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Cancer and Parkinson’s disease (PD) define two disease entities that include opposite

concepts. Indeed, the involved mechanisms are at different ends of a spectrum related

to cell survival - one due to enhanced cellular proliferation and the other due to premature

cell death. There is increasing evidence indicating that patients with neurodegenerative

diseases like PD have a reduced incidence for most cancers. In support, epidemiological

studies demonstrate an inverse association between PD and cancer. Both conditions

apparently can involve the same set of genes, however, in affected tissues the expression

was inversely regulated: genes that are down-regulated in PD were found to be

up-regulated in cancer and vice versa, for example p53 or PARK7. When comparing

glioblastoma multiforme (GBM), a malignant brain tumor with poor overall survival, with

PD, astrocytes are dysregulated in both diseases in opposite ways. In addition, common

genes, that are involved in both diseases and share common key pathways of cell

proliferation and metabolism, were shown to be oppositely deregulated in PD and

GBM. Here, we provide an overview of the involvement of PD- and GBM-associated

genes in common pathways that are dysregulated in both conditions. Moreover, we

illustrate why the simultaneous study of PD and GBM regarding the role of common

pathways may lead to a deeper understanding of these still incurable conditions.

Eventually, considering the inverse regulation of certain genes in PD and GBM will help

to understand their mechanistic basis, and thus to define novel target-based strategies

for causative treatments.
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CANCER AND NEURODEGENERATION

The Inverse Association of Parkinson’s Disease and Cancer
There is now accumulating evidence for an inverse association between Parkinson’s Disease (PD)
and cancer (1–3). Studies suggest that people affected by a neurodegenerative disorder have a
reduced incidence for most cancers (4, 5). Molecular studies showed that there is an inverse
correlation of the expression of shared genes in PD and cancer: genes down-regulated in PD
can be up-regulated in cancer and vice versa (6, 7). These inversely correlated gene expression
may affect the same pathways in opposite ways, either involving genetic or environmental factors
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(5, 8, 9). Shared genetic pathways deregulated in opposite ways
are a major focus, particularly those favoring apoptosis and
cell proliferation, influencing cell cycle control, DNA repair,
and kinase signaling (4). Common mechanisms such as chronic
inflammation (10) and immunosenescence, and common risk
factors like diabetes and obesity, have been implicated in both
conditions (11, 12).

Parkinson’s Disease
PD is a neurodegenerative disease characterized by three cardinal
motor symptoms: tremor, rigidity and bradykinesia resulting
from loss of dopaminergic neurons in the substantia nigra pars
compacta (13). PD affects 1–2% of the population over 60 years
(14). Age of onset before the age of 40 is seen in <5% of the cases
in population-based cohorts, which is typical of familial cases
of PD with underlying genetic cause like mutations in SNCA,
Parkin, PINK1, DJ-1, LRRK2, ATP13A (Table 1). Monogenic
forms of PD are rare. In general, genetic factors are claimed to be
involved in 5–10% of the cases (14). Histopathological hallmarks
of PD are proteolytic inclusions called Lewy bodies (LB) and
Lewy neurites containing α-synuclein (47). Cellular hallmarks of
PD are an impairment of proper functioning of molecular and
organelle degradation pathways like the ubiquitin–proteasome
system and autophagy (48). In particular, the process of removing
defective mitochondria from the cells is known to be impaired
in PD (49). This process is a special form of autophagy, called
mitophagy (50), and is regulated by the PD-linked proteins
PINK1 and Parkin (51). The impairment of autophagy, lysosomal
and mitochondrial function in PD can lead to the accumulation
of α-synuclein and defective mitochondria (52) and, ultimately,
to neurodegeneration. The diagnostic of PD is mostly a clinical
diagnosis as it is based on neurological tests when the PD
patients already show motor symptoms. Due to the complexity
and heterogeneity of PD, the etiology is not yet fully understood.
Therefore, there is no cure for PD and no treatment that will stop
the progress of the disease and treatment is only symptomatic,
e.g., levodopa therapy. This is why it is important to investigate
underlying mechanisms of PD to stratify causative treatments.

Glioblastoma Multiforme
Glioblastoma multiforme (GBM) is the most malignant tumor
of the central nervous system. GBM tumors are most likely
developing from astrocytes (53). Based on their histological
and clinical features, astrocytomas are classified into four
different subtypes according to the WHO classification: Pilocytic
astrocytoma, diffuse astrocytoma, anaplastic astrocytoma, and
GBM. Pilocytic and diffuse astrocytoma are characterized
by a rather low growth rate, while anaplastic astrocytoma
and GBM show common uncontrolled proliferation and
diffuse tissue penetration (54). GBM is characterized by poor
prognosis, low survival rates, and extremely limited opportunities
for therapy. Symptoms of GBM are rather unspecific like
increased intracranial pressure, including headache and focal
or progressive neurologic deficits. Seizures are the presenting
symptom in 25% of patients and can occur at a later stage of
the disease in 50% of patients (55). Malignant gliomas are the
third leading cause of cancer death for people aged between

