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Background: Voxel-wise lesion-symptom mapping (VLSM) is a statistical technique to

infer the structure-function relationship in patients with cerebral strokes. Previous VLSM

research suggests that it is important to adjust for various confounders such as lesion

size to minimize the inflation of true effects. The aim of this work is to investigate the

regional impact of covariates on true effects in VLSM.

Methods: A total of 222 follow-up datasets of acute ischemic stroke patients with known

NIH Stroke Scale (NIHSS) score at 48-h post-stroke were available for this study. Patient

age, lesion volume, and follow-up imaging time were tested for multicollinearity using

variance inflation factor analysis and used as covariates in VLSM analyses. Covariate

importance maps were computed from the VLSM results by standardizing the beta

coefficients of general linear models.

Results: Covariates were found to have distinct regional importance with respect to

lesion eloquence in the brain. Age has a relatively higher importance in the superior

temporal gyrus, inferior parietal lobule, and in the pre- and post-central gyri. Volume

explains more variability in the opercular area of the insula, inferior frontal gyrus, and

caudate. Follow-up imaging time accounts for most of the variance in the globus pallidus,

ventromedial- and dorsolateral putamen, dorsal caudate, pre-motor thalamus, and the

dorsal insula.

Conclusions: This is the first study investigating and revealing distinctive regional

patterns of importance for covariates typically used in VLSM. These covariate importance

maps can improve our understanding of the lesion-deficit relationships in patients and

could prove valuable for patient-specific treatment and rehabilitation planning.

Keywords: brain, lesion symptom mapping, analysis of variance, general linear model, stroke

INTRODUCTION

Voxel-wise lesion symptom mapping (VLSM) is a statistical framework that can be used to
quantify the regional relationship of structural integrity of the brain (post-stroke) to a clinical
outcome of interest. In the context of acute ischemic strokes, previous literature has investigated
these lesion-deficit relationships at the regional or voxel level using various measures of stroke
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severity of varying granularity ranging from gross outcomes,
like the modified Rankin scale (1, 2), to finer measures of
impairment, for example to assess language (3, 4), spatial
neglect (5), and proprioception (6). The results from VLSM are
population-specific observations that can provide new insights
into mechanisms underlying stroke recovery and, therefore, have
potential to guide future research in stroke precision medicine.

Various factors such as lesion size, lesion location (7), age
(8), sex (9), time to treatment (10, 11), blood pressure (12),
and prevailing medical conditions (13) of the patient have been
previously identified to be important parameters for stroke
treatment decision making. The effects of these (and other)
confounding variables might be related to either the extent
of structural damage or the severity of clinical outcome (the
relationship studied in the VLSM analyses). This suggests that
VLSM analyses should take these confounders into account
to produce maps of the true regional eloquence, i.e., the
underlying structure-function relationship that indicates the
brain regions that are highly critical (eloquent) with respect
to the clinical outcome of interest. This can, for example, be
practically implemented in voxel-level methods by including the
confounders as covariates in a regression model. To date, the
VLSM literature has dominantly considered age, sex, and lesion
volume as covariates with relevance to stroke (14).

However, to the best of our knowledge, there is no work
that quantifies the relative importance each covariate has on
the voxel-level statistic of the VLSM output. Therefore, the aim
of this work is to estimate the importance of each covariate
at a voxel level using a VLSM technique. The proposed
covariate importance maps add complementary information
to the standard VLSM output, which could be a valuable
tool for acute treatment decision making as well as tailored
rehabilitation planning.

METHODS

Datasets
The datasets available and used for this study are obtained from
the two multi-center ESCAPE (15) and IKNOW (2) trials, which
enrolled patients with middle cerebral artery stroke (MCA). In
this work, patients with severe white matter hyperintensities,
bilateral strokes, and remote hemorrhagic transformations are
excluded. Patients who obtained a follow-up FLAIRMRI or non-
contrast CT imaging (18 hours−7 days from baseline) and had a
complete clinical assessment within 48-hours of symptom onset
are included in this study. The final sample contains 222 subjects
(98 women) with an average age of 68.6± 12.6 years. The clinical
outcome of interest used in this work is the NIH Stroke Scale
(NIHSS) assessed at 48-hours post-stroke. NIHSS is a commonly
used secondary stroke outcome score involving assessments for
(in decreasing order of representation) voluntarymotor function,
level of consciousness, vision, language, sensory function, and
spatial neglect. The 48-hours timepoint is selected to avoid
biases in the results due to comorbidities unrelated to stroke
and complications arising from in-hospital treatment at later
assessment timepoints. All datasets used in this study were made
available for this secondary study after complete anonymization.

