquisition. RB: conceptualization, data curation,
resources, investigation, writing (review and editing), and
supervision. SS: data curation, resources, investigation, writing
(review and editing), and supervision. SB: conceptualization,
resources, investigation, methodology, visualization, writing
(review and editing), supervision, and funding acquisition.
All authors contributed to the article and approved the
submitted version.

FUNDING

This work was funded by the Ontario Neurodegenerative Disease
Research Initiative, through the Ontario Brain Institute, an
independent non-profit corporation, funded partially by the
government of Ontario. The opinions, results, and conclusions
are those of the authors and no endorsement by the Ontario
Brain Institute is intended or should be inferred. Matching funds
were provided by participant hospital and research foundations,
including the Baycrest Foundation, Bruyere Research Institute,
Centre for Addiction and Mental Health Foundation, London
Health Sciences Foundation, McMaster University Faculty of
Health Sciences, Ottawa Brain and Mind Research Institute,
Queen’s University Faculty of Health Sciences, the Thunder
Bay Regional Health Sciences Centre, the University of Ottawa
Faculty of Medicine, and the Windsor/Essex County ALS
Association. The Temerty Family Foundation provided themajor
infrastructure matching funds.

ACKNOWLEDGMENTS

We would like to thank the ONDRI participants for the time,
consent, and participation in our study. Thank you to the L.C.

Campbell Foundation, and the analysts and software developers
in the LC Campbell Cognitive Neurology research team who
have contributed to the ONDRI imaging analysis, including
Edward Ntiri, Hassan Akhavein, Parisa Mojiri, Kirstin Walker,
Rita Meena, Pugaliya Puveendrakumaran, Courtney Berezuk,
and Alicia McNeely. This paper is available in preprint version
online: https://doi.org/10.1101/2019.12.13.875823.

ONDRI INVESTIGATORS

Michael Strong, Peter Kleinstiver, Natalie Rashkovan, Susan
Bronskill, Sandra E. Black, Michael Borrie, Elizabeth Finger,
Corinne Fischer, Andrew Frank, Morris Freedman, Sanjeev
Kumar, Stephen Pasternak, Bruce Pollock, Tarek Rajji, Dallas
Seitz, David Tang-Wai, Carmela Tartaglia, Brenda Varriano,
Agessandro Abrahao, Marvin Chum, Christen Shoesmith, John
Turnbull, Lorne Zinman, Jane Lawrence-Dewar, Donna Kwan,
Brian Tan, Julia Fraser, Bill McIlroy, Ben Cornish, Karen
Van Ooteghem, Frederico Faria, Manuel Montero-Odasso,
Yanina Sarquis-Adamson, Alanna Black, Barry Greenberg,
Wendy Hatch, Chris Hudson, Elena Leontieva, Ed Margolin,
Efrem Mandelcorn, Faryan Tayyari, Sherif Defrawy, Don
Brien, Ying Chen, Brian Coe, Doug Munoz, Alisia Bonnick,
Leanne Casaubon, Dar Dowlatshahi, Ayman Hassan, Jennifer
Mandzia, Demetrios Sahlas, Gustavo Saposnik, Richard H.
Swartz, David Breen, David Grimes, Mandar Jog, Anthony
Lang, Connie Marras, Mario Masellis, Tom Steeves, Dennis
Bulman, Allison Ann Dilliott, Mahdi Ghani, Rob Hegele, John
Robinson, Ekaterina Rogaeva, Sali Farhan, Rob Bartha, Hassan
Haddad, Nuwan Nanayakkara, Joel Ramirez, Christopher Scott,
Sean Symons, Courtney Berezuk, Melissa Holmes, Sabrina
Adamo, Miracle Ozzoude, Mojdeh Zamyadi, Stephen Arnott,
Derek Beaton, Malcolm Binns, Wendy Lou, Pradeep Raamana,
Stephen Strother, Kelly Sunderland, Athena Theyers, Abiramy
Uthirakumaran, Guangyong (GY) Zou, Sujeevini Sujanthan,
Mojdeh Zamyadi, David Munoz, Roger A. Dixon, John Woulfe,
Brian Levine, Paula McLaughlin, JB Orange, Alicia Peltsch,
Angela Roberts, Angela Troyer.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fneur.
2020.00847/full#supplementary-material

REFERENCES

1. Haddad SMH, Scott CJM, Ozzoude M, Holmes M, Arnott SR,
Nanayakkara ND, et al. Comparison of quality control methods for
automated diffusion tensor imaging analysis pipelines. PLoS ONE. (2020)
14:e0226715. doi: 10.1371/journal.pone.0226715

2. Kapoor A, Bartha R, Black SE, Borrie M, Freedman M, Gao F, et al.
Structural brainmagnetic resonance imaging to rule out comorbid pathology
in the assessment of Alzheimer’s disease dementia: findings from the
Ontario Neurodegenerative Disease Research Initiative (ONDRI) study and
clinical trials over the past 10 years. J Alzheimer’s Dis. (2020) 74:747–
57. doi: 10.3233/JAD-191097

3. Scott CJM, Arnott SR, Chemparathy A, Dong F, Solovey I, Gee T,
et al. An overview of the quality assurance and quality control of
magnetic resonance imaging data for the Ontario Neurodegenerative
Disease Research Initiative (ONDRI): pipeline development
and neuroinformatics. bioRxiv. (2020). doi: 10.1101/2020.01.10.
896415