15 and 34, accounting for 2.5% of the global cancer death toll.
GBM has a maximum incidence in patients aged more than
65 years, and is mainly affecting the cerebral hemispheres (54).
A cellular hallmark of GBM and all cancers is the so-called
Warburg effect which describes the phenomenon that cancer
cells use aerobic glycolysis to produce ATP (56). GBM cells are
characterized by increased glucose uptake and lactate production
(57). GBM cells also use oxidative phosphorylation (OXPHOS)
(57). The hypoxic GBM tumor environment allows the constant
expression of hypoxia inducible factors 1 alpha and 2 alpha (HIF-
1α, HIF-2α). Hypoxia and hypoxia-stabilized HIFs regulate GBM
metabolism by stabilizing genes involved in metabolism like
the glucose transporters GLUT1 and GLUT3, thereby sustaining
an increased glucose uptake of the GBM cells (57). Also, the
enzyme catalyzing the first step in glycolysis, hexokinase, is
hypoxia/HIF regulated (57). As for PD, the diagnosis of GBM is
typically made when first symptoms occur and rely on clinical
examination and neuroimaging methods. However, mostly both
diseases are diagnosed at an advanced stage of tumor growth
or neurodegeneration, respectively. Treatment strategies of GBM
are based on a multidisciplinary approach. Current standard
therapy is a combination of maximal safe surgical resection of
the tumor and subsequent radiation and chemotherapy with
temozolomide (Temodar R©), an oral alkylating agent. However,
even with advances in surgical resection, the prognosis for GBM
patients remains poor, with a median survival of 15 months (55).

COMMON GENES IN PD AND GBM

A common set of genes like the tumor suppressor p53, epidermal
growth factor and its receptor EGF(R), the glyoxalase and
deglycase DJ-1 and biological processes are deregulated in
opposite directions in PD and GBM (6). Particularly, there
is evidence that PD-associated genes are involved in GBM
pathogenesis (Table 1). A summary of publications examining
and exhibiting the involvement of PD-associated genes in GBM
is shown in Table 1. Consistent with PD-associated genes being
involved in GBM, it is important to note that mutations in
the same gene can behave differently if they are germline or
somatic mutations. For example, mutations in PARK2 affecting
the Parkin protein can cause neuronal cell death in PD if they
are present in the germline, or increased cell survival in GBM if
they are present in somatic cells like astrocytes (Figure 1). (25).
Pathways that are affected in PD and GBM are overlapping but
are regulated inversely by alternatively regulated genes. These
pathways are regulating cell proliferation and cell metabolism as
well as mitochondrial clearance (1). In the following, examples
for inversely regulated pathways in PD and GBM are illustrated
and the role of commonly involved genes in both diseases in the
regulation of these pathways will be outlined.

Pro-Survival Signaling
Pro-survival signaling is one of the most important pathways
regulating and sustaining cell proliferation. Once dysregulated,
uncontrolled cell proliferation can lead to tumorigenesis. This
is why cell proliferation and apoptosis need to be in a tight
equilibrium, which is well controlled by many mediators.
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TABLE 1 | Overview PD-genes in GBM.

PD-associated gene GBM Function Involvement in disease

PARK1 (SNCA) (15–23) Important role in maintaining an adequate supply of synaptic

vesicles in presynaptic terminals

Meningioma: (24)

PARK1 was shown to contribute to

malignant progression of tumors

PARK2 (Parkin) (25–33) Regulation of autophagy, important for mitochondrial

maintenance

Autophagy pathway

PARK5 (UCHL1) (21, 34) Hydrolase activity, removes and recycles ubiquitin molecules

from degraded proteins

Ligase activity, links together ubiquitin molecules for use in

tagging proteins for disposal

Degrades not needed proteins

UCHL1 acts as a colorectal cancer

oncogene via activation of the

β-catenin/TCF pathway through its

deubiquitinating activity (35)

PARK6 (PINK1) (23, 36, 37) Regulation of autophagy, important for mitochondrial

maintenance

PINK1 is a Negative Regulator of

Growth and the Warburg Effect in

Glioblastoma

PARK7 (DJ-1) (38–41) ROS scavenger, antioxidative role, cyto-protective Pro-tumor survival, mitochondrial

dysfunction

PARK8 (LRRK2) Somatic mutations [The Cancer

Genome Atlas (TCGA)] (42)

GTPase and kinase function LRRK2 has been associated

with a diverse set of cellular functions and signaling pathways

including mitochondrial function, vesicle trafficking together

with endocytosis, retromer complex modulation and

autophagy

LRRK2 mutation carriers have a pos.

correlation with cancer incidence (43)

PARK9 (ATP13A2) Somatic mutations [The Cancer

Genome Atlas (TCGA)]

P5 subfamily of ATPases which transports inorganic cations

as well as other substrates

ATPase that plays a role in

intracellular cation homeostasis and

the maintenance of neuronal integrity

PARK15 (FBXO7) (44) F-box protein

Phosphorylation-dependent ubiquitination

Oncogenic properties of FBXL10, but

also tumor suppression by FBXL10

has been reported (45, 46)

FIGURE 1 | Cell fate of astrocytes depending on mutational status. A germline mutation in a PD-associated gene might result in a neurodegenerative cell whereas a

somatic mutation can lead to a tumor cell.

