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Randomized Controlled Trials (RCTs) are considered the gold standard for measuring

the efficacy of medical interventions. However, RCTs are expensive, and use a limited

population. Techniques to estimate the effects of stroke interventions from observational

data that minimize confounding would be useful. We used regression discontinuity design

(RDD), a technique well-established in economics, on the GetWith The Guidelines-Stroke

(GWTG-Stroke) data set. RDD, based on regression, measures the occurrence of a

discontinuity in an outcome (e.g., odds of home discharge) as a function of an intervention

(e.g., alteplase) that becomes significantly more likely when crossing the threshold of a

continuous variable that determines that intervention (e.g., time from symptom onset,

since alteplase is only given if symptom onset is less than e.g., 3 h). The technique

assumes that patients near either side of a threshold (e.g., 2.99 and 3.01 h from symptom

onset) are indistinguishable other than the use of the treatment. We compared outcomes

of patients whose estimated onset to treatment time fell on either side of the treatment

threshold for three cohorts of patients in the GWTG-Stroke data set. This data set

spanned three different treatment thresholds for alteplase (3 h, 2003–2007, N = 1,869;

3 h, 2009–2016, N = 13,086, and 4.5 h, 2009–2016, N = 6,550). Patient demographic

characteristics were overall similar across the treatment thresholds. We did not find

evidence of a discontinuity in clinical outcome at any treatment threshold attributable

to alteplase. Potential reasons for failing to find an effect include violation of some

RDD assumptions in clinical care, large sample sizes required, or already-well-chosen

treatment threshold.
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INTRODUCTION

Randomized controlled trials (RCTs) are considered the
gold standard in clinical investigation because, ideally, RCTs
remove both known and unknown imbalances in groups that
could lead investigators to wrongly conclude a treatment is
efficacious (1). Data from RCTs are generally required before
regulatory approval is granted to market a drug treatment (e.g.,
alteplase for acute ischemic stroke) (2), and new interventions
typically require data from RCTs on efficacy before they are
widely accepted.

Therapies that have a treatment threshold lead to challenging
problems about the choice of those thresholds. In the case
of alteplase, only patients whose symptoms began before the

threshold time (e.g., 3 h prior to presentation) are eligible
for treatment. The time window curtails treatment in clinical
practice, and off-label use beyond approved time windows
introduces legal and ethical concerns. If a treatment is effective
within a narrow time window (e.g., 3 h for alteplase), there
is typically a desire to extend it further to increase the
number of patients who might be treated. Yet, each new time
window typically requires another RCT, with the associated
time and expenses of planning and conducting the trial.

In the case of alteplase, data from other clinical trials was
utilized to propose additional RCTs. However, extending the
time window for fibrinolytic treatment expressly carried an
increased risk of intracranial hemorrhage, which was borne
out in a RCT with an extended time window (3). The
concern for symptomatic hemorrhage has guided the design

and conduct of RCTs for ischemic stroke generally (4, 5).
Publication of an RCT showing that treatment up to 4.5 h
after symptom onset was efficacious required several more
years (6). Clinicians are often hesitant to wait years for new
RCTs, and may treat patients outside of rigorously applied
clinical trial protocols (7). Each new therapy (e.g., endovascular
therapy for large vessel occlusion) brings a similar invitation
to extend the window as long as it is efficacious. Conversely,
some RCTs of time-limited therapies are negative, leading
to the testing of more stringent time windows in hopes of
finding efficacy [e.g., shortening the window of recombinant
Factor VII for intracerebral hemorrhage from 3 h of symptom
onset (8) to 2.5 h (9)]. Methods to hasten the determination
of effective time windows for treatments with a threshold
are needed.

New analytic techniquesmay improve our ability to determine
the optimal treatment window for time-limited treatments.
Regression Discontinuity Design (RDD), well-validated in
economics and epidemiology (10–13), could be particularly
helpful for determining if treatment thresholds are correctly set.
RDD uses observational data to examine whether patients just
above and just below the treatment threshold have different
outcomes. RDD depends on the assumption that patients within
a small window on either side of a threshold are no different
other than being eligible for a treatment. We hypothesized that
RDD would be a useful technique to evaluate alteplase treatment
thresholds using observational data (clinical data), and that we
could compare the results with those from already-conducted

RCTs (6). RDD could eventually supplement RCTs in clinical
decision making.