4. Farhan SMK, Bartha R, Black SE, Corbett D, Finger E, Freedman
M, et al. The Ontario Neurodegenerative Disease Research Initiative
(ONDRI). Can J Neurol Sci. (2017) 44:196–202. doi: 10.1017/cjn.
2016.415

5. McLaughlin PM, Sunderland KM, Beaton D, Binns MA, Kwan D,
Levine B, et al. The quality assurance and quality control protocol

Frontiers in Neurology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 847

https://doi.org/10.1101/2019.12.13.875823
https://www.frontiersin.org/articles/10.3389/fneur.2020.00847/full#supplementary-material
https://doi.org/10.1371/journal.pone.0226715
https://doi.org/10.3233/JAD-191097
https://doi.org/10.1101/2020.01.10.896415
https://doi.org/10.1017/cjn.2016.415
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramirez et al. ONDRI Structural MRI Methods and Measures

for neuropsychological data collection and curation in the Ontario
Neurodegenerative Disease Research Initiative (ONDRI) study. Assessment.

(2020). doi: 10.1177/1073191120913933. [Epub ahead of print].
6. Dilliott AA, Evans EC, Farhan SMK, Ghani M, Sato C, Zhang M,

et al. Genetic variation in the ontario neurodegenerative disease research
initiative. Can J Neurol Sci. (2019) 46:491–8. doi: 10.1017/cjn.2019.228

7. Farhan SMK, Dilliott AA, Ghani M, Sato C, Liang E, Zhang M,
et al. The ONDRISeq panel: custom-designed next-generation sequencing
of genes related to neurodegeneration. NPJ Genomic Med. (2016)
1:16032. doi: 10.1038/npjgenmed.2016.32

8. Wong BM, Cheng RW, Mandelcorn ED, Margolin E, El-Defrawy
S, Yan P, et al. Validation of optical coherence tomography retinal
segmentation in neurodegenerative disease. Transl Vis Sci Technol. (2019)
8:6. doi: 10.1167/tvst.8.5.6

9. Montero-Odasso M, Pieruccini-Faria F, Bartha R, Black SE, Finger E,
Freedman M, et al. Motor phenotype in neurodegenerative disorders:
gait and balance platform study design protocol for the Ontario
Neurodegenerative Research Initiative (ONDRI). J Alzheimer’s Dis. (2017)
59:707–21. doi: 10.3233/JAD-170149

10. Nestor SM, Gibson E, Gao F-Q, Kiss A, Black SE. A direct
morphometric comparison of five labeling protocols for multi-atlas
driven automatic segmentation of the hippocampus in Alzheimer’s
disease. Neuroimage. (2013) 66:50–70. doi: 10.1016/j.neuroimage.2012.
10.081

11. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC,
et al. The diagnosis of mild cognitive impairment due to Alzheimer’s
disease: recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. (2011) 7:270–9. doi: 10.1016/j.jalz.2011.03.008

12. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas
CH, et al. The diagnosis of dementia due to Alzheimer’s disease:
recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. (2011) 7:263–9. doi: 10.1016/j.jalz.2011.03.005

13. Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis
of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. (1988)
51:745–52. doi: 10.1136/jnnp.51.6.745

14. Brooks BR. El Escorial World Federation of Neurology criteria for the
diagnosis of amyotrophic lateral sclerosis. Subcommittee on motor neuron
diseases/amyotrophic lateral sclerosis of the world federation of neurology
research group on neuromuscular diseases and the El Escorial. J Neurol Sci.
(1994) 124(Suppl.):96–107. doi: 10.1016/0022-510X(94)90191-0

15. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH,
Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the
behavioural variant of frontotemporal dementia. Brain. (2011) 134:2456–
77. doi: 10.1093/brain/awr179

16. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa
SF, et al. Classification of primary progressive aphasia and its variants.
Neurology. (2011) 76:1006–14. doi: 10.1212/WNL.0b013e31821103e6

17. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA,
Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy:
the movement disorder society criteria. Mov Disord. (2017) 32:853–
64. doi: 10.1002/mds.26987

18. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black
SE, et al. National Institute of Neurological Disorders and Stroke-Canadian
Stroke Network vascular cognitive impairment harmonization standards.
Stroke. (2006) 37:2220–41. doi: 10.1161/01.STR.0000237236.88823.47

19. Duchesne S, Chouinard I, Potvin O, Fonov VS, Khademi A, Bartha R,
et al. The canadian dementia imaging protocol: harmonizing national
cohorts. J Magn Reson Imaging. (2019) 49:456–65. doi: 10.1002/jmri.
26197

20. Dade LA, Gao FQ, Kovacevic N, Roy P, Rockel C, O’Toole CM, et al.
Semiautomatic brain region extraction: a method of parcellating brain
regions from structural magnetic resonance images. Neuroimage. (2004)
22:1492–502. doi: 10.1016/j.neuroimage.2004.03.023

21. Gibson E, Gao F, Black SE, Lobaugh NJ. Automatic segmentation of white
matter hyperintensities in the elderly using FLAIR images at 3T. J Magn

Reson. (2010) 31:1311–22. doi: 10.1002/jmri.22004

22. Ramirez J, Scott C, McNeely A, Berezuk C, Gao F, Szilagyi G, et al. Lesion
explorer: a video-guided, standardized protocol for accurate and reliable
MRI-derived volumetrics in Alzheimer’s disease and normal elderly. J Vis
Exp. (2014) 10:887. doi: 10.3791/50887