P53—The Master Controller of Cell Proliferation and

Its Regulation in PD and GBM
One key player in the regulation of cell proliferation is the tumor
suppressor p53. p53 is upregulated in PD, but downregulated in
GBM (Figure 2A) (58–60).

p53 inhibits cell proliferation by both blocking cell cycle
progression and promoting apoptotic cell death (Figure 2A).
This way, p53 provides a clear prevention from stem cell

tumor growth and thereby GBM development. p53 itself is also
regulated via several stress signals occurring during malignant
progression like genotoxic damage, oncogene activation, loss of
normal cell contacts, and hypoxia (Figure 2A). This leads to a
model where growth inhibitory functions of p53 are normally
held dormant, to be unleashed only in nascent cancer cells (61).
In PD, the level of p53 and its activity in neurons can increase
not only as a result of oxidative stress and DNA damage, but
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FIGURE 2 | Graphical representation of common cellular pathways described in literature to be dysregulated in PD and GBM. Dysregulation (up- or downregulation) of mediators and proteins of commonly involved

mediators and proteins in PD and GBM is illustrated with blue and red arrows, while blue arrows correspond to the situation in PD, red arrows indicate the regulation in GBM. Differential regulation of discussed

mediators regarding pro-survival signaling (A) immune signaling (B) and their involvement in mitochondria and metabolism (C). UPS, ubiquitin proteasome system; ox. stress, oxidative stress; mito dysfunction,
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also due to aberrant regulation of its expression for example by
mutated or incorrectly cleaved proteins involved in the process
of neurodegeneration (58). An increase in p53 expression and
its activation results in enhanced expression of genes that are
responsible for apoptosis and/or cell cycle arrest and may trigger
neuronal cell death (58). In line, Mogi et al. found increased
levels of p53 protein in the nigrostriatal dopaminergic region in
PD patients compared to controls (62). It was shown that p53
regulates α-synuclein expression since the α-synuclein promoter
harbors a p53 responsive element (63). Therefore, an increase in
p53 in PD could not only lead to increased apoptosis induction
but also to an increase in expression of potentially dysfunctional
α-synuclein and to its subsequent aggregation (63). Kato et
al. found that DJ-1 inhibits the transcriptional activity of p53
(Figure 2A) (64). Loss of DJ-1 protein in PD could thereby
lead to increased expression of p53 target genes leading to cell
death. In GBM, p53 is frequently downregulated or inactivated
by mutations leading to a reduction in apoptosis induction
(Figure 2A) (65) and p53 inactivation positively correlates with
GBM tumor invasiveness (66). Zheng et al. showed that central
nervous system (CNS)-specific deletion of p53 and Phosphatase
And Tensin Homolog (PTEN) in the CNS of mice leads to
a high-grade malignant glioma phenotype resembling human
GBM (67). These results are in line with the data found at The
Cancer Genome Atlas in the exploration mode when looking at
the TCGA-GBM data set, which reports PTEN, p53 and EGFR
as the most frequently mutated tumor suppressor genes in GBM
(https://portal.gdc.cancer.gov).

EGFR Signaling in PD and GBM
EGFR is downregulated in PD and upregulated in GBM
(Figure 2A). EGFR activates the phosphoinositide 3-kinase
(PI3K)-Akt pathway (Figure 2A). The PI3K/Akt signaling
pathway is known as one of the most important kinase
cascades that mediates crucial cellular functions such as survival,
proliferation, migration, and differentiation (68). Activated
receptor tyrosine kinases (RTKs) like EGFR activate PI3K
through direct binding or through tyrosine phosphorylation of
scaffolding adaptors, which can then bind and thereby activate
PI3K (Figure 2A). PI3K phosphorylates phosphatidylinositol-
4,5-bisphosphate (PIP2) to generate phosphatidylinositol-3,4,5-
trisphosphate (PIP3), in a reaction that can be reversed
by the PIP3 phosphatase PTEN. AKT can then activate its
downstream targets like mTOR, eventually leading to cell
proliferation (Figure 2A). It was shown that EGFR endocytosis
and degradation are accelerated in Parkin-knockout cells from
mouse brain, and EGFR signaling via the PI3K/Akt pathway
is reduced (69). Fallon et al. propose that Parkin delays EGFR
internalization and degradation, thereby promoting PI3K/Akt
signaling (69). Therefore, by decreasing the efficiency of EGFR-
mediated Akt signaling in neurons, the loss of Parkin leads to
neuronal degeneration (69). In post-mortem brains of idiopathic
PD patients, protein levels of EGF and EGFR were shown
to be decreased in the prefrontal cortex and the striatum
(70). Mutations in EGFR are commonly occurring in GBM
(71). These mutations result in EGFR gene amplification and

intrinsic alterations of the EGFR structure (71). Brennan et al.
showed that gene amplification and mutation of EGFR results
in enhanced EGFR activation and is found in about 60% of
GBM (72). The most common EGFR mutation in GBM is
EGFRvIII, which is caused by the deletion of exon 2–7 leading
to constitutively activated EGFR (71, 73, 74). It was shown that
EGFR is overexpressed in most of primary GBM and some of the
secondary GBM and that EGFR overexpression is associated with
more aggressive GBM (75).

