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In Charcot–Marie–Tooth type 1A (CMT1A), Schwann cells exhibit a preponderant

transcriptional deficiency of genes involved in lipid biosynthesis. This perturbed lipid

metabolism affects the peripheral nerve physiology and the structure of peripheral

myelin. Nevertheless, the identification and functional characterization of the lipid species

mainly responsible for CMT1A myelin impairment currently lack. This is critical in the

pathogenesis of the neuropathy since lipids are many and complex molecules which

play essential roles in the cell, including the structural components of cellular membranes,

cell signaling, and membrane trafficking. Moreover, lipids themselves are able to modify

gene transcription, thereby affecting the genotype–phenotype correlation of well-defined

inherited diseases, including CMT1A. Here we report for the first time a comprehensive

lipid profiling in experimental and human CMT1A, demonstrating a previously unknown

specific alteration of sphingolipid (SP) and glycerophospholipid (GP) metabolism. Notably,

SP, and GP changes even emerge in biological fluids of CMT1A rat and human patients,

implying a systemic metabolic dysfunction for these specific lipid classes. Actually, SP

and GP are not merely reduced; their expression is instead aberrant, contributing to

the ultrastructural abnormalities that we detailed by X-ray diffraction in rat and human

internode myelin. The modulation of SP and GP pathways in myelinating dorsal root

ganglia cultures clearly sustains this issue. In fact, just selected molecules interacting

with these pathways are able to modify the altered geometric parameters of CMT1A

myelinated fibers. Overall, we propose to exploit the present SP and GP metabolism

impairment to select effective drugs and validate a set of reliable biomarkers, which

remain a challenge in CMT1A neuropathy.
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INTRODUCTION

Charcot–Marie–Tooth (CMT) neuropathies are a group of
inherited diseases affecting peripheral nerve function. Among
them, CMT type 1A (CMT1A) is the most prevalent type,
displaying characteristic dys/demyelination that still rules its own
classification (1, 2). The genetic defect responsible for CMT1A,
a 1.5-Mb duplication on chromosome 17p11.2 containing
the PMP22 gene, was identified more than 20 years ago
(3–6); however, this revelation has not led to the ultimate
comprehension of CMT1A genotype–phenotype correlation yet
nor to an effective therapy (7, 8). In fact, CMT1A patients sharing
the same genetic defect experience a remarkable phenotypic
diversity and severity (9–11).

As for other hereditary neuromuscular diseases in which
gene therapy proved to be effective, the negative regulation of
PMP22 expression represents the ideal biological endpoint and
therapeutic goal (12–14). To date, in contrast to preclinical
studies, clinical trials in CMT1A patients aimed to down-regulate
PMP22 showed negative results (7, 15–17). Furthermore, gene
therapy, in addition to the obvious technical difficulties, seems
to be still poorly acceptable for CMT1A patients in which
life expectancy and quality of life are not dramatically affected
(18, 19). Alternative therapeutic options should be explored, as
previously suggested (20–25).

In this context, we focused on dys/demyelination as a critical
target downstream of the PMP22 defect, assuming that the
refined knowledge of lipid metabolism is essential to effectively
address this aspect (26).

Indeed myelin chemical composition, structure, and
physiology are intimately related and altered in several
dysmyelinating neuropathies, including CMT1A (27–32).
Moreover, peripheral myelin distress is caused by mutations in
a variety of genes, including those coding for enzymes involved
in lipid biosynthesis and metabolism (33–37). Notably, several
molecules modulate the activity of these enzymes and are used
as real drugs in pathological conditions (38). Recent studies
demonstrated that soy phospholipid and high-fat neutral lipid-
enriched diets improve myelination in CMT1A and CMT1E
animal models (30, 39). It has also been shown that changes in
the circulating lipid profile may be related to the onset, activity,
and progression of some important human diseases, including
myelin disorders (40–42).

In spite of these observations, lipid metabolism still remains

largely under-explored in CMT neuropathies, including CMT1A
(39). In fact, it is vital to identify and characterize lipid species

and their changes, biological role, and mutual interaction (43).

In the present study, we addressed this gap by a multi-

disciplinary and technologically advanced approach, performing
a comprehensive study of lipid metabolism both in experimental
and in human CMT1A.

We found that sphingolipid and glycerophospholipid (SP
and GP) pathways are mainly responsible for the perturbed
lipid metabolism already described in CMT1A (30). We also
found a systemic alteration of SP and GP metabolism in
experimental and in human CMT1A biological fluids. Notably,
the specific targeting of just these pathways was able to

improve the altered structural parameters of CMT1A myelinated
fibers in vitro.

MATERIALS AND METHODS

Animal Model
The CMT rat, an animal model of CMT1A neuropathy originally
developed in K-A Nave laboratory, was used for the experiments
(44). Sixty-day-old heterozygous CMT1A animals and wild-
type (WT) littermates of both sexes were used for most
of the experiments unless otherwise specified. We confirm
that all methods were performed in accordance with relevant
guidelines/regulations. In particular, the research protocols
presented in this study are conducted in accordance with
the ARRIVE guidelines and are included in those reviewed
and approved by the OPBA (Institutional Animal Welfare
Body) and by the Italian Ministry of Health (project number
approval 798/2016-PR).