METHODS

Wequeried the GetWith TheGuidelines-Stroke (GWTG-Stroke)
stroke data set, a long-standing, observational registry of patients
with stroke. The methods of the GTWG-Stroke data set have
been previously described in detail (14–16). To perform an RDD
analysis, one requires for all patients the outcome variable of
interest (e.g., home discharge), the continuous variable which
determines the intervention (e.g., time from symptom onset until
treatment decision), and the threshold value for this continuous
variable that determines treatment administration [e.g., 3 h as
shown in the original NINDS trial (2), or 4.5 h as in the
ECASS III trial (6)]. If there is a difference (“discontinuity”)
in outcomes between these two groups (that is not attributable
to confounding variables), the difference in outcomes can be
attributed to the treatment. To perform this analysis, a regression
model is fit, including a parameter that estimates the magnitude
of discontinuity in outcomes between patients on either side of
the threshold.

We examined the following clinical outcomes for signs of a
discontinuity: good discharge disposition, in-hospital mortality,
length of hospital stay, ambulatory status at discharge, and
modified Rankin Scale at discharge (see Supplementary Table 1

for details). We also analyzed factors that might have
influenced the use or effectiveness of alteplase by building
more sophisticated, adjusted models. These characteristics
included patient age, sex, race/ethnicity, relevant past medical
history (e.g., prior ischemic stroke, coronary heart disease, etc.,
NIH Stroke Scale (NIHSS), as well as hospital characteristics
such as setting (urban, rural), and annual volume of patients with
ischemic stroke. These demographic variables allow us to more
accurately estimate the effect of alteplase, but also to confirm the
validity of our model. The unadjusted models do not include this
additional information. Since patients are assumed to be similar
on either side of the threshold, a discontinuity in a demographic
variable at the threshold could be evidence that this assumption
is violated. Thus, we checked for discontinuities in demographic
factors as well as in outcomes.

All participating institutions were required to comply with
local regulatory and privacy guidelines and, if required, to secure
institutional review board approval. Because data were used
primarily at the local site for quality improvement, sites were
granted a waiver of informed consent under the common rule.

METHODS: RUNNING VARIABLE
IMPUTATION

Our analysis required modification of the standard RDD setup
due to different data recorded for treated and untreated patients.
In a standard RDD, the running variable that determines the
treatment is observed for both patients that are treated, as
well as for patients that are not treated (e.g., a test score that
determines a scholarship award). In our case, alteplase should
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only be administered within the time window in question (e.g.,
before 3 h) starting with the time of symptoms onset. Thus, for
patients who are treated, the sequence of events that must take
place within this window are: (1) development of symptoms, (2)
clinical imaging (CT scan) to determine the need for treatment,
and (3) the treatment itself. A reasonable running variable for
this situation is the sum of these three times, which we call onset
to treatment time. The situation for patients who are not treated
is different because there is no time of treatment with alteplase.
To address this issue, for both treated and untreated patients,
we imputed the time from clinical imaging to treatment. We
imputed this value using the median from the patient’s hospital
in that particular year. We call this running variable estimated
onset to treatment time (OTTest). Multilevel modeling could be
useful in such a scenario, but this is not yet routinely done in
RDD analyses.

This method of estimating times for treated and untreated
patients is reasonable. First, the time to administration of
alteplase is known for each hospital each year, and reflects
established protocols of stroke care. Second, the magnitude of the
imputed value is about 20% of the total running variable; modest
compared with the other two components. Third, the imputed
onset to treatment time still reflects the most important clinical
information that is used to determine alteplase administration
(time from symptom development, and time of clinical imaging).
We feel that the onset to treatment time and estimated onset
to treatment time both contain essentially the same clinical
information for treated and untreated patients, making it a
reasonable running variable. Last, imputation of this value does
not bias us toward finding an effect of alteplase, as would be
the case if imputation introduced an artificial discontinuity in
estimated onset to treatment time. Notably, the imputed time was
used for both treated and untreated patients. Furthermore, time
from symptom development and time to imaging for untreated
patients are noisy measurements, and imputation of the time
from imaging to treatment simply adds a fixed value to this. If
anything, it introduces more noise, biasing us against finding a
causal effect of alteplase.