PTEN/PI3K/Akt Signaling in PD and GBM
In PD, PTEN/PI3K/Akt signaling is down-regulated and
therefore causes decreased pro-survival signaling (76). In
GBM, PTEN/PI3K/Akt signaling is upregulated (77–79). PTEN
negatively regulates PI3K (Figure 2A), thereby inhibiting
PI3K/Akt mediated proliferation and cell survival. In PD
patient-derived post mortem brains, Sekar et al. found an
increase in PTEN levels (80). Absence of PTEN protected
dopaminergic neurons in PTEN knockout mice from neuronal
death after neurotoxin treatment (81). In another mouse
model, depletion of PTEN attenuated the loss of tyrosine
hydroxylase-positive (dopaminergic) cells after neurotoxin
treatment (82). An increase in PTEN in PD results in decreased
pro-survival signaling leading to increased neuronal cell
death. In line, it was shown that the ratio of phospho-
Akt/total-Akt decreases in dopaminergic neurons indicating a
decrease in activation of the pro-survival signaling mediated
by Akt upon phosphorylation (83). Overall, an impaired
PTEN/PI3K/Akt signaling in PD leading to neuronal cell death
can be due to mutations in PD-associated genes regulating
Akt signaling [e.g., DJ-1 (84), (Figure 2A)], excessive Akt
dephosphorylation, inhibition of Akt activation or oxidative
stress (85). In GBM, PTEN/PI3K/Akt signaling is upregulated
due to EGFR overexpression or loss of PTEN (78). Mutations
or homozygous deletions of PTEN were shown in 36% of
the GBM cases that were studied by McLendon et al. and
86% of the GBM harbored at least one genetic event in the
receptor tyrosine kinase PI3K pathway (86). High level of
phosphorylated Akt was shown to correlate with a poor
prognosis for patients with GBM (87). Mutations in the
phosphatidylinositol-4,5-bisphosphcxate 3-kinase catalytic
subunit alpha (PIK3CA), which is one subunit of PI3K, were
shown to induce gliomagenesis (77).

The PD-Associated Oncogene DJ-1 and Regulation

of Cell Proliferation in PD and GBM
The protein DJ-1 was shown to be inversely regulated in
PD and GBM. (Figure 2A). Homozygous mutations in PARK7
(DJ-1) resulting in loss of protein lead to PD (88). DJ-1
expression was shown to be increased in GBM (38, 89, 90).
Wang et al. found that high DJ-1 and high β-catenin expression
in GBM were significantly associated with high grade and
poor prognosis in glioma patients, suggesting DJ-1 levels in
GBM as a strong independent prognostic factor (89). DJ-
1 also accelerates transformation of tumor cells by c-Myc
activating the Erk pathway (91). Hinkle et al. found that GBM
tumor tissue expressed DJ-1 protein at significant levels, and
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typically in a cytoplasmic, non-nuclear manner. They found that
immunostaining intensity of DJ-1 varied directly with strong
nuclear p53 expression and inversely with EGFR amplification
(38). In addition to the fact that DJ-1 negatively regulates
pro-apoptotic p53 (Figure 2A) (92), and EGFR signaling is
crucial for gliomagenesis (72), these observations suggest that
DJ-1 might be involved in tumorigenesis of GBM (38). Toda
et al. found that in a serial transplantation study, DJ-1
knockdown resulted in a prolonged survival of mice in secondary
transplantation (39). DJ-1 is known to counteract ROS, among
others via Nrf2 stabilization leading to the expression of
endogenous antioxidant synthesis and ROS-eliminating enzymes
like glutathione (Figure 2A) (93, 94). It was shown that a
reduction in DJ-1 protein is associated with reduced Nrf2
transcriptional activity and that in PD patients, Nrf2 activation
is associated with dysregulated downstream gene expression (93,
95). In contrast, it was found that Nrf2 overexpression accelerates
proliferation and oncogenic transformation of glioma cells and
that GBM patients have reduced overall survival when Nrf2 levels
are upregulated (Figure 2A) (96).

Immune-Signaling
The innate immune system obtains various functions in health
and disease. It represents the first line of defense against
infection and it is involved in many different processes like
tissue repair, wound healing and the clearance of apoptotic cells
and cellular debris. An excessive or non-resolving activation
of the innate immune system can result in systemic or local
inflammatory complications and cause or contribute to the
development of neurodegeneration and cancer. In the brain, the
innate immune cells are represented by microglia, which regulate
brain development, brain maturation, and homeostasis. An
impairment of functional microglia through abnormal activation
or decreased functionality can occur during aging and during
neurodegeneration and the resulting inflammation was shown to
be involved in neurodegenerative diseases and cancer (97).

Hypoxia and HIF-1α in PD and GBM
It is well known that hypoxia-inducible factor-1α (HIF-1α) plays
an important role in gliomagenesis due to its angiogenesis-
promoting effects (98). While HIF-1α is upregulated in GBM, it
was shown that HIF-1α is impaired in PD (Figure 2B) (99, 100).