Cell Culture and Drug Administration
Myelinating dorsal root ganglia (DRG) cultures were established
from 15-day-old embryos as previously described (29, 45–47).
Briefly, 35–40 DRG were removed from each embryo, incubated
for 30min with 0.25% trypsin in Hanks’ solution, and minced
to obtain a suspension of DRG cells. The cells were washed
and dissolved in complete medium made up of neurobasal
medium (Invitrogen) supplemented with 15% newborn calf
serum, ascorbic acid (100µg/ml), and nerve growth factor at
5 ng/ml. This suspension was plated on collagen-coated ACLAR
dishes at a density of 15× 104 cells/dish.

Both CMT1A and WT DRG cultures were grown in complete
medium and chronically treated with different molecules
interfering with SP and GP metabolism (see also Figure 3A). In
particular, the cultures were treated every other day for 30 days
with oleyl-L-α-lysophosphatidic acid (LPA) (Na+ salt) (Sigma-
Aldrich, L7260), L-α-phosphatidic acid (PA) (Na+ salt) (Sigma-
Aldrich, P9511), CDP-choline (Na+ salt) (Sigma-Aldrich,
C0256), VO-OHpic trihydrate (a PTEN inhibitor) (Sigma-
Aldrich, V8639), phosphatidylinositol tris-3,4,5-phosphate (Na+

salt) (PIP3) (Matreya, Restek Superchrom, 1775-1), desipramine
hydrochloride (Sigma-Aldrich, D3900), sphingomyelin (Sigma-
Aldrich, S0074), L-serine (Sigma-Aldrich, S4311), and 2-hydroxy
oleic acid (2OHOA) (Sigma-Aldrich, SML0256). The vehicle
was represented by distilled water (ddH2O) for L-serine, PIP3,
desipramine, and CDP-choline, Dulbecco’s phosphate-buffered
saline (DPBS) (Gibco, 14190-144) for LPA, PA, and dimethyl
sulfoxide (Sigma, D8418) for VO-OHpic, and 2OHOA and
absolute ethanol for sphingomyelin, respectively. At the end of
each treatment, the DRG cultures were processed for advanced
quantitative neuropathology (see below).

Preliminary dose–response experiments were performed for
each molecule, including the vehicle to define safety and
effectiveness (data available at request). The sample size of the
treatment groups was calculated with PASS 11 (http://www.
ncss.com/software/pass/). The power analysis was performed in
a priori manner. Type I error was given with 5% and type
II error was given with ≥90%. Myelin density and internode
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length served as main outcome measures for the power analysis.
Assuming a complete recovery of the phenotype as the endpoint,
mean post-treatment differences of 5 × 10−5 units for myelin
density and of 13.67 units for internode length are required
for the CMT1A DRG cultures. We calculated a sample size
of three cultures for each group to reach a statistical power
higher than 90% (97 and 98%, respectively). The most effective
dosage for the molecules displaying a significant effect on the
geometric parameters of myelinated fibers was validated on a
second round of experiments. In particular, we analyzed the
effect of LPA (0.1µM), PIP3 (2µM), L-serine (0.5mM), and
VO-OHpic (0.1µM) on CMT1A and WT DRG cultures.

Samples From Human Subjects
The subjects involved in this exploratory study included 15
healthy controls (eight females and seven males, mean age: 47 ±
11 years, range: 27–67 years) and 28 patients with clinical and
genetic diagnosis of CMT1A (18 females and 10 males, mean age:
55 ± 15 years, range: 22–82 years). Our small cohort of patients
displayed a mean CMTNS of 13.35 ± 5.78 (95% CI, 10.64–
16.06) in agreement with the most frequent phenotype observed
in CMT1A populations (48). We confirm that all methods were
performed in accordance with relevant guidelines/regulations.
The Regional Ethics Committee (CER Liguria) approved the
current study protocol (project number approval 545REG2015),
and the patients gave written informed consent according to the
Helsinki Declaration as revised in 2013. Peripheral blood (5ml)
from CMT1A patients and controls was added to collection tubes
containing a clot activator and spun to obtain the serum fraction.
Serum was immediately frozen and stored at −80◦C in 500-µl
aliquots to perform lipidomics; repeated freezing and thawing
was avoided. The archived sural nerve biopsies from patients
with CMT1A and from subjects who underwent nerve biopsy for
suspected peripheral neuropathy were also used to performX-ray
diffraction analysis.

Isolation of PNS Myelin
Rat sciatic nerves were used to prepare myelin-enriched fraction
as previously described (32, 49).

Rat CSF and Serum Collection
Cerebrospinal fluid (CSF) collection was performed according
to Liu et al. (50). Briefly, the rats were anesthetized with an
intraperitoneal injection of ketamine/xylazine cocktail (100:10
mg/kg) and tightly fixed on ear bars to immobilize the head
of the animals. The skin at the base of the neck was removed
and the CSF was collected through a cisterna magna puncture
technique, and immediately frozen at −80◦C. Serum collection
was performed from the retro-orbital plexus by a capillary tube.
The blood was clotted at room temperature and centrifuged
prior to freezing the serum at −80◦C. All the procedures were
performed according to the ARRIVE guidelines.