Pre-processing
All lesions are segmented by an experienced observer using
ITK-SNAP (16). After this, all datasets are skull-stripped and
registered non-linearly to a common FLAIR and NCCT atlas
(17) using cost function masking, implemented in the ANTs
toolkit (18). Subsequently, the computed deformation field that
maps the native patient scan to the atlas image is applied to
the corresponding binary lesion mask for that patient. Since the
dataset is pooled from multicenter trials, there is considerable
variability in: in-plane resolution [0.37–1.4 mm2], slice thickness
[2–10mm], and the number of slices acquired [4–87]. Registering
all native patient scans to a common atlas not only helps to
minimize image acquisition related differences but also removes
anatomical differences between all patients and allows for an
unbiased statistical analysis within the common atlas space.

All datasets were visually inspected to ensure that no motion
or other imaging artifacts are present, signal to noise ratio was
suitable, and the acquisitions were complete covering the whole
brain. Likewise, the registration results were visually checked
and datasets with sub-optimal registration quality were excluded
from this LSM analysis.

Voxel-Wise Lesion Symptom Mapping
Voxel-wise lesion symptom mapping (VLSM) is a statistical
technique to generate eloquence maps that quantify the
difference between patients with a lesion and those without
a lesion in each voxel (3) with respect to a clinical outcome
score. The result of VLSM is a parametric map that displays the
eloquence of each voxel with respect to the clinical outcome score
of interest, known as the lesion-symptom map.

Practically, this can be implemented by a voxel-wise statistical
test comparing the distributions of the outcome scores in patients
with a lesion in a voxel to patients without a lesion in the
same voxel. This procedure results in a t-score, indicating how
critical that voxel is with respect to the outcome score of interest.
Voxels with higher t-scores are deemed to be more eloquent (i.e.
critically associated) to the outcome score (here the 48-hours
NIHSS), thereby quantifying the structure-function relationship.
In other words, a high average t-score within a brain region
implies that a lesion in this brain region likely leads to more
severe clinical deficits. In this work, each voxel is modeled
as a general linear model (GLM) for VLSM, which is one of
the traditional methods to quantify lesion-deficit relationships
(3). Correction for multiple comparisons was done using the
permutation based thresholding approach (19). The proposed
framework for variance estimation is an extension of the VLSM
source code released by Bates et al. (3).

Variable Importance
In this work, patient age, lesion volume, and the time from
symptom onset to follow-up imaging are selected as covariates
to explore regional covariate importance.

These covariates are tested for collinearity in a first step
using the Spearman’s correlation, which is further confirmed
by a variance inflation factor analysis (20) using a linear
regression model to predict NIHSS. Once ensured that the
covariates are unrelated, the VLSM analyses involved modeling
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the independent voxel-wise GLMs (21) as shown below and
correcting for multiple comparisons.

Si = βi,1 ∗ Li + βi,2 ∗ age+ βi,3 ∗ vol+ βi,4 ∗ fup+ ǫi (1)

Here, for each voxel location i, an independent regression
model that predicts the eloquence score Si at that spatial
location using presence of lesion at that location (Li), age, lesion
volume, and follow-up imaging time (fup) as inputs is estimated.
However, only voxels that survived the permutation threshold
(maximum t-threshold = 5.06 from the non-parametric null
max distribution over 1,000 permutations at alpha = 0.05) are
considered to remove false positives.

The relative importance of covariates is inferred from the
standardized beta coefficients for each covariate j at the voxel
location i (βsi,j). Practically, the non-standardized beta coefficient
of a covariate (βi,j) is normalized by the variance of the covariate
and the mean squared error at the voxel location i as follows (22).

βsi,j =
βi,j

√

var
(

βi,j
)

∗MSEi

(2)

Subsequently, the standardized beta coefficients for a covariate
at each true positive eloquent voxel is written out into a separate
covariate importancemap, resulting in age-, volume-, and follow-
up time-specific covariate importance maps. These individual
covariate importance maps are linearly normalized to the range
0–1 to enable comparison.

For ease of interpretation, the parcellation defined in the
Brainnetome atlas (23) is used to calculate average regional
covariate importance estimates. Finally, hierarchical clustering is
employed to group brain regions based on the average region-
level importance measures for each covariate. An important
advantage of using hierarchical clustering is that, unlike flat
clustering techniques, it provides a structural grouping of
cerebral subregions. In order to avoid isolated eloquent regions
with few voxels biasing the clustering algorithm, an overlap
analysis is conducted. More precisely, all brain regions as defined
by the Brainnetome atlas are ordered by the volume of overlap
with the VLSM output and only those regions that have at least
a volume overlap of 400 voxels (50th percentile) are included in
the clustering analysis.