Treatment with MPTP, a prodrug to the neurotoxin
MPP+, which causes Parkinsonism symptoms by destroying
the dopaminergic neurons, was shown to inhibit HIF-1α
accumulation in mice and in dopaminergic cell lines (99).
Moreover, Milosevic et al. found that a conditional knock-
down of HIF-1α in mice resulted in a 40% decrease in
expression of tyrosine hydroxylase, a known marker for
dopaminergic neurons, in the substantia nigra of mice
(101). In healthy individuals, HIF-1α mediates protection
of dopaminergic neurons by regulation of iron homeostasis,
improved defense against oxidative stress by upregulation
in response to reactive oxygen species (ROS) (Figure 2B)
and mitochondrial dysfunction (100). PD is characterized
by an accumulation of iron in dopaminergic neurons of
the substantia nigra (102). Free cytosolic iron can lead to

oxidative stress and trigger α-synuclein aggregation (102).
HIF-1α influences iron homeostasis by expression of its target
genes ferroportin and heme oxygenase in the substantia nigra
which are known to be involved in the attenuation of iron
accumulation (100). This way, HIF-1α can counteract iron
accumulation (Figure 2B). However, in PD, downregulation
of HIF-1α can lead to a dysregulation in iron homeostasis
eventually leading to iron accumulation (Figure 2B). In turn,
iron accumulation decreases HIF-1α activity, because iron is
a necessary cofactor for prolyl hydroxylases that inactivate
HIF-1α via subsequent ubiquitinylation through von Hippel-
Lindau factor (VHL) (Figure 2B) (102, 103). HIF-1α target
genes Erythropoietin (EPO) and vascular endothelial growth
factor (VEGF) (Figure 2B) have been shown to contribute
to the protection of neurons from PD pathogenesis (100).
EPO was shown to be neuroprotective against dopaminergic
neurotoxins (104). In rat explants of the ventral mesencephalon,
VEGF treatment was shown to be mitogenic for endothelial
cells, astrocytes, and could promote growth and survival of
neurons and specifically dopaminergic neurons (105). There
are accumulating data which suggest that the activation of
HIF-1α can exert neuroprotective effects through the induction
of intrinsic adaptive mechanisms in neuronal and non-neuronal
cells (106). Lee et al. showed that stabilization of HIF-1α leads
to the upregulation of several proteins involved in iron efflux
and mitochondrial integrity and bioenergetics, cell components
that are compromised in PD. This is why Lee’s data emphasize
the concept that the pharmacological induction of HIF-1α could
have neuroprotective effects in PD cells and mice models, with
a beneficial impact on dopamine synthesis, iron homeostasis,
antioxidant defenses and mitochondrial dysfunction (107).

In contrast to these observations in PD, in GBM, HIF-
1α levels are increased (Figure 2B) (108). Liu et al. found
that HIF-1α expression was associated with high grade glioma
and the overall survival of glioma patients, which indicates
that HIF-1α could predict prognosis and provide clinical
insights into the therapeutic strategy for GBM patients (109).
The lack of oxygen in the GBM microenvironment results
from inappropriate neovascularization, irregular blood flow,
and excessive consumption of oxygen from the uncontrolled
proliferating GBM cells (110). The hypoxia in the GBM
tumor induces the expression of genes involved in tumor
cell growth and angiogenesis like the signal transducer and
activator of transcription 3 (STAT3), which triggers the
synthesis of HIF-1α that subsequently induces activation of T-
regulatory cells (Tregs) and the production of VEGF (111).
Tregs are important modulators of the immune response,
and VEGF has known immunosuppressive effects. Moreover,
the hypoxic microenvironment causes the transformation
of CNS macrophages into tumor-associated macrophages
(TAMs), which are capable of adopting immunosuppressive
and tumor-supportive phenotypes. Via the STAT3 pathway,
this transformation triggers TAMs to enhance angiogenesis and
tumor cell invasion (26, 112). Furthermore, HIFs are critical for
the upregulation of glycolysis (Figure 2B) (113). Hypoxia is also a
known regulator of many other innate immunological functions
like cell migration, apoptosis, phagocytosis of pathogens,
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antigen presentation and production of cytokines, chemokines,
and angiogenic and antimicrobial factors (113). In summary,
HIF is an important factor in the regulation of the tumor
microenvironment due to its central role in promoting
proangiogenic and invasive properties. Since HIF activation
results in angiogenesis and the emerging vasculature is often
abnormal, this leads to a vicious cycle that causes further hypoxia
and HIF upregulation in GBM (98).

Interleukins and Immune Escape
In PD, increased cytokine levels in response to cellular stress
can lead to neuronal cell death whereas in GBM, cytokines like
interleukins IL-1β, IL-6, and IL-8 released by the tumor cells,
inhibit the immune response and allow the tumor cells to escape
the eradication by the immune system (Figure 2B).