Lipidomics by LC–MS/MS
Lipids were extracted from sciatic nerves, purified myelin, and
biological fluids by using the Bligh–Dyer protocol (51). In brief,
2ml of 1:2 chloroform/methanol mixture (v/v) was added to

the vials and vortexed for 30 s. Chloroform (0.5ml) and water
(0.5ml) were then sequentially added and thoroughly mixed after
each addition. The samples were then centrifuged for 15min at
3,500 × g at room temperature (RT). At the end of the process,
the organic (lower) phase (∼1.5ml) was transferred to glass vials.
The aqueous phases were re-extracted to increase the overall
recovery. The organic phases from both extractions were pooled
in a glass vial and dried under a nitrogen stream. The extracted
lipids were re-dissolved in 0.1ml of a 9:1 methanol/chloroform
solution and analyzed by liquid chromatography coupled to
high-resolution mass spectrometry (MS).

Untargeted lipidomics of lipid extracts was performed on
a UPLC Acquity system coupled to a Synapt G2 QToF high-
resolution mass spectrometer. The lipids were separated on
a CSH C18 column (1.7M particle size, 2.1 × 100mm).
Mobile phase A consisted of acetonitrile/water (60:40) with
10mM ammonium formate, and mobile phase B consisted of
acetonitrile/isopropyl alcohol (10:90) with 10mM ammonium
formate. The following gradient program was applied: 15% B
for 1min after injection, then increased to 60% B in 9min,
then to 75% B in 8min, and then to 100% B for a further
2.5min. An isocratic 100% B step was then maintained for
2.5min, and the column was subsequently reconditioned to 15%
B for 2min. Total run time was 25min with the following
conditions: flow rate−0.4 ml/min, column temperature−55◦C,
and injection volume−6 µl. The instrument was operated in
positive electrospray ionization (ESI) mode. The MS source
parameters were as follows: capillary and cone voltages were set at
2.8 kV and 30V, respectively, source and desolvation temperature
were set at 100 and 450◦C, respectively, and desolvation gas and
cone gas (N2) flows were set at 800 and 50 L/h, respectively.
The mass spectra were recorded in MSe mode, with MS/MS
fragmentation performed in the trap region on the instrument.
Low-energy scans were acquired at a fixed 4 eV collision energy,
and high-energy scans were acquired using a collision energy
ramp from 20 to 40 eV. The spectra were recorded at a mass
resolution of 20,000 in the range of 50–1,200 m/z. The scan rate
was set to 0.3 spectra per second. A leucine–enkephalin solution
(2 ng/ml) was continuously infused in the ESI source (4 µl/min)
and acquired every 30 s for real-time mass axis recalibration
(52). All the samples were run in random order. Quality
control samples, consisting of a pool of all the samples, were
acquired and were used to assess system suitability, performance,
and reproducibility.

LC-MS/MS Data Analysis
Raw data were analyzed using MarkerLynx software (Waters
Inc.) to re-align the observed peak and extract all the
relevant features (53). The feature list was then analyzed with
MetaboAnalyst 4.0, a web-based metabolomic data processing
tool (54). Following principal component analysis (PCA),
heatmap analyses were performed to detect the features showing
significant changes between the groups. Lipid identification
was then performed by interrogating the web-based algorithm
HMDB using the accurate mass measured for each feature.
The following adduct species were searched: [M + H]+, [M +

NH4]+, [M + H–H2O]+, [M + Na]+, [M + H−2H2O]+, [M
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+ CH3CN + H]+, [M + NH4-H2O]+, [M + isopropanol +
Na]+, [M + 2CH3CN + H]+, [M + 2Na–H]+, and [M + K]+.
A maximum of 5 ppm tolerance in mass accuracy was allowed.
Whenever possible, feature annotation was also supported by
tandem mass data (MSe mode) and class-specific retention time
(55). Based on the putative ID of the statistically relevant features,
pathway analysis was performed using a hypergeometric test
for overrepresentation and using a Rattus norvegicus or Homo
sapiensmetabolite background.

X-ray Diffraction Analysis
Rat Sciatic Nerve
The fixed dissected sciatic nerves, prepared from rats that
were 1.5 and 3 months old, were tied off at their ends and
sealed, in contact with excess buffered fixative, in 0.7-mm-
diameter quartz capillary tubes. X-ray diffraction spectra were
recorded from the nerves using nickel-filtered, single-mirror-
focused CuKα radiation from a fine-line source on a 3.0-kW
Rigaku X-ray generator that was outfitted with a linear, position-
sensitive detector, as described in Avila et al. (56). The myelin
periodicity was calculated from the positions of the Bragg
reflections in the patterns. The relative amount of multilamellar
myelin was determined by measuring the total integrated
intensity of the Bragg reflections (M) above background (B).
The fraction of scattered intensity that is due to myelin is then
M/(M + B) (56).