23. Ramirez J, Gibson E, Quddus A, Lobaugh NJ, Feinstein A, Levine
B, et al. Lesion Explorer: a comprehensive segmentation and
parcellation package to obtain regional volumetrics for subcortical
hyperintensities and intracranial tissue. Neuroimage. (2011)
54:963–73. doi: 10.1016/j.neuroimage.2010.09.013

24. Kovacevic N, Lobaugh NJ, Bronskill MJ, Levine B, Feinstein A, Black SE. A
robust method for extraction and automatic segmentation of brain images.
Neuroimage. (2002) 17:1087–100. doi: 10.1006/nimg.2002.1221

25. Ramirez J, Scott CJM, Black SE. A short-term scan-rescan reliability test
measuring brain tissue and subcortical hyperintensity volumetrics obtained
using the lesion explorer structural MRI processing pipeline. Brain Topogr.
(2013) 26:35–8. doi: 10.1007/s10548-012-0228-z

26. Dey AK, Stamenova V, Bacopulos A, Jeyakumar N, Turner GR, Black
SE, et al. Cognitive heterogeneity among community-dwelling older
adults with cerebral small vessel disease. Neurobiol Aging. (2019) 77:183–
93. doi: 10.1016/j.neurobiolaging.2018.12.011

27. Ramirez J, Singh N, Adamo S, Maged G, Thayalasuthan V, Zhang B, et al.
Carotid atherosclerosis and cerebral small vessel disease: preliminary results
from the canadian atherosclerosis imaging network project 1. Atheroscler
Suppl. (2018) 32:156. doi: 10.1016/j.atherosclerosissup.2018.04.473

28. Sam K, Peltenburg B, Conklin J, Sobczyk O, Poublanc J, Crawley AP, et al.
Cerebrovascular reactivity and white matter integrity. Neurology. (2016)
87:2333–9. doi: 10.1212/WNL.0000000000003373

29. Swardfager W, Cogo-Moreira H, Masellis M, Ramirez J,
Herrmann N, Edwards JD, et al. The effect of white matter
hyperintensities on verbal memory. Neurology. (2018) 90:e673–
82. doi: 10.1212/WNL.0000000000004983

30. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al.
User-guided 3D active contour segmentation of anatomical structures:
significantly improved efficiency and reliability. Neuroimage. (2006)
31:1116–28. doi: 10.1016/j.neuroimage.2006.01.015

31. Talairach J, Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain

3-Dimensional Proportional Grid System: An Approach to Cerebral Imaging.

Stuttgart: Thieme Medical Publishers (1988).
32. Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J. A probabilistic

atlas of the human brain: theory and rationale for its development.
Int Consortium Brain Mapping (ICBM) Neuroimage. (1995)
2:89–101. doi: 10.1006/nimg.1995.1012

33. Frisoni GB, Jack CR. Harmonization of magnetic resonance-based manual
hippocampal segmentation: a mandatory step for wide clinical use.
Alzheimers Dement. (2011) 7:171–4. doi: 10.1016/j.jalz.2010.06.007

34. Moodley KK, ChanD. The hippocampus in neurodegenerative disease. Front
Neurol Neurosci. (2014) 34:95–108. doi: 10.1159/000356430

35. Bastos-Leite AJ, Van Waesberghe JH, Oen AL, Van Der Flier WM, Scheltens
P, Barkhof F. Hippocampal sulcus width and cavities: comparison between
patients with Alzheimer disease and non-demented elderly subjects. Am
J Neuroradiol. (2006) 27:2141–5. Available online at: http://www.ajnr.org/
content/27/10/2141

36. Maller JJ, Réglade-Meslin C, Chan P, Daskalakis ZJ, Thomson RHS,
Anstey KJ, et al. Hippocampal sulcal cavities: prevalence, risk factors
and relationship to memory impairment. Brain Res. (2011) 1368:222–
30. doi: 10.1016/j.brainres.2010.10.089

37. Van Veluw SJ, Wisse LEM, Kuijf HJ, Spliet WGM, Hendrikse J, Luijten PR,
et al. Hippocampal T2 hyperintensities on 7 Tesla MRI. NeuroImage Clin.
(2013) 3:196–201. doi: 10.1016/j.nicl.2013.08.003

38. Yao M, Zhu YC, Soumaré A, Dufouil C, Mazoyer B, Tzourio C,
et al. Hippocampal perivascular spaces are related to aging and
blood pressure but not to cognition. Neurobiol Aging. (2014)
35:2118–25. doi: 10.1016/j.neurobiolaging.2014.03.021

39. Park MTM, Pipitone J, Baer LH, Winterburn JL, Shah Y, Chavez
S, et al. Derivation of high-resolution MRI atlases of the human
cerebellum at 3T and segmentation using multiple automatically generated
templates. Neuroimage. (2014) 95:217–31. doi: 10.1016/j.neuroimage.2014.
03.037