IL-6 was found to be increased in the nigrostriatal region
and in the cerebrospinal fluid of patients with PD (114).
Further, Hofmann et al. found that patients with more severe
PD had higher IL-6 levels compared to patients with a milder
phenotype (114). In addition, a study from Chen et al. found
that patients with PD had elevated levels of transforming growth
factor-beta 1 (TGF-β1), IL-6, and IL-1β in cerebrospinal fluid
compared to controls (115). In line, it is described that, in
autopsy brains of PD, the number of activated microglia, which
were among others TNF- α, and IL-6-positive, increased in the
substantia nigra and putamen during the progress of PD (116).
The activated microglia in PD was observed in various brain
regions like the nigro-striatal region, the hippocampus and the
cerebral cortex. The levels of IL-6 and TNF- α mRNAs increased
in the hippocampus of PD patients (116). It is postulated
that cytokines (IL-1β, TNF-α, IL-6) from activated microglia
(117) in the substantia nigra and putamen may be initially
neuroprotective, but may later turn to be neurotoxic during PD
pathogenesis (116).

In contrast to PD, in GBM, the cells can profit from
the cytoprotective effects of specific cytokines like IL-1β, IL-
6, and IL-8 leading to increased robustness regarding cellular
stress (118). As already mentioned, GBM arises from glial
cells with surrounding brain parenchyma that contains CNS
cells like astrocytes, neurons and microglia, as well as a
distinctive extracellular matrix composition. GBM induces a
tumor microenvironment characterized by immunosuppressive
cytokines secreted by tumor cells, microglia and tumor
macrophages. IL-6, IL-10, and TGF-β, and prostaglandin-E
collectively inhibit both the innate and adaptive immune systems
leading among others to the suppression of natural killer cell
activity, T-cell activation and proliferation and induction of T-
cell apoptosis (119). IL-1β is a known master pro-inflammatory
cytokine that triggers various malignant processes driving
oncogenic events such as proliferation and invasiveness (118,
120). Elevated levels of IL-1β were observed in many different
GBM cell lines (121) and in human GBM tumor specimens (122).
IL-6 was shown to be overexpressed in GBM clinical samples
and cell lines and IL-6 gene expression seems to correlate with
the aggressiveness of the tumor (123). It was shown that IL-6
is secreted by GBM cells and sustains the cell proliferation by
activation of STAT3 pro-survival pathway (124). IL-6 is produced

by GBM cells in response to external stimuli or intrinsic factors,
for example oncogenic mutations (118). IL-1β and TNF-α induce
stabilization of IL-6 mRNA and increase IL-6 biosynthesis (125).
Like IL-6, IL-8 is highly expressed and secreted from GBM cell
lines, tumor stem cells and human specimens (118). It was shown
that the expression of the constitutively active mutant EGFRvIII
is associated with significantly higher expression of IL-8 induced
by nuclear factor kappa B (NF-κB) (Figure 2B) in human GBM
specimens and GBM cell lines (126). In a similar manner as
the regulation of IL-6, IL-8 expression can be enhanced by
TNF-α, IL-1β or macrophage infiltration (127). Thus, elevated
levels of one cytokine like TNF-α for example can lead to an
increase in other cytokines. These findings of elevated cytokines
and their associated roles in GBM underline the importance of
specific cytokines for immune escape mechanisms and tumor
proliferation and invasiveness observed in GBM pathogenesis.

Toll-Like Receptors in PD and GBM
Toll-like-receptors (TLRs) are receptors that recognize distinct
molecular patterns like lipopolysaccharides, single and double
stranded RNAs, hemagglutinin, viral proteins etc. (128), and
allow an appropriate immune response to be initiated. The
TLR family consists of 10 members (TLR1-10) in humans with
different expression profiles and ligands (129). TLR2 is essential
for the recognition of peptidoglycans and lipoproteins, whereas
TLR4 recognizes bacterial lipopolysaccharide (LPS) (130). TLR2
and TLR4 are both the most important TLRs with regard to
innate immune response as they are both implicated in the
recognition of endogenous ligands involved in the inflammatory
response regardless of the source of infection (131). This is why
the implication of TLR2 and TLR4 in PD and GBM will be
discussed in the following.

TLR2 and TLR4 are frequently upregulated in PD and
downregulated in GBM allowing the tumor cells to escape
clearance by the innate immune system. TLR2 and TLR4 were
shown to be upregulated in many α-synuclein-overexpressing
or toxin-induced animal models (132–135), and accumulating
evidence from human studies further implicates these receptors
in the pathogenesis of PD (136). Clinical studies revealed that
TLR2 expression is increased in PD (137). It was shown that
microglial TLR2 is increased in the substantia nigra and the
hippocampus in the early stages of PD, but not during the late
stages (138), while another study found that TLR2 is increased in
the striatum of advanced PD patients (135).

In contrast, GBM cancer stem cells downregulate TLR4 to
evade immune suppression (139). Alvarado et al. showed that in
GBM, cancer stem cells have low TLR4 expression which enables
cell survival by avoiding inhibitory innate immune signaling (e.g.,
clearance by dendritic cells, cytotoxic T cells, and natural killer
cells) that aims to suppress self-renewal of the GBM stem cells
(140). This is why TLR agonists that trigger antitumoral immune
signaling are being discussed as therapy for GBM (141).