Human Sural Nerve Biobsy
Small-angle X-ray scattering (SAXS) experiments were
performed at the ID13 beamline of the European Synchrotron
Radiation Facility (ESRF). The pink beam from an undulator
was monochromated to a wavelength of λ = 0.09755 nm,
with 1λ/λ∼2×10−4 by a liquid-N2-cooled Si crystal.
Epon-embedded longitudinal and transversal sections of
control human and CMT1A sural nerve samples were
deposited on plain mesh TEM grids (57). A protein
crystallography microgoniometer with on-axis optical
microscopy allowed obtaining SAXS patterns at specific
locations and extracting bilayer periods from the observed
lamellar orders (58).

The X-ray beam was focused by Kirkpatrick–Baez double
mirrors and collimated by an aperture to a 5 × 5 µm2

full-width half-maximum spot at the sample position (59).
Longitudinal and transversal sections of Epon-embedded
samples were probed in transmission geometry at specific
positions using a protein microcrystallography goniometer
(58). The sample-to-detector distance was calibrated by an
Ag-behenate standard to be 485.3mm. SAXS patterns were
recorded by a MarCCD detector (Rayonix) with typical exposure
times of 60 s/pattern. The patterns were displayed and analyzed
using the FIT2D software.

Advanced Neuropathology in DRG Cultures
Following pharmacological manipulation of SP and GP
metabolism, DRG cultures were carefully rinsed in DPBS
(Gibco, 14190-144), fixed for 20min in 4% paraformaldehyde
(Sigma-Aldrich, P6148) in DPBS, rinsed again in DPBS,

and incubated for 30min into a permeabilizing/blocking
buffer (GSDB buffer) containing 33.3% normal goat
serum (DAKO, X0907), 10% Triton-100 (Sigma-Aldrich,
T8787), phosphate buffer (240mM), pH 7.4, and sodium
chloride (4M). Incubation with the anti-myelin basic
protein antibody, aa 129–138 clone 1 (Sigma-Aldrich,
MAB 382, 1:300), was performed at 4◦C in GSDB buffer
overnight. After careful rinsing in DPBS, the cells were
incubated with Alexa Fluor 594 goat anti-mouse IgG (H+L)
secondary antibody (Invitrogen, A11005) at 1:400 dilutions
for 1.5 h at 25◦C. The cell nuclei were stained with 4′,6-
diamidino-2-phenylindole dihydrochloride; fluoropure grade
(300 nM) (Invitrogen, D1306) and ACLAR dishes were sealed
on slides.

Images from the whole DRG culture (80 images/culture
and an average number of quantified myelinated internodes
of 1 × 104) were acquired, using the ×20 objective, with
an Olympus PROVIS AX60 microscope connected to an
Olympus DP70 digital camera. A morphometric evaluation of
the digitized images was performed using an ad hoc Image
Pro-Plus macro that we recently established in our laboratory,
using the Image Pro-Plus Software (Immagini e Computer,
Rho, Milan, Italy) (see Figure S10 and Video S1). This semi-
automated tool allows a detailed morphometric analysis of the
critical parameters for myelinated fibers physiology including
(i) myelinated area (i.e., number of myelinated pixels/total
pixels on the micrograph) and (ii) internode length and its
relative frequency functions. Actually, this allowed us to reliably
distinguish CMT1A myelinated internode from the control one
for all the parameters analyzed (see Figure S10).

Statistical Analysis
The results are presented as mean ± SEM unless otherwise
specified. Outliers, whenever present, were identified and
removed through the ROUT method (Q = 1%). For
myelinated area and internode length, we performed the
D’Agostino–Pearson normality test to assess the type of
data distribution. Therefore, statistical differences were
determined using the non-parametric Mann–Whitney
test. For internode length frequency distributions, we
performed the non-parametric Kruskal–Wallis test followed
by Dunn’s multiple-comparisons test. Metabolomics statistics,
including PCA, pathway analysis, and volcano plot for the
heatmap data, were all performed with MetaboAnalyst
software. Statistical differences were considered to be
significant when P < 0.05. Unless otherwise specified,
statistical analysis was performed using the Graph Pad 7.0
(Prism) software.

RESULTS

SP and GP Pathways Are Mainly
Responsible for Lipid Alteration in CMT1A
Myelin
To gain a complete overview of CMT1A peripheral nerve lipid
composition, we performed a comprehensive lipidomic analysis
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both on lipid fraction extracted from sciatic nerve homogenates
and on purified myelin.

We found that the CMT1A nerve homogenate displays a
distinctive lipid profile compared to that of WT littermates
(Figure 1A). In particular, we identified 121 lipid species that
significantly differ between the two conditions. Among them,
SP and GP mostly contributed to this remarkable diversity
(Figures 1B–D). Notably, the SP and GP species in CMT1A were
not merely reduced as it could be expected by the impaired ability
of Schwann cells (SCs) to mount the whole lipid biosynthetic
transcriptional program during myelination (30); instead we
found an incorrect pattern of SP and GP characterized by the
presence of lipid species where these were highly increased
alongside lipid species where these were extremely decreased
(Figures S1, S2 and Table S1).