METHODS: SHARP RDD

To determine if there is a discontinuity in outcome at the
desired treatment threshold (e.g., 3 h from symptom onset),
we constructed regression models that allow clinical outcomes
(e.g., favorable hospital disposition) to be explained by the
time from symptom onset to treatment—whether the patient
was treated with alteplase—and patient- and hospital-specific
characteristics (Equation 1). In the simplest form of RDD, sharp
RDD, all patients on the left of the threshold (e.g., before 3 h)
would receive alteplase, and none of the patients on the right
of the threshold (e.g., after 3 h) would receive it. Treatment
with alteplase is thus modeled as binary, and depends only on
estimated onset to treatment time and the treatment threshold. Its
corresponding regression parameter (Equation 1, parameter b3)
is an estimate of the effect of treatment with alteplase. If there
is a discontinuity in outcome at the treatment threshold (that is

not attributable to confounding factors), the parameter relating
alteplase administration to clinical outcome will be significantly
different from zero.

We fit a logistic regression model of the log odds of
favorable clinical outcome (a dichotomous variable, see
Supplementary Table 1 for clinical outcomes examined), as
a function of regressors given below, as well as patient- and
hospital-specific characteristics (see Supplementary Table 2).
NIH Stroke Scale was considered in a separate adjusted
model due to a substantial amount of missing data
(Supplementary Table 7). The adjusted equation for sharp
RDD was:

ln
(

P(Y)
1−P(Y)

)

= LO(Y) =

b0 + b1(OTTest − c)+ b2(OTTest − c)I[OTTest ≤ c]
+b3I[OTTest ≤ c]+ b4X + ε

(1)

Y is the dichotomized clinical outcome, P(Y) is the probability
of that outcome, and LO(Y) is the log odds of that outcome.
OTTest indicates estimated onset to treatment time; I[OTTest ≤ c]
is an indicator variable that equals 1 when the patient’s onset to
treatment time is less than the threshold time, c, and 0 otherwise;
c has a value of 3 or 4.5 h depending on the cohort; X is a matrix
containing the patient- and hospital-specific factors considered
(see Supplementary Table 2); ε is an error term. The parameter
b3 is the one of greatest interest, as it models the effect of alteplase
treatment on log odds of clinical outcome at the threshold. The
meaning of b3 can be seen by taking the difference in log odds
of outcome of treated and untreated patients at the threshold
(Equation 2); it is exactly the difference in log odds of outcome
at the threshold. Exponentiating b3 gives the odds ratio of good
clinical outcome to poor clinical outcome at the threshold. Values
of exp(b3) greater than one (equivalent to b3 > 0) should
be interpreted as increasing the odds of the clinical outcome
of interest.

LO(Y)|OTT=c− − LO(Y)|OTT=c+ = b3 (2)

The parameter b0 is an intercept term; b1 gives the slope of log
odds of Y as a function of OTTest on the right side of the cutoff; b2
is the parameter of the interaction term (OTTest − c)I[OTTest ≤

c], which effectively allows the slope to be different on the left and
right sides of the threshold; b4 is the set of weights corresponding
to each of the patient- and hospital-specific variables contained
in X. In RDD analyses, the intercept and slope parameters are
not typically of primary interest for causal interpretation. One
can still, for example, speculate about the meaning of the slope,
with the caveat that patients become less similar as you get farther
from the threshold, and so are less comparable. In contrast, the
discontinuity parameter, b3, is interpreted as the causal effect of
the treatment at the threshold.

METHODS: FUZZY RDD

In some cases, alteplase was administered outside of the
treatment window, or not administered within the treatment
window, meaning that the assumptions of sharp RDD do not
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strictly apply. Thus, we also applied fuzzy RDD, a technique used
to model imperfect treatment compliance. Fuzzy RDD is widely
used in health policy research and elsewhere (17, 18).

We used a two-stage, instrumental variable approach. Stage
one models alteplase treatment administration (i.e., compliance);
stage two models the clinical outcome as a function of OTTest

and alteplase administration, similar to sharp RDD. Both stages
also include patient- and hospital-specific characteristics, as
these could differentially affect alteplase administration and
clinical outcome.

We modeled the log odds of alteplase administration as a
function of running variable, treatment window threshold, and
patient- and hospital-specific factors. The equation for Stage
1 was:

ln

(

P(tPA)

1− P(tPA)

)

= LO(tPA) = b
(1)
0 + b

(1)
1 I[OTTest ≤ c]

+b
(1)
2 X + ε (3)

Here, P(tPA) is the probability of alteplase administration, and
LO(tPA) is the log odds of tPA administration. OTTest indicates
the imputed onset to treatment time. The parameters of this

equation,
{

b
(1)
i

}

have a superscript that denotes the stage of the

model (first stage, here), and a subscript that uniquely identifies

each term. The parameter b
(1)
0 is an intercept for the model of

alteplase compliance; b
(1)
1 is a parameter that models alteplase

compliance on the left side of the threshold; b
(1)
2 is a set of

parameters that models alteplase administration as a function of
patient- and hospital-specific factors.