Frontiers in Neurology | www.frontiersin.org 14 August 2020 | Volume 11 | Article 847

https://doi.org/10.1177/1073191120913933
https://doi.org/10.1017/cjn.2019.228
https://doi.org/10.1038/npjgenmed.2016.32
https://doi.org/10.1167/tvst.8.5.6
https://doi.org/10.3233/JAD-170149
https://doi.org/10.1016/j.neuroimage.2012.10.081
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1136/jnnp.51.6.745
https://doi.org/10.1016/0022-510X(94)90191-0
https://doi.org/10.1093/brain/awr179
https://doi.org/10.1212/WNL.0b013e31821103e6
https://doi.org/10.1002/mds.26987
https://doi.org/10.1161/01.STR.0000237236.88823.47
https://doi.org/10.1002/jmri.26197
https://doi.org/10.1016/j.neuroimage.2004.03.023
https://doi.org/10.1002/jmri.22004
https://doi.org/10.3791/50887
https://doi.org/10.1016/j.neuroimage.2010.09.013
https://doi.org/10.1006/nimg.2002.1221
https://doi.org/10.1007/s10548-012-0228-z
https://doi.org/10.1016/j.neurobiolaging.2018.12.011
https://doi.org/10.1016/j.atherosclerosissup.2018.04.473
https://doi.org/10.1212/WNL.0000000000003373
https://doi.org/10.1212/WNL.0000000000004983
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1006/nimg.1995.1012
https://doi.org/10.1016/j.jalz.2010.06.007
https://doi.org/10.1159/000356430
http://www.ajnr.org/content/27/10/2141
http://www.ajnr.org/content/27/10/2141
https://doi.org/10.1016/j.brainres.2010.10.089
https://doi.org/10.1016/j.nicl.2013.08.003
https://doi.org/10.1016/j.neurobiolaging.2014.03.021
https://doi.org/10.1016/j.neuroimage.2014.03.037
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramirez et al. ONDRI Structural MRI Methods and Measures

40. Vågberg M, Granåsen G, Svenningsson A. Brain parenchymal fraction in
healthy adults—a systematic review of the literature. PLoS ONE. (2017)
12:e0170018. doi: 10.1371/journal.pone.0170018

41. Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L. Use of the brain
parenchymal fraction to measure whole brain atrophy in relapsing-remitting
MS. Multiple Sclerosis Collaborative Research Group. Neurology. (1999)
53:1698–704. doi: 10.1212/WNL.53.8.1698

42. Levy-Cooperman N, Ramirez J, Lobaugh NJ, Black SE. Misclassified tissue
volumes in Alzheimer disease patients with white matter hyperintensities:
importance of lesion segmentation procedures for volumetric
analysis. Stroke. (2008) 39:1134–41. doi: 10.1161/STROKEAHA.107.
498196

43. Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V, Wells JL,
et al. Ventricular enlargement as a possible measure of Alzheimer’s disease
progression validated using the Alzheimer’s disease neuroimaging initiative
database. Brain. (2008) 131:2443–54. doi: 10.1093/brain/awn146

44. Sapkota S, Ramirez J, Stuss DT, Masellis M, Black SE. Clinical dementia
severity associated with ventricular size is differentially moderated by
cognitive reserve in men and women. Alzheimers Res Ther. (2018)
10:89. doi: 10.1186/s13195-018-0419-2

45. Tavares TP, Mitchell DGV, Coleman K, Shoesmith C, Bartha R,
Cash DM, et al. Ventricular volume expansion in presymptomatic
genetic frontotemporal dementia. Neurology. (2019) 93:e1699–
706. doi: 10.1212/WNL.0000000000008386

46. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R,
et al. Neuroimaging standards for research into small vessel disease and
its contribution to ageing and neurodegeneration. Lancet Neurol. (2013)
12:822–38. doi: 10.1016/S1474-4422(13)70124-8

47. Barkhof F, Scheltens P. Is the whole brain periventricular? J Neurol Neurosurg
Psychiatry. (2006) 77:143–4. doi: 10.1136/jnnp.2005.075101

48. Sachdev P, Wen W. Should we distinguish between periventricular
and deep white matter hyperintensities? Stroke. (2005) 36:2342–
3. doi: 10.1161/01.STR.0000185694.52347.6e

49. Gouw AA, Seewann A, van der Flier WM, Barkhof F, Rozemuller AM,
Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of
MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. (2011)
82:126–35. doi: 10.1136/jnnp.2009.204685

50. Simpson JE, Ince PG, Higham CE, Gelsthorpe CH, Fernando MS, Matthews
F, et al. Microglial activation in white matter lesions and non-lesional
white matter of ageing brains. Neuropathol Appl Neurobiol. (2007) 33:670–
83. doi: 10.1111/j.1365-2990.2007.00890.x

51. Black SE, Gao FQ, Bilbao J. Understanding white matter disease: imaging-
pathological correlations in vascular cognitive impairment. Stroke. (2009)
40:S48–52. doi: 10.1161/STROKEAHA.108.537704

52. Keith J, Gao F, Noor R, Kiss A, Balasubramaniam G, Au K, et al.
Collagenosis of the deep medullary veins: an underrecognized pathologic
correlate of white matter hyperintensities and periventricular infarction?
J Neuropathol Exp Neurol. (2017) 76:299–312. doi: 10.1093/jnen/n
lx009

53. Moody DM, Brown WR, Challa VR, Anderson RL. Periventricular venous
collagenosis: association with leukoaraiosis. Radiology. (1995) 194:469–
76. doi: 10.1148/radiology.194.2.7824728

54. Decarli C, Fletcher E, Ramey V, Harvey D, JagustWJ. Anatomical mapping of
white matter hyperintensities (WMH): exploring the relationships between
periventricular WMH, deep WMH, and total WMH burden. Stroke. (2005)
36:50–5. doi: 10.1161/01.STR.0000150668.58689.f2

55. Sachdev P, Chen X, Wen W. White matter hyperintensities
in mid-adult life. Curr Opin Psychiatry. (2008) 21:268–
74. doi: 10.1097/YCO.0b013e3282f945d5

56. van den Heuvel DM, ten VD, de Craen AJ, dmiraal-Behloul F,
Olofsen H, Bollen EL, et al. Increase in periventricular white matter
hyperintensities parallels decline in mental processing speed in a non-
demented elderly population. J Neurol Neurosurg Psychiatry. (2006) 77:149–
53. doi: 10.1136/jnnp.2005.070193

57. Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology. (1998)
50:841. doi: 10.1212/WNL.50.4.841-a

58. Roman GC. On the history of lacunes, etat crible, and the white
matter lesions of vascular dementia. Cerebrovasc Dis. (2002) 13:1–
6. doi: 10.1159/000049142

59. Potter GM, Marlborough FJ, Wardlaw JM. Wide variation in definition,
detection, and description of lacunar lesions on imaging. Stroke. (2011)
42:359–66. doi: 10.1161/STROKEAHA.110.594754

60. Vermeer SE, Longstreth WTJr, Koudstaal PJ. Silent brain
infarcts: a systematic review. Lancet Neurol. (2007) 6:611–
9. doi: 10.1016/S1474-4422(07)70170-9

61. Bastos Leite AJ, van Straaten EC, Scheltens P, Lycklama G, Barkhof
F. Thalamic lesions in vascular dementia: low sensitivity of fluid-
attenuated inversion recovery (FLAIR) imaging. Stroke. (2004) 35:415–
9. doi: 10.1161/01.STR.0000109226.67085.5A

62. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The
glymphatic system: a beginner’s guide. Neurochem Res. (2015)
40:2583–99. doi: 10.1007/s11064-015-1581-6

63. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic
pathway in neurological disorders. Lancet Neurol. (2018)
17:1016–24. doi: 10.1016/S1474-4422(18)30318-1

64. Ballerini L, Lovreglio R, Valdés Hernández MDC, Ramirez J, MacIntosh
BJ, Black SE, et al. Perivascular spaces segmentation in brain MRI
using optimal 3D filtering. Sci Rep. (2018) 8:5. doi: 10.1038/s41598-018-1
9781-5

65. Ramirez J, Berezuk C, McNeely AA, Gao F, McLaurin J, Black SE.
Imaging the perivascular space as a potential biomarker of neurovascular
and neurodegenerative diseases. Cell Mol Neurobiol. (2016) 36:289–
99. doi: 10.1007/s10571-016-0343-6

66. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans
E, et al. Clearance systems in the brain-implications for Alzheimer disease.
Nat Rev Neurol. (2015) 11:457–70. doi: 10.1038/nrneurol.2015.119

67. Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H,
et al. Perivascular spaces in the brain: anatomy, physiology and pathology.
Nat Rev Neurol. (2020) 16:137–53. doi: 10.1038/s41582-020-0312-z

68. Banerjee G, Kim HJ, Fox Z, Jäger HR, Wilson D, Charidimou A, et al.
MRI-visible perivascular space location is associated with Alzheimer’s
disease independently of amyloid burden. Brain. (2017) 140:1107–
16. doi: 10.1093/brain/awx003

69. Charidimou A, Jaunmuktane Z, Baron JC, Burnell M, Varlet P,
Peeters A, et al. White matter perivascular spaces: an MRI marker
in pathology-proven cerebral amyloid angiopathy? Neurology. (2014)
82:57–62. doi: 10.1212/01.wnl.0000438225.02729.04

70. Charidimou A, Hong YT, Jager HR, Fox Z, Aigbirhio FI, Fryer TD,
et al. White matter perivascular spaces on magnetic resonance imaging:
marker of cerebrovascular amyloid burden? Stroke. (2015) 46:1707–
9. doi: 10.1161/STROKEAHA.115.009090

71. Martinez-Ramirez S, Pontes-Neto OM, Dumas AP, Auriel E, Halpin
A, Quimby M, et al. Topography of dilated perivascular spaces in
subjects from a memory clinic cohort. Neurology. (2013) 80:1551–
6. doi: 10.1212/WNL.0b013e31828f1876

72. Berezuk C, Ramirez J, Gao F, Scott CJM, Huroy M. Virchow-robin spaces :
correlations with polysomnography-derived sleep parameters. Sleep. (2015)
38:853–8. doi: 10.5665/sleep.4726

73. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep
drives metabolite clearance from the adult brain. Science. (2013) 342:373–
7. doi: 10.1126/science.1241224

74. Adams HHH, Cavalieri M, Verhaaren BFJ, Bos D, Van Der
Lugt A, Enzinger C, et al. Rating method for dilated virchow-
robin spaces on magnetic resonance imaging. Stroke. (2013)
44:1732–5. doi: 10.1161/STROKEAHA.111.000620

75. Patankar TF, Mitra D, Varma A, Snowden J, Neary D, Jackson A. Dilatation
of the Virchow-Robin space is a sensitive indicator of cerebral microvascular
disease: study in elderly patients with dementia. Am J Neuroradiol.
(2005) 26:1512–20. Available online at: http://www.ajnr.org/content/26/6/
1512

76. Ramirez J, Berezuk C, McNeely AA, Scott CJM, Gao F, Black SE. Visible
Virchow-Robin spaces on magnetic resonance imaging of Alzheimer’s
disease patients and normal elderly from the Sunnybrook dementia study.
J Alzheimer’s Dis. (2015) 43:415–24. doi: 10.3233/JAD-132528

77. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A,
Al-Shahi Salman R, Warach S, et al. Cerebral microbleeds: a
guide to detection and interpretation. Lancet Neurol. (2009)
8:165–74. doi: 10.1016/S1474-4422(09)70013-4