To map this aberrant lipid profile directly into the intact
rat sciatic nerve, we performed MALDI-IMS [Figure S3; (60)]:
the clustering algorithm classified the two genotypes in clearly
separate groups just in the endoneurium. Importantly, we also
confirmed SP and GP as the most compromised pathways
(Figures S4–S8).

To unambiguously demonstrate that, among lipids, SP andGP
mainly contributed to CMT1A myelin pathology, we performed
targeted lipidomics on CMT1Amyelin-enriched fraction. Similar
to the sciatic nerve, the SP and the GP pathways were deeply
altered (Figures 2A–F).

Indeed this aberrant lipid composition might also account
for the ultrastructural changes of the CMT1A myelin membrane
that have been described by us and other groups (29, 30).
Thus, to strengthen the issue, we used, for the first time,
X-ray diffraction that can precisely detect subtle changes in
myelin periodicity to assess both internode myelin quantity
and quality in sciatic and sural nerves from CMT1A
rats and human patients, respectively (Figures 2G,H).
Notably, we found a significantly reduced amount of myelin
and a substantial widening of myelin period, which are
consistent with the aberrant lipid composition [Figures 2G,H;
(30, 61, 62)].

Modulation of SP and GP Pathways Affects
CMT1A Myelin Physical Structure
To demonstrate a link between SP and GP imbalance and
aberrant myelin physical structure in CMT1A, we took advantage
from DRG cultures an in vitro model of the disease originally
developed in our laboratory (29, 45, 63).

In particular, we chronically treated CMT1A and WT DRG
cultures with different molecules interfering with both SP and GP
metabolism (Figure 3A).

We found that four drugs were effective in improving the
geometric parameters of CMT1A myelinated fibers (Figure 3B).
In particular, PtdIns(3,4,5)P3 (PIP3) and lysophosphatidic acid
(LPA) were able to significantly increase just the amount of
myelinated area without any effect on the internode length (PIP3:
41.5%, p < 0.0001; LPA: 65.7%, p < 0.0001); conversely, L-
serine significantly improved only the internode length (7.5%, p
< 0.01). Notably, VO-OHpic, a quite specific inhibitor of PTEN,

a phospholipid phosphatase that we found to be significantly
increased in CMT1A (Figure S10), was able at the same time to
positively affect both of these aspects (myelinated area: 48.1%, p
< 0.01; internode length: 11.9%, p < 0.0001). Actually, L-serine
and VO-OHpic affected the internode frequency distribution,
shifting the function back to the WT condition (Figure 3B).
Interestingly, when we performed a combined treatment with
L-serine and PIP3, we observed an improvement of both
internode parameters (myelinated area: 70.3%, p < 0.0001;
internode length: 11.2%, p < 0.0001) following the VO-OHpic
treatment, suggesting the existence of at least two independent
molecular mechanisms that affect the CMT1A myelin assembly.
Notably, these effects did not occur in the WT condition,
reinforcing the specificity of CMT1A SP and GP pathway
impairment (Figure 3B).

SP and GP Pathways Are a Proper Source
of CMT1A Blood Biomarkers
To test whether the massive change of SP and GP metabolism
that we found in CMT1A myelin might be traced into the
circulatory system, we performed a complete lipid profile in
CSF and serum from CMT1A rat and human patients. We
identified a unique and specific lipid profile in the CSF of
CMT1A rats compared to controls (Figure 4A). In particular,
we recognized 37 features that clearly discriminate the two
experimental groups, as shown in the corresponding heatmap
(Figure S11 and Table S1). Also, in the rat serum, the CMT1A
lipid profile strongly diverged from that of the WT littermates,
supporting the notion that a systemic impairment of lipid
metabolism is present in this neuropathy (Figure 4B). Notably,
serum lipidomics in the rat revealed that 67 features, mostly
belonging to SP and GPmetabolism, especially contributed to the
unique lipid profile of CMT1A (Figure S11 andTable S1). Owing
to the highly consistent results obtained in experimental CMT1A,
we extended our study to human subjects by performing
lipidomics on the serum collected from 28 genetically defined
CMT1A patients and 15 age-matched healthy donors, without
any evident comorbidity with diseases that compromise lipid
metabolism. As reported in the score plot, the CMT1A patients
significantly clustered from healthy controls (Figure 4C). In
particular, 141 features were dysregulated between the two
groups. Once again, the majority of these features belong to
SP and GP pathways (Figure S11 and Table S1). Interestingly,
among them, we found remarkable alterations in the levels
of known myelin-enriched lipids, including sulfatides and
gangliosides, supporting the notion that the CMT1A lipid
perturbation present in peripheral myelin may be tracked in
the blood. Of note is the fact that these changes were definitely
huge: most of the identified features increased or decreased
by more than hundreds of thousands of times in human
serum, an optimal condition to perform a future biomarker
discovery activity. Indeed the comparative pathway analysis
between CMT1A rat and human biological fluids showed that
the alteration of SP and GP metabolism was the common feature
(Figures 4D–H).
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FIGURE 1 | Multivariate data analysis (MVA) of rat sciatic nerve lipidome clearly discriminates CMT1A from controls displaying a specific impairment of sphingolipid

and glycerophospholipid metabolism. (A) Score plot from principal component analysis (PCA) of untargeted lipidomics data. PCA was able to reliably discriminate