In the second stage, we modeled the log odds of clinical
outcome as a function of running variable, treatment window
threshold, and patient- and hospital- specific factors. The
equation for Stage 2 was:

ln

(

P(Y)

1− P(Y)

)

= b
(2)
0 + b

(2)
1 (OTTest − c)

+b
(2)
2 (OTTest − c)LO(tPA)+ b

(2)
3 LO(tPA)+ b

(2)
4 X + ε (4)

Here, again, Y refers to the dichotomized clinical outcome and
P(Y)to the probability of the clinical outcome. LO(tPA)refers to
the predicted log odds of alteplase administration, from the first

stage (Equation 3). The parameters of this equation,
{

b
(2)
i

}

have

a superscript that denotes the stage of the model (second stage,
here), and a subscript that uniquely identifies each term. The

parameter b
(2)
3 is again of greatest interest, as it models the

effect of alteplase treatment on log odds of clinical outcome. The

meaning of b
(2)
3 can be seen by taking the difference in log odds

of outcome of treated and untreated patients at the threshold
(Equation 5). Unlike sharp RDD, the difference in log odds

depends on b
(2)
3 as well as b

(1)
1 . Thismakes sense because b

(1)
1 is the

additional log odds of alteplase administration for patients with
OTTest within the treatment window. In other words, outcomes
in a fuzzy RDD model depend both on the treatment effect size

and the compliance. Values of b
(2)
3 > 0 should be interpreted as

increasing the odds of the clinical outcome of interest.

LO(Y)|OTT=c− − LO(Y)|OTT=c+ = b
(2)
3 b

(1)
1 (5)

The parameter b
(2)
0 is an intercept term; b

(2)
1 gives the slope of

log odds of Y as a function of OTTest independent of alteplase

administration (analogous to b1 in Equation 1); b
(2)
2 gives the slow

of log odds of Y as a function of (OTTest − c)LO(tPA) (analogous
to b2 in Equation 1); b4 is the set of weights corresponding to each
of the patient- and hospital-specific variables contained in X.

Another important issue with instrumental variable models
is the “strength” of the instrument. If there were a weak or
non-existent relationship between estimated onset to treatment
time and odds of tPA administration, there would be no
point in examining whether estimated onset to treatment time
affects clinical outcomes, since our proposed model is that
estimated onset to treatment time affects odds of alteplase
administration which in turn may affect clinical outcome.
Supplementary Table 3 shows percentage of patients receiving
alteplase on each side of the threshold in each cohort. In
all cohorts there is meaningful difference in odds of alteplase
administration. Thus, we have a relatively strong instrument to
examine the effect of alteplase on clinical outcomes.

Analyses were performed using the SAS version 9.4 (SAS
Institute Inc., Cary, NC, USA) and R version 3.4.4 (R Core
Team, 2018, Vienna, Austria). All P-values are 2-sided tests and
were considered statistically significant at <0.05. Duke Clinical
Research Institute (DCRI) served as the data analysis center.

RESULTS

We analyzed three separate cohorts within the GWTG-Stroke
registry (Table 1). Cohort A includes patients prior to 2008, when
3 h was the accepted treatment threshold (Table 2). Calendar
year 2008 was not modeled, as this was the year that ECASS
III reported alteplase was effective up to 4.5 h after symptom
onset (6), which represented a new treatment threshold, and
practice shifted. In 2009 and afterwards, treatment thresholds
of both 3 and 4.5 h were observed for ongoing study. Cohort B
includes patients after 2009 who were treated according to the
4.5 h threshold (Table 3). Cohort C includes patients after 2009
who were treated according to the 3 h threshold (Table 4). We
included only patients with estimated onset to treatment times
within 20min of the treatment threshold, with valid imaging,
and valid imaging times. We excluded inter-hospital transfers,
stroke occurring after hospital arrival, contraindications to
alteplase, and enrollment in clinical trials of alteplase. After these
restrictions, there were 1,869 patients for analysis in Cohort
A, 6,550 patients in Cohort B, and 13,086 patients in Cohort
C. Cohorts on either side of the treatment threshold were
generally well-matched, although there were some differences
(Supplementary Tables 4–6; and see below).