RESULTS

Of the 222 subjects, there are 100 right hemispheric strokes. The
average volume of lesions on the left and right hemisphere was
42.04 and 43.65 cm3, respectively. The overlap of all transformed
lesions on the common FLAIR and NCCT atlas shows a typical
distribution for MCA occlusions, shown in Figure 1.

The correlation coefficients (rs) comparing all covariates at
the patient level are <0.1 (p > 0.05) suggesting that there
is no monotonic association between any two covariates (rs
values: age vs. lesion volume: −0.086; age vs. follow-up time:
−0.051; volume vs. follow-up time: 0.043). This finding is further
confirmed by their variance inflation values being <5.0 in a
linear regression model to predict the 48-hours NIHSS, which is

typically considered to indicate the absence of multicollinearity
in the input data (24).

The normalized VLSM output is shown in Figure 2A. Brain
regions with relatively higher t-score values are considered more
eloquent with respect to the NIHSS outcome scale, which means
that even a small lesion volume in these regions is likely to
result in a worse outcome. In this work, the eloquent clusters
that survived the correction for multiple comparisons are located
around the sub-cortical left hemispheric regions. No eloquence
in the right hemisphere is observed.

The importance maps are substantially different for the
covariates investigated in this work (see Figures 2B–D). Age
has a relatively higher importance in the superior temporal
gyrus, inferior parietal lobule, and in the pre- and post-central
gyri. Lesion volume has the highest relative importance in the
opercular area of the inferior frontal gyrus, ventral caudate,
and the ventral agranular insula. Finally, follow-up time was
found to be the most important covariate in the globus pallidus,
ventromedial- and dorsolateral putamen, dorsal caudate, pre-
motor thalamus, and dorsal insula.

The result from the hierarchical clustering algorithm is shown
in Figure 3A. Here, the heatmap from the clustering algorithm
is represented as a dendrogram in Figure 3B outlining the sub-
regions with considerable overlap with the VLSM map. In the
heatmap, each covariate is color-coded (age in orange, lesion
volume in blue, and follow-up time in green) with darker
hues representing higher average covariate importance for a
given brain region. It is clear from the heatmap that for each
covariate, the set of brain regions with high relative importance
is nearly exclusive.

DISCUSSION

The main finding of this study is that covariates typically used
within VLSM analyses show distinctive patterns of regional
importance for modeling lesion eloquence.

Of the eloquent brain regions mainly influenced by age, the
superior temporal gyrus and inferior parietal lobule have been
previously reported to display age-specific changes in cerebral
blood flow (CBF) patterns in healthy elderly (61.05 ± 13.17
years of age) (25). Specifically, it was previously reported that
the CBF in the superior temporal gyrus increases with age
as a compensatory response to cognitive tasks, i.e., increased
neural activity. Contrary to this, the CBF in the inferior
parietal lobule was shown to have a negative correlation with
age resulting from the reduction in neuronal activity and
deterioration of microvasculature. Other studies using various
imaging modalities to investigate age-related perfusion changes
have also led to comparable conclusions in these regions (26, 27).
The age-related changes in CBF, microvasculature, and neuronal
and synaptic activity may deem these cortical structures more
susceptible to brain damage in elderly including ischemic stroke,
thereby also explaining the likelihood of superior temporal gyrus
and inferior parietal lobule not only being eloquent to stroke
severity metrics, but also their structure-function relationship
most explained by age.
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FIGURE 1 | Overlap of all patients lesions in the common atlas space (N = 222) in radiological convention.

From a connectivity perspective, the hippocampus, basal
ganglia structures, and insula are highly connected structures
(a.k.a., rich-club structures) (28), indicating that any insult to
these regions is likely to result in a poor clinical outcome.
This supports the current finding that lesion volume is the
most important covariate for these rich-club brain structures or
structures that link to a rich club node, such as the caudate and
insula (29).

The brain regions that have been previously reported to
have the highest ischemic vulnerability (i.e., increase in infarct
per unit reduction in CBF) are the caudate body, putamen
nucleus, insular ribbon, middle frontal gyrus, precentral gyrus,
and the frontal lobe subcortical white-matter and paracentral
lobule (30). Furthermore, the insular ribbon has been described
as the most vulnerable brain region of the left hemisphere (30).
While it is important to include follow-up imaging time as
a covariate to account for potential lesion growth/shrinkage,
secondary injuries, and water accumulation differences over
time, the importance of follow-up imaging time (or the post-
treatment scan time) in the insular gyrus specifically, remains
unclear, requiring further research. In general, the regions that
are common in variance importance maps have an overall
high eloquence, i.e., critical to the outcome of interest. From
Figure 3B, it is clear that even though there are common
regions in the importance maps for each covariate, there are
differences in average importance across regions, suggesting that
one covariate is likely to be relatively more important than the
other two covariates.