Frontiers in Neurology | www.frontiersin.org 15 August 2020 | Volume 11 | Article 847

https://doi.org/10.1371/journal.pone.0170018
https://doi.org/10.1212/WNL.53.8.1698
https://doi.org/10.1161/STROKEAHA.107.498196
https://doi.org/10.1093/brain/awn146
https://doi.org/10.1186/s13195-018-0419-2
https://doi.org/10.1212/WNL.0000000000008386
https://doi.org/10.1016/S1474-4422(13)70124-8
https://doi.org/10.1136/jnnp.2005.075101
https://doi.org/10.1161/01.STR.0000185694.52347.6e
https://doi.org/10.1136/jnnp.2009.204685
https://doi.org/10.1111/j.1365-2990.2007.00890.x
https://doi.org/10.1161/STROKEAHA.108.537704
https://doi.org/10.1093/jnen/nlx009
https://doi.org/10.1148/radiology.194.2.7824728
https://doi.org/10.1161/01.STR.0000150668.58689.f2
https://doi.org/10.1097/YCO.0b013e3282f945d5
https://doi.org/10.1136/jnnp.2005.070193
https://doi.org/10.1212/WNL.50.4.841-a
https://doi.org/10.1159/000049142
https://doi.org/10.1161/STROKEAHA.110.594754
https://doi.org/10.1016/S1474-4422(07)70170-9
https://doi.org/10.1161/01.STR.0000109226.67085.5A
https://doi.org/10.1007/s11064-015-1581-6
https://doi.org/10.1016/S1474-4422(18)30318-1
https://doi.org/10.1038/s41598-018-19781-5
https://doi.org/10.1007/s10571-016-0343-6
https://doi.org/10.1038/nrneurol.2015.119
https://doi.org/10.1038/s41582-020-0312-z
https://doi.org/10.1093/brain/awx003
https://doi.org/10.1212/01.wnl.0000438225.02729.04
https://doi.org/10.1161/STROKEAHA.115.009090
https://doi.org/10.1212/WNL.0b013e31828f1876
https://doi.org/10.5665/sleep.4726
https://doi.org/10.1126/science.1241224
https://doi.org/10.1161/STROKEAHA.111.000620
http://www.ajnr.org/content/26/6/1512
http://www.ajnr.org/content/26/6/1512
https://doi.org/10.3233/JAD-132528
https://doi.org/10.1016/S1474-4422(09)70013-4
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramirez et al. ONDRI Structural MRI Methods and Measures

78. Gregoire SM, Chaudhary UJ, Brown MM, Yousry TA, Kallis C, Jager
HR, et al. The Microbleed Anatomical Rating Scale (MARS): reliability
of a tool to map brain microbleeds. Neurology. (2009) 73:1759–
66. doi: 10.1212/WNL.0b013e3181c34a7d

79. Cordonnier C, Potter GM, Jackson CA, Doubal F, Keir S, Sudlow CLM,
et al. Improving interrater agreement about brain microbleeds: development
of the Brain Observer MicroBleed Scale (BOMBS). Stroke. (2009) 40:94–
9. doi: 10.1161/STROKEAHA.108.526996

80. Akoudad S, Wolters FJ, Viswanathan A, de Bruijn RF, van der
Lugt A, Hofman A, et al. Association of cerebral microbleeds
with cognitive decline and dementia. JAMA Neurol. (2016)
73:934–43. doi: 10.1001/jamaneurol.2016.1017

81. Boyle PA, Yu L, Nag S, Leurgans S, Wilson RS, Bennett DA,
et al. Cerebral amyloid angiopathy and cognitive outcomes in
community-based older persons. Neurology. (2015) 85:1930–
6. doi: 10.1212/WNL.0000000000002175

82. Goos JD, Kester MI, Barkhof F, Klein M, Blankenstein MA, Scheltens P,
et al. Patients with Alzheimer disease with multiple microbleeds: relation
with cerebrospinal fluid biomarkers and cognition. Stroke. (2009) 40:3455–
60. doi: 10.1161/STROKEAHA.109.558197

83. Poels MMF, Vernooij MW, Ikram MA, Hofman A, Krestin GP,
Van Der Lugt A, et al. Prevalence and risk factors of cerebral
microbleeds: an update of the rotterdam scan study. Stroke. (2010)
41:S103–6. doi: 10.1161/STROKEAHA.110.595181

84. Akoudad S, Portegies MLP, Koudstaal PJ, Hofman A, Van Der Lugt
A, Ikram MA, et al. Cerebral microbleeds are associated with an
increased risk of stroke: the rotterdam study. Circulation. (2015) 132:509–
16. doi: 10.1161/CIRCULATIONAHA.115.016261

85. Charidimou A, Linn J, Vernooij MW, Opherk C, Akoudad S, Baron JC,
et al. Cortical superficial siderosis: detection and clinical significance in
cerebral amyloid angiopathy and related conditions. Brain. (2015) 138:2126–
39. doi: 10.1093/brain/awv162

86. Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s
disease: innocent observation or key player? Brain. (2011) 134:335–
44. doi: 10.1093/brain/awq321

87. Mesker DJ, Poels MMF, Ikram MA, Vernooij MW, Hofman A, Vrooman
HA, et al. Lobar distribution of cerebral microbleeds. Arch Neurol. (2011)
68:93. doi: 10.1001/archneurol.2011.93

88. Pettersen J, Sathiyamoorthy G, Gao F, Szilagyi G, Nadkarni N,
St George-Hyslop P, et al. Microbleed topography, leukoaraiosis,
and cognition in probable Alzheimer disease from the sunnybrook
dementia study. Arch Neurol. (2008) 65:790–5. doi: 10.1001/archneur.65.
6.790