The central result of our study was that, in terms of clinical
outcomes (e.g., odds of good discharge disposition), there was
no strong evidence of a discontinuity at either the 3 or 4.5 h

Frontiers in Neurology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 961

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Naidech et al. Regression Discontinuity for Stroke Fibrinolysis

TABLE 1 | Cohort Demographics.

Variable Cohort A (2.67–3.3 h, <2009) Cohort B (4.16–4.83 h, >2009) Cohort C (2.67–3.3 h, >2009)

N 1,869 6,550 13,086

Age, years 73 (61–82) 73 (61–83) 72 (61.8)

Race, White 77.7% 71.5% 71.9%

Black 12.2% 15.5% 14.3%

Asian 1.8% 2.4% 7.0%

Other 3.9% 3.5% 3.8%

NIH Stroke Scale 9 (5–15) 5 (2–11) 8 (4–14)

Women 48.7% 50.2% 50.4%

Atrial fibrillation 22.1% 19.1% 19.7%

Prior Stroke or TIA 27.8% 31.1% 27.6%

Coronary artery disease 29.4% 26.2% 25.1%

Diabetes mellitus 28.7% 31.7% 29.7%

Historical hypertension 72.6% 76.3% 74.2%

Tobacco Use 19.8% 17.5% 17.2%

Dyslipidemia 35.9% 45.3% 43.9%

Primary Stroke Center 44.8% 46.4% 45.9%

Academic Hospital 66.6% 61.8% 63.1%

Data are N, %, or mean (25–75%ile).

TABLE 2 | RDD results from Cohort A (treatment threshold of 3 h, prior to 2008).

Outcomes Coefficients Unadjusted Adjusted NIHSS Adjusted

Sharp RDD Discontinuity, exp(b3) OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Good discharge disposition Before vs. after 0.91 (0.63–1.32) 0.621 0.88 (0.57–1.36) 0.570 0.78 (0.44–1.38) 0.394

Discharged home Before vs. after 0.89 (0.63–1.24) 0.480 0.86 (0.60–1.24) 0.424 0.91 (0.53–1.54) 0.718

In-hospital mortality Before vs. after 0.86 (0.46–1.61) 0.644 0.87 (0.46–1.64) 0.669 0.69 (0.29–1.62) 0.390

LOS ≤4 days Before vs. after 0.71 (0.51–1.00) 0.052 0.70 (0.49–1.00) 0.048 0.85 (0.54–1.33) 0.469

Ambulate independently at discharge Before vs. after 0.90 (0.63–1.28) 0.550 0.85 (0.58–1.26) 0.429 0.90 (0.52–1.55) 0.696

mRS 0–1 vs. 2–6 Before vs. after – – –

Fuzzy RDD Estimate P-value Estimate P-value Estimate P-value

Stage 1 b
(1)
1

tPA Before vs. after cut-off 1.055 <.0001 1.113 <.0001 1.177 <.0001

Stage 2 b
(2)
3

Good disposition tPA Yes/No −0.366 0.621 −0.764 0.357 −1.879 0.074

Discharged home tPA Yes/No −0.468 0.480 −0.668 0.362 −0.867 0.398

In-hospital mortality tPA Yes/No −0.574 0.644 −0.085 0.949 0.328 0.851

LOS ≤4 days tPA Yes/No −1.312 0.052 −1.460 0.035 −1.021 0.230

Able to ambulate independently at discharge tPA Yes/No −0.417 0.550 −1.100 0.158 −1.133 0.289

mRS 0–1 vs. 2–6 tPA Yes/No – – –

threshold. This was true using both sharp and fuzzy RDD,
suggesting that the result does not depend strongly on the
formulation of the model. This was also true using both simple
models without patient- and hospital-specific factors and NIH
stroke scale, as well as models with those factors. This suggests
that the result does not depend strongly on model complexity,
and is not related to changes in patient characteristics across the
alteplase administration threshold.

We did detect some weak effects with this analysis, however.
In Cohort A, the odds of length of stay <4 days was significantly

different across the threshold in both the sharp and fuzzy
adjusted models (Table 2). But the direction of the effect
was opposite what would be expected; patients treated with
alteplase were less likely to have a length of stay <4 days
than were the untreated patients. In Cohorts B and C, there
were multiple outcomes with significant differences across the
threshold in the NIHSS-adjusted models (Tables 3, 4). Some
of these effects, again, had the opposite direction that would

be expected with alteplase treatment (negative values of b
(2)
3 ).