CMT1A nerves (red, n = 11) from the wild type ones (black, n = 8). (B) Heatmap generated with the most significant features (with highest fold change and statistical

significance) detected by MVA. One hundred twenty-one features were mainly responsible for the difference between the two groups. (C) Graph presenting the

probability (y-axis) and the impact (x-axis) that a pathway is responsible for the difference shown in lipidomic profiles. Each circle represents a specific lipid pathway;

the circle size represents the number of hits per pathway. Red–orange–yellow–white diminishing scale represents the degree of involvement in lipidomic profiles. (D)

Table indicating only the significant pathways presented in the graph.
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FIGURE 2 | CMT1A myelin displayed perturbed sphingolipid (SP) and glycerophospholipid composition and ultrastructural abnormalities. The most abundant SP

species were analyzed by an optimized protocol of targeted mass spectrometry. This method uses 25 standards to calculate the absolute concentration (nM) of

(Continued)
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FIGURE 2 | sphingolipids of interest. (A–D) Ceramides, sphingomyelins, hexosylceramides, and sphingosine were all reduced in the CMT1A samples. (E,F)

Phosphatidylinositides were the lipid species mainly altered in CMT1A myelin by shotgun untargeted analysis. The compound names are presented on the y-axis,

while different acyl chains, sature, or insature, are presented on the x-axis. Data are presented as mean ± mean of standard error. Wild type (WT) (black), CMT1A (red)

n = 4. Statistics was calculated with unpaired t-test, two-tailed. ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05. (G) X-ray diffraction performed on WT and

CMT1A rat sciatic nerves from four different litters at 1.5 months (filled symbols) and at 3 months (open symbols) of age. The whole nerves were fixed in 2.5%

glutaraldehyde in cacodylate buffer, pH 7.4, for 24 h. In the graph, the relative amount of myelin vs. myelin period is reported. The CMT1A rats showed a significantly

reduced myelin content and an enlarged myelin periodicity compared to the WT littermates, which demonstrates the presence of myelin ultrastructural alterations in

this neuropathy (WT black, n = 12; CMT1A red, n = 9, unpaired t-test, two-tailed; p < 0.0001 for both relative amount of myelin and myelin periodicity). The inset

shows examples of the diffraction patterns, expressed as diffracted intensity vs. detector channel number. The patterns correspond to the data points marked by the

asterisks. The small shift in the positions of the Bragg peaks indicates differences in periodicity, and the weaker peaks indicate less myelin. The middle region of each

pattern, approximate channel numbers 950–1,050, is central scatter from the direct beam around the beam stop and, therefore, is excluded from the analysis. (H)

X-ray diffraction performed on human sural nerve biopsies of patients affected by CMT1A compared to patients affected by other neurological diseases (OND). The

nerves were fixed in buffered glutaraldehyde, processed for electron microscopy, and embedded in Epon, which accounts for the differences in periodicities with the

results in (G). Notably, the CMT1A patients (red, n = 3) displayed enlarged myelin periodicity compared to the control patients (OND, black, n = 4, unpaired t-test,

two-tailed; p < 0.01) as was found in the CMT1A rat. Data are presented as mean ± standard deviation.

DISCUSSION

Myelin lipid deficiency and its partial rescue in response to a
lipid-enriched diet have been recently shown in the CMT1A rat
model (30).

The present study provides evidence for the first time that,
following a comprehensive analysis of the whole lipidome, just
SP and GP are responsible for the CMT1A perturbed lipid
metabolism in the nerve, myelin, and biological fluids.

These results definitely extend and better define earlier works
(30, 39). Of note also in our study is that different SP and GP
species (including phosphatidylcholines) are altered in CMT1A,
but with species increased as well as decreased, complicating
the issue. In this context, it is well-known that the unique lipid
stoichiometry of myelin directly influences its ultrastructure and
physiology, thereby regulating nerve conduction (26, 31). In
fact, myelin is subjected to different physical and functional
rearrangements during development, including progressive
thickening, lengthening along fiber internodes, and increasing of
conduction velocity. All these features are altered in CMT1A and
never reach normal values (64–68). Indeed changes in CMT1A
myelin geometric parameters have already been shown by us and
other groups (29, 30, 64, 69). Moreover, here we demonstrate by
X-ray diffraction analysis a flawed physical structure of internode
myelin in both experimental and human CMT1A.

To link SP and GP imbalance with CMT1A myelin
architecture, we investigated the morphometric changes of the
myelinated internode in DRG cultures treated with different
molecules affecting just these lipid pathways (32, 70–79). Of note
is that most of the SP and GP species displaying a greater change
do not only have a structural role in myelin but are also able to
impact on signaling and transcription itself (34).