89. Martinez-Ramirez S, Romero JR, Shoamanesh A, McKee AC, Van Etten E,
Pontes-Neto O, et al. Diagnostic value of lobar microbleeds in individuals
without intracerebral hemorrhage. Alzheimer’s Dement. (2015) 11:1480–
8. doi: 10.1016/j.jalz.2015.04.009

90. Boulouis G, Charidimou A, Greenberg SM. Sporadic cerebral amyloid
angiopathy: pathophysiology, neuroimaging features, and clinical
implications. Semin Neurol. (2016) 36:233–43. doi: 10.1055/s-0036-1581993

91. Smith EE, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy:
validation of the Boston criteria. Curr Atheroscler Rep. (2003) 5:260–
6. doi: 10.1007/s11883-003-0048-4

92. Feigin VL, Norrving B,Mensah GA. Global burden of stroke.Circ Res. (2017)
120:439–48. doi: 10.1161/CIRCRESAHA.116.308413

93. Gorelick PB, Scuteri A, Black SE, DeCarli C, Greenberg SM,
Iadecola C, et al. Vascular contributions to cognitive impairment
and dementia: a statement for healthcare professionals from the
american heart association/american stroke association. Stroke. (2011)
42:2672–713. doi: 10.1161/STR.0b013e3182299496

94. Feigin VL, Krishnamurthi RV, Parmar P, Norrving B, Mensah GA, Bennett
DA, et al. Update on the global burden of ischemic and hemorrhagic stroke
in 1990–2013: the GBD 2013 study. Neuroepidemiology. (2015) 45:161–
76. doi: 10.1159/000441085

95. Blacquiere D, Lindsay MP, Foley N, Taralson C, Alcock S, Balg
C, et al. Canadian stroke best practice recommendations: telestroke
best practice guidelines update 2017. Int J Stroke. (2017) 12:886–
95. doi: 10.1177/1747493017706239

96. Cameron JI, OConnell C, Foley N, Salter K, Booth R, Boyle R, et al.
Canadian stroke best practice recommendations: managing transitions of
care following stroke, guidelines update 2016. Int J Stroke. (2016) 11:807–
22. doi: 10.1177/1747493016660102

97. Lanctôt KL, Lindsay MP, Smith EE, Sahlas DJ, Foley N, Gubitz G,
et al. Canadian stroke best practice recommendations: mood, cognition
and fatigue following stroke, 6th edition update 2019. Int J Stroke.

(2019). doi: 10.1177/1747493019847334. [Epub ahead of print].
98. Casaubon LK, Boulanger J-M, Glasser E, Blacquiere D, Boucher S,

Brown K, et al. Canadian stroke best practice recommendations : acute
inpatient stroke care guidelines, update 2015. Int J Stroke. (2016) 11:239–
52. doi: 10.1177/1747493015622461

99. Wein T, Lindsay MP, Côté R, Foley N, Berlingieri J, Bhogal S, et al.
Canadian stroke best practice recommendations: secondary prevention of
stroke, sixth edition practice guidelines, update 2017. Int J Stroke. (2018)
13:420–43. doi: 10.1177/1747493017743062

100. Ladhani NNN, Swartz RH, Foley N, Nerenberg K, Smith EE, Gubitz
G, et al. Canadian stroke best practice consensus statement: acute
stroke management during pregnancy. Int J Stroke. (2018) 13:743–
58. doi: 10.1177/1747493018786617

101. Swartz RH, Ladhani NNN, Foley N, Nerenberg K, Bal S, Barrett J,
et al. Canadian stroke best practice consensus statement: secondary
stroke prevention during pregnancy. Int J Stroke. (2018) 13:406–
19. doi: 10.1177/1747493017743801

102. Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras
A, et al. An updated definition of stroke for the twenty-first
century: a statement for healthcare professionals from the American
heart association/American stroke association. Stroke. (2013)
44:2064–89. doi: 10.1161/STR.0b013e318296aeca

103. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn
J. Interobserver agreement for the assessment of handicap in
stroke patients. Stroke. (1988) 19:604–7. doi: 10.1161/01.STR.19.
5.604

104. Decarli C, Massaro J, Harvey D, Hald J, Tullberg M, Au R, et al.
Measures of brain morphology and infarction in the framingham heart
study: establishing what is normal. Neurobiol Aging. (2005) 26:491–
510. doi: 10.1016/j.neurobiolaging.2004.05.004

105. Carmichael O, Schwarz C, Drucker D, Fletcher E, Harvey D, Beckett L,
et al. Longitudinal changes in white matter disease and cognition in the 1st
year of the Alzheimer disease neuroimaging initiative. Arch Neurol. (2010)
67:1370–8. doi: 10.1001/archneurol.2010.284

106. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical
characteristics to therapeutic challenges. Lancet Neurol. (2010) 9:689–
701. doi: 10.1016/S1474-4422(10)70104-6

107. Basile AM, Pantoni L, Pracucci G, Asplund K, Chabriat H, Erkinjuntti T,
et al. Age, hypertension, and lacunar stroke are the major determinants
of the severity of age-related white matter changes. LADIS. (2006) 21:315–
22. doi: 10.1159/000091536

108. Nguyen LH, Holmes S. Ten quick tips for effective dimensionality reduction.
PLoS Comput Biol. (2019) 15:e1006907. doi: 10.1371/journal.pcbi.1006907