Furthermore, there was a significant amount of missing NIHSS
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TABLE 3 | RDD results from Cohort B (treatment threshold of 4.5 h, after 2009).

Outcomes Coefficients Unadjusted Adjusted NIHSS Adjusted

Sharp RDD Discontinuity, exp(b3) OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Good discharge disposition Before vs. after 0.95 (0.76–1.18) 0.627 0.92 (0.72–1.17) 0.504 0.86 (0.64–1.15) 0.300

Discharged home Before vs. after 1.13 (0.93–1.37) 0.230 1.11 (0.90–1.38) 0.312 1.20 (0.92–1.55) 0.171

In-hospital mortality Before vs. after 1.09 (0.70–1.71) 0.701 1.12 (0.71–1.77) 0.637 1.27 (0.71–2.28) 0.417

LOS ≤4 days Before vs. after 1.21 (1.00–1.47) 0.056 1.20 (0.98–1.46) 0.081 1.33 (1.05–1.67) 0.017

Able to ambulate independently at discharge Before vs. after 0.97 (0.80–1.19) 0.790 0.95 (0.77–1.17) 0.615 0.92 (0.72–1.18) 0.498

mRS 0–1 vs. 2–6 Before vs. after 1.26 (0.85–1.88) 0.254 1.29 (0.84–2.00) 0.250 1.42 (0.89–2.28) 0.144

Fuzzy RDD Estimate P-value Estimate P-value Estimate P-value

Stage 1 b
(1)
1

tPA Before vs. after cutoff 0.977 <.0001 1.013 <.0001 1.043 <.0001

Stage 2 b
(2)
3

Good discharge disposition tPA Yes/No −0.304 0.627 −0.517 0.408 −0.452 0.482

Discharged home tPA Yes/No 0.653 0.230 0.482 0.353 1.292 0.028

In-hospital mortality tPA Yes/No 0.484 0.701 0.071 0.951 0.652 0.579

LOS ≤4 days tPA Yes/No 1.051 0.056 0.859 0.073 1.072 0.031

Able to ambulate independently at discharge tPA Yes/No −0.150 0.790 −0.543 0.304 −0.124 0.827

mRS 0–1 vs. 2–6 tPA Yes/No 1.276 0.254 0.265 0.791 1.037 0.291

TABLE 4 | RDD results from Cohort C (treatment threshold of 3 h, after 2009).

Outcomes Coefficients Unadjusted Adjusted NIHSS Adjusted

Sharp RDD Discontinuity, exp(b3) OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Good discharge disposition Before vs. after 1.00 (0.86–1.17) 0.986 1.07 (0.90–1.26) 0.442 0.98 (0.81–1.19) 0.850

Discharged home Before vs. after 1.00 (0.88–1.15) 0.948 1.06 (0.91–1.24) 0.431 1.04 (0.87–1.23) 0.691

In-hospital mortality Before vs. after 1.07 (0.78–1.45) 0.681 1.04 (0.77–1.40) 0.795 1.22 (0.87–1.71) 0.246

LOS ≤4 days Before vs. after 1.04 (0.90–1.19) 0.601 1.06 (0.91–1.22) 0.462 1.02 (0.87–1.19) 0.830

Able to ambulate independently at discharge Before vs. after 0.92 (0.81–1.06) 0.252 0.96 (0.83–1.11) 0.588 0.91 (0.78–1.06) 0.237

mRS 0–1 vs. 2–6 Before vs. after 0.96 (0.74–1.24) 0.739 0.98 (0.75–1.29) 0.902 0.95 (0.71–1.28) 0.747

Fuzzy RDD Estimate P-value Estimate P-value Estimate P-value

Stage 1 b
(1)
1

tPA Before vs. after 0.723 <.0001 0.756 <.0001 0.858 <.0001

Stage 2 b
(2)
3

Good discharge disposition tPA Yes/No 0.012 0.986 −0.266 0.687 −0.864 0.125

Discharged home tPA Yes/No 0.039 0.948 −0.204 0.736 −1.193 0.019

In-hospital mortality tPA Yes/No 0.557 0.681 1.166 0.327 1.830 0.153

LOS ≤4 days tPA Yes/No 0.315 0.601 0.260 0.647 −1.067 0.021

Able to ambulate independently at discharge tPA Yes/No −0.674 0.252 −0.952 0.107 −1.534 0.001

mRS 0–1 vs. 2–6 tPA Yes/No −0.376 0.739 −1.232 0.260 −2.267 0.009

data (Supplementary Table 7), and likely as a result, there were
significant differences in initial NIHSS score across the thresholds
(see below). Overall, we feel that these results are more likely
explained by the fact that we tested many outcomes and would
expect some to be positive by chance, and by biased subgroups.
We thus do not feel justified in claiming any strong effects of
alteplase administration at the treatment thresholds of 3 or 4.5 h.