Among all the tested molecules, we found that L-serine,
PIP3, LPA, and VO-OHpic were able to improve CMT1A
myelin internode, in contrast to an earlier work in which
lipid supplement was unable to influence these parameters (30).
Moreover, the effect of our treatments was specific for the
CMT1A condition as we did not observe any effect in wild-
type cultures.

Indeed these molecules deeply interfere with normal and
pathological myelination. In fact, L-serine is a key polar amino
acid required for SP synthesis, being an essential substrate for
SPTLC1, the rate-limiting enzyme of SP metabolism; peripheral

myelin is particularly sensitive to SP composition and change
(80, 81). PIP3, in glia, triggers autonomous cell wrapping during
myelination, and an imbalance of PIP homeostasis is at the basis
of altered longitudinal myelin growth and myelin outfolding
formation (37, 73, 82, 83). LPA is an early precursor of PI that
regulates crucial signaling in myelin, including embryonic SC
migration, myelination, and cell-to-axon segregation; PI also
prevents SC apoptosis through activation of PI3K, a key enzyme
for PIP3 homeostasis (70). Finally, VO-OHpic is a synthetic
specific inhibitor of PTEN, an enzyme that works in concert with
Dlg1 as myelination inhibitor, and deletion of PTEN in adult SCs
is able to reactivate myelin growth (77, 84, 85).

We would like to highlight that these molecules act on the
PI3K/PTEN pathway, a well-known CMT1A hub, downstream
to NRG1, further sustaining the importance of SP and GP
metabolism in myelin development and maintenance.

We found that these molecules affect myelinated area and
internode length in different ways: in fact, while PIP3 and
LPA significantly increased the amount of myelinated fibers
without any effect on their structure, L-serine andVO-OHpic just
increased the internode length, suggesting the existence of at least
two independent mechanisms essential for correct myelination.
This hypothesis is further strengthened by the cumulative effect
of PIP3 and L-serine simultaneous administration, which was
able to improve both the quantity and the quality of the
myelin internode.

Trying to further explain our results, we envisage that
these treatments are able to impact on SC differentiation and
proliferation, two biological processes highly compromised
in CMT1A (86, 87). Indeed LPA and PIP3, improving the
myelinated area through the PI3K/PTEN pathway, may directly
trigger the CMT1A SC differentiation program (70, 73).
The positive effect of L-serine and VO-OHpic on CMT1A
internode length might instead be due to their ability to
inhibit proliferation. In fact, the relation between increased
proliferation and shortening of internode is well-known (88–90).
Interestingly, several studies demonstrate that SPTLC1 and
PTEN, sensitive to L-serine, and VO-OHpic, respectively,
are also able to modulate proliferation independently from
their normal enzymatic activity (91–93). Further studies are
needed to demonstrate the correlation between abnormal
cellular proliferation and myelin structure impairment
in CMT1A.
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FIGURE 3 | Modulation of sphingolipid (SP) and glycerophospholipid (GP) pathways affects the CMT1A myelin physical structure. (A) Schematic illustration of

treatment schedule adopted to demonstrate the specific involvement of SP and GP in CMT1A myelinopathy. The CMT1A and WT DRG cultures were chronically

treated with several molecules selected for their proven efficacy on SP and GP pathway modulation in the presence of 15% newborn calf serum, ascorbic acid

(100µg/ml final concentration), and nerve growth factor at 5 ng/ml final concentration. In particular, we analyzed the effects on myelination of LPA, PA, CDP-choline,

PIP3, VO-OHpic, 2OHOA, desipramine, SM, and L-serine. (B) Advanced neuropathology (see also the Video S1) performed on dorsal root ganglia (DRG) myelinated

fibers allowed us to select PIP3, LPA, VO-OHpic, and L-serine as the most effective molecules. Interestingly, we found that these molecules improved the CMT1A

myelinopathy—a reduced amount of myelinated fibers and shortening of the internode length—in a different way. In fact, while PIP3 and LPA significantly increased

the amount of myelinated fibers without any effect on their structure [CMT1A Ctrl (n = 180) vs. CMT1A PIP3 (n = 215), mean ± SD: 0.53 ± 0.43 vs. 0.75 ± 0.50;

CMT1A Ctrl (n = 405) vs. CMT1A LPA (n = 511), mean ± SD: 0.35 ± 0.27 vs. 0.58 ± 0.40), L-serine and VO-OHpic just increased the internode length (CMT1A Ctrl

(n = 102) vs. CMT1A L-serine (n = 113), mean ± SD: 0.79 ± 0.12 vs. 0.85 ± 0.23; CMT1A Ctrl (n = 128) vs. CMT1A VO-OHpic (n = 155), mean ± SD: 0.67 ± 0.11

vs. 0.75 ± 0.11], suggesting the existence of at least two independent mechanisms essential for correct myelination. This hypothesis is further strengthened by the

cumulative effect of PIP3 and L-serine simultaneous administration to CMT1A DRG cultures, which was able to improve both the quantity and the quality of

pathological myelin [CMT1A Ctrl (n = 112) vs. CMT1A PIP3+L-serine (n = 145), myelinated area mean ± SD: 0.27 ± 0.20 vs. 0.46 ± 0.36; CMT1A Ctrl (n =112) vs.