109. Zhu YC, Dufouil C, Mazoyer B, Soumare A, Ricolfi F, Tzourio C, et al.
Frequency and location of dilated Virchow-Robin spaces in elderly people:
a population-based 3D MR imaging study. AJNR Am J Neuroradiol. (2011)
32:709–13. doi: 10.3174/ajnr.A2366

110. Zhu YC, Tzourio C, Soumare A, Mazoyer B, Dufouil C, Chabriat H. Severity
of dilated Virchow-Robin spaces is associated with age, blood pressure, and
MRImarkers of small vessel disease: a population-based study. Stroke. (2010)
41:2483–90. doi: 10.1161/STROKEAHA.110.591586

111. Francis F, Ballerini L, Wardlaw JM. Perivascular spaces and their
associations with risk factors, clinical disorders and neuroimaging features:
a systematic review and meta-analysis. Int J Stroke. (2019) 14:359–
71. doi: 10.1177/1747493019830321

112. Swartz RH, Bayley M, Lanctôt KL, Murray BJ, Cayley ML, Lien K, et al.
Post-stroke depression, obstructive sleep apnea, and cognitive impairment:
rationale for, and barriers to, routine screening. Int J Stroke. (2016) 11:509–
18. doi: 10.1177/1747493016641968

113. Smith EE, Saposnik G, Biessels GJ, Doubal FN, Fornage M,
Gorelick PB, et al. Prevention of stroke in patients with silent

Frontiers in Neurology | www.frontiersin.org 16 August 2020 | Volume 11 | Article 847

https://doi.org/10.1212/WNL.0b013e3181c34a7d
https://doi.org/10.1161/STROKEAHA.108.526996
https://doi.org/10.1001/jamaneurol.2016.1017
https://doi.org/10.1212/WNL.0000000000002175
https://doi.org/10.1161/STROKEAHA.109.558197
https://doi.org/10.1161/STROKEAHA.110.595181
https://doi.org/10.1161/CIRCULATIONAHA.115.016261
https://doi.org/10.1093/brain/awv162
https://doi.org/10.1093/brain/awq321
https://doi.org/10.1001/archneurol.2011.93
https://doi.org/10.1001/archneur.65.6.790
https://doi.org/10.1016/j.jalz.2015.04.009
https://doi.org/10.1055/s-0036-1581993
https://doi.org/10.1007/s11883-003-0048-4
https://doi.org/10.1161/CIRCRESAHA.116.308413
https://doi.org/10.1161/STR.0b013e3182299496
https://doi.org/10.1159/000441085
https://doi.org/10.1177/1747493017706239
https://doi.org/10.1177/1747493016660102
https://doi.org/10.1177/1747493019847334
https://doi.org/10.1177/1747493015622461
https://doi.org/10.1177/1747493017743062
https://doi.org/10.1177/1747493018786617
https://doi.org/10.1177/1747493017743801
https://doi.org/10.1161/STR.0b013e318296aeca
https://doi.org/10.1161/01.STR.19.5.604
https://doi.org/10.1016/j.neurobiolaging.2004.05.004
https://doi.org/10.1001/archneurol.2010.284
https://doi.org/10.1016/S1474-4422(10)70104-6
https://doi.org/10.1159/000091536
https://doi.org/10.1371/journal.pcbi.1006907
https://doi.org/10.3174/ajnr.A2366
https://doi.org/10.1161/STROKEAHA.110.591586
https://doi.org/10.1177/1747493019830321
https://doi.org/10.1177/1747493016641968
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ramirez et al. ONDRI Structural MRI Methods and Measures

cerebrovascular disease: a scientific statement for healthcare
professionals from the American Heart Association/American Stroke
Association. Stroke. (2017) 48:e44–71. doi: 10.1161/STR.0000000000
000116

114. Beaton D, Sunderland KM, Levine, B, Mandzia J, Masellis M, Swartz
RH, et al. Generalization of the minimum covariance determinant
algorithm for categorical and mixed data types. bioRxiv. (2019)
333005. doi: 10.1101/333005

115. Sunderland KM, Beaton D, Fraser J, Kwan D, McLaughlin PM,
Montero-Odasso M, et al. The utility of multivariate outlier
detection techniques for data quality evaluation in large studies: an
application within the ONDRI project. BMC Med Res Methodol. (2019)
19:102. doi: 10.1186/s12874-019-0737-5

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ramirez, Holmes, Scott, Ozzoude, Adamo, Szilagyi, Goubran,

Gao, Arnott, Lawrence-Dewar, Beaton, Strother, Munoz, Masellis, Swartz, Bartha,

Symons, Black and the ONDRI Investigators. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurology | www.frontiersin.org 17 August 2020 | Volume 11 | Article 847

https://doi.org/10.1161/STR.0000000000000116
https://doi.org/10.1101/333005
https://doi.org/10.1186/s12874-019-0737-5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Ontario Neurodegenerative Disease Research Initiative (ONDRI): Structural MRI Methods and Outcome Measures
	Introduction
	Methods
	Study Participants
	MRI Acquisition
	Structural Image Processing Methods: Overview
	Brain Regions of Interest: SABRE
	Hippocampus

	Total Intracranial Volume
	Brain Tissue Segmentation
	White Matter Hyperintensities of Presumed Vascular Origin (WMH)
	Periventricular (pWMH) and Deep White (dWMH) Hyperintensities

	Lacunes
	MRI-Visible (Enlarged) Perivascular Spaces (PVS)
	Cerebral Microbleeds
	Chronic Stroke

	Recommendations for Reporting and Analysis
	Results and Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	ONDRI INVESTIGATORS
	Supplementary Material
	References