There is a strong evidence in the stroke literature pertaining
to the bias of the NIHSS assessment. More precisely, the NIHSS
is biased toward the left hemisphere because of the language
domains and the fact that the consciousness domains are
weighted to language. The right hemisphere is reported to have
a relatively less weight in NIHSS. Particularly, it was shown that
the volume of a right hemispheric lesion has to be far greater than
a left hemispheric insult to result in the same severity of outcome
on the NIHSS scale (31). A recent VLSM analysis conducted
on 216 subjects from the MR CLEAN study showed that the
inclusion of lesion volume as a covariate eliminates the eloquence

signal in the right hemisphere (1). They described the resulting
LSM maps from three scenarios: (1) using the outcome score
alone, (2) using the outcome score as the target variable and
sex and age as covariates; and (3) using the outcome score as
the target variable and sex, age, and lesion volume as covariates
[see Figure 2 in Ernst et al. (1)]. The results clearly indicate
that the right hemispheric eloquence is no longer present when
lesion volume is added as a covariate in the LSM analysis using
the modified Rankin score as the outcome score. Therefore, the
absence of eloquence in the right hemisphere in this study is likely
to stem from either the lateralization of the NIHSS assessment,
the effects of lesion volume as a covariate, or both.

The limitations of the proposed method to estimate variance
importance of covariates in a lesion symptommapping approach
should be discussed. First, this work should be considered
exploratory in terms of the choice of covariates to be adjusted
for or included in the analysis. Although the covariates selected
in this work are motivated by previous clinical stroke literature
and are typically considered in LSM analyses, this selection
does not cover the entire repertoire of confounders that could
potentially bias an LSM study. For example, sex was intentionally
excluded from this study since there are established sex-
specific associations with other clinical and lifestyle behaviors
(9). Nevertheless, the results of this study suggest that it is
of clinical interest to investigate the regional importance of
covariates, and more co-variates should be investigated in future
studies to improve our understanding of the structure-function
relationship. Furthermore, the current implementation does not
account for potential interaction terms. However, the proposed
method could be extended to include interaction effects between
covariates as part of the GLM as an additional regression term
as follows.

Si = βi,1 ∗ Li + βi,2 ∗ age+ βi,3 ∗ vol+ βi,4 ∗ fup+

βi,5 ∗
(

age ∗ vol
)

+ βi,5 ∗
(

vol ∗ fup
)

+ ǫi (3)

However, interpretation of interaction effects is often
complicated and requires that VLSM literature accumulates
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FIGURE 2 | Importance maps for each covariate using voxel-wise generalized linear models corrected for multiple corrections using permutation-based thresholding

(p-value < 0.05): (A) normalised VLSM result, (B) age, (C) lesion volume, (D) follow-up imaging time.

sufficient evidence of the independent effects of clinically
relevant covariates.

Furthermore, voxel-wise LSM requires multiple comparisons
correction leading to a low statistical power (32, 33) while
not accounting for similar functional deficits induced by non-
overlapping lesions (i.e., the partial injury problem) (34).
While LSM research is leading toward multivariate models
(35, 36) to resolve these issues, the general understanding of
the influence of covariates in defining the structure-function

relationship in these multivariate models remains unclear.
Finally, the results reported in this study may be population-
specific. That is, a different sample size, unreliable segmentations
of the lesions, or different lesion distributions could likely
influence the VLSM analysis, and their impact cannot be
easily quantified. Overall, this work should be considered
as a first important step in the estimation of voxel-wise
variance using the most traditional VLSM technique – general
linear regression.
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FIGURE 3 | Covariate importance estimates consolidated by hierarchical clustering: (A) regions with higher average importance for age (red), volume (blue), and

follow-up time (green); (B) dendrogram of brain regions clustered by relative covariate importance.

CONCLUSIONS

To the best of our knowledge, this is the first study investigating
the regional importance of covariates typically used in VLSM.
Using the proposed method, distinctive patterns of regional
importance of age, lesion volume, and follow-up time were
found. The generated covariate importance maps can help to
improve our understanding of the lesion-deficit relationships in
patients and could prove valuable for patient-specific treatment
and rehabilitation planning.
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