We also checked for confounding by examining whether
patient- and hospital-specific quantities (e.g., demographic
factors) had discontinuities at the treatment thresholds. For an

RDD to be valid, there should not be discontinuities in these
quantities at the threshold, since any putative discontinuity
in outcome could be attributed to the discontinuity in
these factors rather than to the treatment itself. Thus, this
analysis would be more important if there were significant
differences in clinical outcome, which we did not find.
Nevertheless, we tested many patient- and hospital-specific
quantities (Supplementary Tables 4–6). Cohorts B and C
included significantly more patients than Cohort A, and had
more significant differences in patient- and hospital- specific
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quantities across the threshold. In cohorts B and C, initial
NIHSS was higher in post-threshold patients than pre-threshold
patients. NIHSS was missing in a larger percentage of pre-
threshold patients in Cohorts A and C. This likely means that
NIHSS score measurement was not random, and that the NIHSS-
possessing subgroups were not as comparable on either side of
the treatment thresholds (see paragraph above). This casts some
doubt on the results of the NIHSS-adjusted models. Ambulatory
status was different across the threshold in Cohorts B and C.
Overall, there were some patient- and hospital-specific quantities
that were imbalanced across the threshold. Some of this may
be due to true imbalance, some due to chance, and perhaps
some due to differences in data collection on each side of the
threshold, which is likely not as consistent as in an RCT. Again,
the lack of differences in outcome make this analysis less crucial.
Experimental techniques short of experimental randomization
do have their limitations, but it is also important to keep in mind
that RCTs can also have such imbalance that does not necessarily
threaten causal validity.

DISCUSSION

Using RDD in a nationwide data set, we found no convincing
evidence of a discontinuity in the effectiveness of alteplase on
clinical outcomes after ischemic stroke around the 3 and 4.5 h
treatment thresholds. This result is not necessarily inconsistent
with an RCT (6) showing positive, but modest, effects in the 3
to 4.5 h window. These data suggest that using RDD to extend
treatment windows for alteplase may be challenging.

There are several potential explanations for not detecting an
effect of alteplase at these thresholds. First, our analyses sought
to detect a difference during the hospitalization or at the time
of hospital discharge. Alteplase leads to improved outcome at
3 months, not to improved discharge disposition, so functional
outcomes [e.g., the modified Rankin Scale (2, 6) months later]
or health-related quality of life (19–21), might be more likely
to show effects of alteplase treatment. Next, our study may
have been underpowered. We chose a window of 20min on
either side of the treatment threshold, which led to smaller
cohorts. These potential limitations may have attenuated our
ability to detect an effect using RDD. Next, our continuous
variable, estimated onset to treatment time, was imputed using
hospital-specific characteristics, which added some noise near the
threshold, further reducing power. Lastly, treatment thresholds
chosen by expert clinicians may be accurate guesses of the
optimal treatment threshold, and so further extensions of time
windows for treatment may have small marginal benefits (22, 23).
For example, if patients just outside the treatment threshold
could benefit from alteplase, one would expect the difference
in outcomes at the threshold to be larger. Thresholds chosen
by experts may also incorporate other information that affects
outcome, such as the increased risk of intracerebral hemorrhage
due to alteplase, which increases with an expanded time window
from symptom onset to treatment (3). These potential limitations
may have attenuated our ability to detect an effect using
RDD. Future research using RDD will need to carefully choose

questions where there are substantial existing data that closely
approximate the clinical trial question of interest.

In summary, our RDD analysis did not find a discontinuity
in disposition around 3 or 4.5 h alteplase treatment thresholds
in acute ischemic stroke. Future investigations with RDD might
leverage large data sets with outcome measures sensitive to the
intervention, that can be culled from the electronic health record,
potentially combining multiple hospitals and institutions.
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