CMT1A PIP3+L-serine (n = 145), internode length mean ± SD: 0.62 ± 0.10 vs. 0.69 ± 0.12]. LPA, lysophosphatidic acid; PA, phosphatidic acid; DAG, diacylglycerol;

CDP-choline, cytidine-5′-diphospho-choline; PI, phosphoinositide; PC, phosphatidylcholine; PIP, phosphatidylinositol phosphate; PTEN, phosphatase and tensin

homolog; VO-OHpic, a PTEN inhibitor; PI3K, phosphatidylinositol-3-kinase; PIP3, phosphatidylinositol tris-3,4,5-phosphate; 2OHOA, 2-hydroxy oleic acid; SM,

sphingomyelin; aSMase, acid sphingomyelinase; SMS, sphingomyelin synthase; Cer, ceramide. For myelinated area and internode length, we performed the

D’Agostino–Pearson normality test to assess the type of data distribution. Therefore, statistical differences were determined using the non-parametric Mann–Whitney

test (n represents the number of analyzed images in at least three biological replicates). For internode length frequency distributions, we performed non-parametric

Kruskal–Wallis test followed by Dunn’s multiple-comparisons test (n represents the total number of analyzed internodes). ns, not significant; **p < 0.01 and ****p <

0.0001.
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FIGURE 4 | Sphingolipid (SP) and glycerophospholipid (GP) pathways present a reliable source of CMT1A wet biomarkers. (A) Score plot from Orthogonal Projections

to Latent Structures Discriminant Analysis (OPLS-DA) of untargeted lipidomics data. (A) OPLS-DA analysis was able to reliably discriminate CMT1A CSF (red, n = 9)

from the wild type (WT) one (black, n = 8). (B) Corresponding OPLS-DA analysis of rat serum lipidome displayed a clear separation between the two phenotypes (WT,

black, n = 5 and CMT1A, red, n = 5). (C) Untargeted lipidomics was also performed on the serum of 15 healthy donors and 28 CMT1A patients. Notably, OPLS-DA

analysis demonstrated a clear clustering of the subjects into two groups according to the genotype. (D–F) Graphs presenting the probability (y-axis) and the impact

(x-axis) that a pathway is responsible for the differences shown in lipidomic profiles. Each circle represents a specific lipid pathway; the circle size represents the

number of hits per pathway. Red–orange–yellow–white diminishing scale represents the degree of involvement in lipidomic profiles. (G) Table indicating only significant

pathways presented in the graphs. (H) A comparative pathway analysis (Venn diagram) shows that the dysregulation of SP and GP metabolism is mainly responsible

for the difference between CMT1A and controls in both rat biofluids and the serum of human subjects. The diagram was designed by Biovenn online software (http://

www.biovenn.nl/).
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Overall, our results display a leading role of SP and GP
metabolism in CMT1A impaired myelination.

Notably, the same SP and GP dysregulation emerges from the
lipidomics performed on biological fluids both in experimental
and in human CMT1A. Our results strongly recommend SP
and GP as a promising source of disease biomarkers. Actually,
while there is no need for CMT1A diagnostic biomarkers, great
effort is underway to identify disease severity biomarkers to
stage patients, to follow disease progression, and to monitor
drug efficacy in clinical trials (94). To date, transcriptional
biomarkers in skin biopsies of experimental and human CMT1A
have been proposed, demonstrating that disease severity can be
related to cutaneous mRNA expression (14, 95). Moreover, a
study performed on the plasma of CMT1A patients highlighted
an increase of protein catabolism and the mobilization of
membrane lipids involved in inflammatory signaling as further
potential sources of biomarkers (96). Nevertheless, we are still
far from having reliable and clinically acceptable disease severity
biomarkers. Owing to our analysis of the CMT1A serum lipid
profile, a most reliable fluid in clinical practice, it is our
opinion that the present study represents a critical step toward
this direction.

Finally, despite that our study is focused on CMT1A, it is
intriguing that defects of lipid metabolism have been described
in several other peripheral neuropathies. Among them, there
are not only inherited dysmyelinating CMT—including CMT1B,
CMT4B1, and CMT4J—but also HSAN type 1 and diabetic
neuropathy (37, 97–100). Even some axonal CMT2 neuropathies
display a dysregulation of lipid metabolism, which further
supports a critical role of bioactive lipid species in peripheral
nerve physiology (42, 101).

CONCLUSIONS

The lipidome profiling in experimental and in human CMT1A
reported herein for the first time and the established previously
unknown alterations in SP and GP metabolism expand the
spectrum of molecular changes in CMT1A. The consistent
systemic altered lipidome of affected patients deeply supports
the use of lipid serum biomarkers in CMT1A and possibly
other CMT neuropathies in which lipid biosynthesis and myelin
remodeling are compromised. These novel data provide insights
into the pathological alterations in the CMT1A neuropathy
at a molecular level and could potentially contribute to the
development of novel disease-modifying approaches.
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