Mitochondria and Metabolism
Mitochondria and cellular metabolism are closely linked.
Mitochondria host many enzymatic reactions of cellular
metabolism like the tricarboxylic acid (TCA) cycle and oxidative
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phosphorylation (OXPHOS) which generate ATP from pyruvate
in the presence of oxygen (Figure 2C). In age-related disease, like
PD and GBM, damaged mitochondria lead to impaired cellular
metabolism (142).

Cellular Metabolism in PD and GBM
The human brain, even though constituting only 2% of the total
body weight, uses ∼20% of the body’s total oxygen consumption
and 60% of our daily glucose intake (143). Furthermore, the brain
needs a constant supply of glucose since it lacks fuel stores and
cannot store glycogen. This is why cellular changes in glucose
metabolism can have high impact on brain cell homeostasis,
proliferation and viability.

It was shown that glycolysis and mitochondrial function like
respiration are decreased in individuals with PD (Figure 2C)
(144–146). In GBM, increased glycolytic activity results from
certain oncogenic alterations like c-Myc amplification, PTEN
deletion or mutations in p53 (Figure 2C) (147, 148).

While mitochondrial dysfunction in PD can cause
increased generation of ROS and subsequent oxidative damage
(Figure 2C), it can also result in failing neuronal compensation
of their insufficient ATP generation (149). Activation of
glycolysis in neurons leads to excessive oxidative stress and
apoptosis, suggesting that neurons are predominantly restricted
to OXPHOS (150). In line, Hall et al. showed that the majority
of ATP used by neurons is produced by OXPHOS (151).
Powers et al. found that overexpression of α-synuclein in N27
dopaminergic cells resulted in an impairment in glycolysis, a
reduction in glycolytic capacity and mitochondrial respiration
(152). This is why an increase in glycolysis as counteract
mechanism to neuronal energy failure induced by mitochondrial
dysfunction in PD eventually leads to neuronal cell death
(153–155). Neurons also metabolize glucose via the pentose
phosphate pathway (PPP) to maintain their antioxidant status
(156). It was shown that inhibition of the PPP in neuronal cell
models causes cell death (157). In rodents, PPP inhibition caused
dopaminergic cell death causing motor deficits that resemble
Parkinsonism (158). Using postmortem human brain tissue,
Dunn et al. characterized glucose metabolism via the PPP in
early sporadic PD and controls and observed a down-regulation
of PPP enzymes in patients compared to controls (156). This
observation suggests that the impairment of the PPP is an early
event in sporadic PD (156).

In the absence of oxygen, pyruvate can be metabolized into
lactate, a process known as glucose fermentation or anaerobic
glycolysis. Rapidly proliferating cells, such as cancer cells, also
have the ability to ferment glucose into lactate, even in the
presence of abundant oxygen; this process is called aerobic
glycolysis. It has been observed already decades ago, that cancer
cells, even in aerobic conditions, tend to favor metabolism via
glycolysis rather than OXPHOS, which is preferred by most
other cells. This phenomenon is called the Warburg effect
(56, 159). This is why, in contrast to PD neurons, GBM
cells ferment glucose into lactate, even in the presence of
abundant oxygen (Figure 2B). Even though ATP production
is less efficient in aerobic glycolysis when compared to ATP
production via complete oxidative metabolism of glucose, it

is being hypothesized that GBM cells use aerobic glycolysis
to generate precursors for anabolism to grow and are able to
generate enough ATP to sustain their cellular function (160).
Bymodulating glycolysis and alteringmitochondrial metabolism,
GBM cells generate biomass, namely nucleotides, lipids, proteins,
and NADPH by using glycolytic/TCA intermediates (160).
Knockdown of glycolytic genes strongly inhibits GBM growth
further emphasizing that glycolytic enzymes are essential
for GBM growth (148). GBM cells also generate large
amounts of lactate for several pro-tumor growth functions
(161). Li et al. found that EGFR activation in GBM cells
promotes the translocation of phosphoglycerate kinase (PGK1)
into mitochondria (162, 163). In the mitochondria, PGK1
phosphorylates and activates pyruvate dehydrogenase kinase that
phosphorylates and thereby inhibits pyruvate dehydrogenase
and thus mitochondrial pyruvate consumption which eventually
leads to enhanced lactate production (162, 163). In addition
to the aerobic glycolysis, GBM cells also utilize TCA and
OXPHOS (160).

The differential expression of metabolic genes in neurons
and astrocytes might explain the differences in glycolysis and
OXPHOS rates. For example, neurons lack 6-phosphofructose-
2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) since it is
continuously degraded by the ubiquitin-proteasome pathway.
PFKFB3 regulates the biogenesis and degradation of fructose-
2,6-bisphosphate, a known glycolytic activator. In contrast, in
astrocytes, PFKFB3 is activated by adenosine monophosphate-
activated protein kinase (AMPK) and promotes glycolysis (149).
In line, it was shown that the expression of PFKFB3 is higher
in mouse astrocytes than in murine neurons due to proteasomal
degradation in the neurons (164). In neurons, the activation of
PFKFB3 results in enhanced glycolysis but eventually leads to cell
death since neurons lose their ability to generate glutathione, an
essential antioxidant involved in the management of oxidative
stress. This means that unlike astrocytes, neurons use glucose
to maintain their antioxidant status and not for bioenergetic
purposes (164). These findings might help to explain why PD
neurons fail to increase their glycolysis rates and why increased
glycolysis leads to sustained cell proliferation in astrocyte-
originating GBM cells.

EPIDEMIOLOGY OF PD AND CANCER

Epidemiological evidence suggests that patients with PD have a
reduced incidence of primary CNS tumors (165, 166). In contrast,
there are a few epidemiological studies that show a positive
association of PD with benign and malignant brain tumors, but
not specifically with GBM (167–169). However, the problem
with these studies is that they do not distinguish between the
types of brain cancer, e.g., meningioma or astrocytoma. The
described increased risk of all types of brain cancers in PD might
be caused by diagnostic misclassification and detection bias.
Increased incidence of meningioma in PD patients for example
might result from the fact that the symptoms can be wrongly
diagnosed as a sign of PD, if the intracranial tumor leads for
example to a compression of the basal ganglia resulting in PD
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symptoms (170–173). Moreover, a positive association of brain
tumors and PD can be caused by detection bias as brain tumors
can be diagnosed during the clinical work-up for PD (174). Since
patients diagnosed with parkinsonism are more likely to have a
Magnetic Resonance Imaging at the time of diagnosis, this may
explain a higher risk of detecting silent brain tumors (173, 175).
The close temporal association between diagnosis of PD and the
incidence of brain tumors further leads to the suggestion that
brain tumors might be misdiagnosed as PD or vice versa (176).
Specifically, for GBM, as it is lethal, it is difficult to study PD in
individuals who survived GBM. This is why future studies should
focus on evaluating the risk of GBM in PD patients.

Interestingly, there is an increased risk of melanoma in
PD patients compared to controls (177–179). In 1985, Dr.
Rampen reported a 55-year-old male with PD who developed a
local recurrence of a primary melanoma and multiple primary
melanomas 4 years after primary excision and 4 months
after starting levodopa (180). An increased risk of malignant
melanoma in PD patients has been confirmed since in many
studies (8, 176, 181, 182). Several hypotheses could account for
this association. Since levodopa is ametabolite in the biosynthesis
of dopamine and melanin which involves the enzyme tyrosinase,
and increased tyrosinase activity is found in melanoma, it was
initially hypothesized that levodopa could enhance and stimulate
growth on any residual melanoma tissue (183). However, recent
studies have refuted a causal association for several reasons (178,
184). In particular, the observation that the risk of melanoma
is increased in PD patients before diagnosis argues against an
effect of levodopa. Additional explanations may be the existence
of shared genetic or environmental factors, or the common
embryonic origin of melanocytes and neurons from neural crest
cells (178, 185). In addition, mechanistic links caused by common
mutations or other alterations in a number of genes or proteins
in PD and melanoma could explain the co-occurrence of PD and
melanoma (184). Common mechanisms that are dysregulated
in PD and melanoma are for example cellular detoxification,
melanin biosynthesis or oxidative stress response (184).

Future studies should investigate underlying mechanisms of
decreased risk of some cancers and increased risk of other cancers
like melanoma in PD patients.

CONCLUSION

PD and GBM are two highly complex disease entities
characterized by multiple cellular changes. Similar mutations
within the same gene, for example Parkin (25), can have inverse
effects, depending on whether they are germline or somatic
mutations and depending on the type of cell in which they

occur: a dividing cell in GBM or a post-mitotic neuron in PD.
One could hypothesize that neurons are primarily unaffected
in GBM due to their postmitotic state. On the contrary,
somatic mutations causing tumorigenesis can spread through
proliferative astrocytes.

Another inverse association of PD and GBM that
requires future causal investigation is the time frame of the
pathophysiology of both diseases. While PD is a chronic,
generally slowly progressing neurodegenerative disease
characterized by gradual neuronal loss, GBM is a rapidly
progressing disease with rapid proliferation of glial cells
in a much shorter time frame. Possible explanations for
these observations are that in PD, the neuronal loss can be
compensated for a long time whereas the aggressiveness of
GBM due to highly infiltrative growing and metastasizing
cells that also display a vast cell heterogeneity leads to a rapid
disease progression.

In this review, we showed that there are common pathogenic
mechanisms involved in PD and GBM including inversely
deregulated pro-survival and immune signaling, mitochondrial
dysfunction and metabolic alterations. There is an inverse
regulation for p53, EGF(R), PTEN/PI3K/Akt, DJ-1, HIF-1α in
PD and GBM. Due to the complexity of both PD and GBM
etiology and pathogenesis, future studies need to unveil so far
unknown mechanisms of both diseases that will help to better
understand and to compare both diseases and to explain why
common inverse dysregulated cellular pathways can lead to
two such different diseases. Eventually, a deeper understanding
of the pathological mechanisms underlying PD and GBM will
guide the identification of possibly shared drug targets that
need to be modulated inversely for causative treatment of
both diseases.
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