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Surface electromyography (sEMG) is the main non-invasive tool used to record the

electrical activity of muscles during dynamic tasks. In clinical gait analysis, a number of

techniques have been developed to obtain and interpret the muscle activation patterns

of patients showing altered locomotion. However, the body of knowledge described

in these studies is very seldom translated into routine clinical practice. The aim of

this work is to analyze critically the key factors limiting the extensive use of these

powerful techniques among clinicians. A thorough understanding of these limiting factors

will provide an important opportunity to overcome limitations through specific actions,

and advance toward an evidence-based approach to rehabilitation based on objective

findings and measurements.

Keywords: electromyography, EMG, locomotion, machine learning, clinical practice, rehabilitation, physical
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INTRODUCTION

Walking is one of the most essential activities of daily living (ADL) (1). The study of muscle
activity during locomotion is of the uttermost importance in clinics, in the management of patients
suffering from a wide variety of different neurological (2), orthopedic (3, 4), and peripheral vascular
diseases altering gait patterns (5). Examples of neurological patients that might benefit from a
thorough examination of the dynamic muscle activity are those affected by Parkinson disease (PD)
(6, 7), post-stroke (8), multiple sclerosis (MS) (9), and hemiplegic children after cerebral palsy
(10–13). Examples of orthopedic patients that might benefit from having the same examination
are patients after anterior cruciate ligament (ACL) surgery (14), total knee arthroplasty (TKA)
(3), knee megaprosthesis after tumor bone resection (15), total hip arthroplasty (THA) (16), and
patients chronically affected by low back pain (17). Peripheral neuropathy (PN) and peripheral
artery disease (PAD) are two distinct but related conditions that affect diabetic patients, altering
their gait patterns up to the point of causing them foot ulcers often difficult to treat (“diabetic
foot”) (5, 18). In the more severe cases, this can even lead to leg amputation.

Instrumented gait analysis provides comprehensive data on normal and pathological gait,
which are useful in clinical practice producing objective information about time-distance variables
(spatio-temporal data), joint motions (kinematics), and joint moments and powers (kinetics) (19).
In the last decade, simplified, “user-friendly” techniques for gait analysis such as those based on
accelerometric sensors are demonstrating their usefulness in the clinical setting and have had a
significant impact in the literature (20–22). In addition, dynamic electromyography (EMG) allows
for obtaining the timing and action of muscles, contributing to outline the patient’s walking pattern
and an empirical basis for identifying the functional cause of a gait abnormality (19).
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Indeed, the knowledge about the dynamic contractile activity
of the muscles during pathological gait may provide unique
information to help clinicians in the following activities:

• to support diagnosis (2, 23)
• to design complex surgical interventions [e.g., multilevel

surgery of hemiplegic children (24, 25)]
• to design personalized rehabilitation protocols and objectively

prove their effectiveness (e.g., outcome evaluation of a
proprioceptive training in MS patients), including new
rehabilitation trends exploiting exoskeletons, e.g., in acute
stroke patients (26), neurorehabilitation with Functional
Electrical Stimulation (FES) (27), and any other system
providing biofeedback based on myoelectric control (28–31)

• to support clinical decision (e.g., appropriate candidate
selection for botulin toxin injection and choice of the target
muscles (32), evidence-based choice of the type of joint
prosthesis to implant (15)

• for therapy evaluation (e.g., to assess the effects of levodopa, or
Deep Brain Stimulation on the muscle activation and muscle
synergies of PD patients) (33–35)

• for the production of quantitative reports to optimize patient’s
follow-up or to conduct longitudinal studies (16)

• to evaluate muscle fatigue (e.g., in ergonomics and
sports) (36–39)

• to support forensic medicine with objective outcomes (e.g., to
help medical insurance companies estimating a patient’s risk,
establishing adequate insurance compensations, unmasking
simulators and avoiding frauds) (40, 41).

Despite the wide variety of possible clinical applications
described above and their unquestionable relevance, clinicians
underutilize instrumented gait analysis (GA) (42), especially
associated to surface myoelectric signal detection (43–45).
Surface electromyography (sEMG) is a well-established
technique to investigate muscle activity non-invasively (46–48).
In spite of that, clinicians rarely exploit the benefits of performing
a “richer” and more complete gait analysis that includes, in
addition to the analysis of the traditional spatio-temporal
gait parameters and joint kinematics, the study of the muscle
activation patterns during gait. Although underappreciated, the
electrical activity of the muscles can be observed and recorded
easily and non-invasively during locomotion (2, 49).

In the following, we will indicate with the acronym sEMG-GA
gait analysis when it includes the recording of sEMG signals for
sensing muscle activity during locomotion. SEMG-GA requires
the acquisition of sEMG signals from the main lower limb
muscles and, in some cases, from the trunk (50). The arm swing
activity is more rarely reported, although it may be of clinical
interest [e.g., PD patients may show a reduced arm swing activity
during gait, in one or both sides (51)].

In a standard sEMG-GA session (52–54), sEMG probes
are placed, at least, over Tibialis Anterior (TA), Lateral
Gastrocnemius (LGS), Rectus Femoris (RF), and Lateral
Hamstrings (LH), bilaterally, as reported by Figure 1. This
allows for analyzing at least a pair of agonist-antagonist
muscles acting at each joint of both lower limbs (ankle:
TA/LGS; knee: LH-LGS/RF; hip: RF/LH). Indeed, since both

FIGURE 1 | Surface EMG probes positioned over (A) Tibials Anterior (TA), (B)

Lateral Gastrocnemius (LGS), (C) Rectus Femoris (RF), and (D) Lateral

hamstrings (LH).

LGS and RF are bi-articular muscles, this configuration makes
it possible obtaining relevant biomechanical information using
a minimum set of sEMG probes. SEMG signals can be acquired
synchronously with foot-switch signals, joint kinematic signals,
and a video recording (55). Figure 2 provides an example of
signals acquired during a typical recording session performed
using the multichannel recording system STEP32 (Medical
Technology, Italy) (53). In this example, 16 channels with gait
signals are synchronized with a video recording: 8 for the left side
(channels from 1 to 8) and 8 for the right side (channels from 9
to 16). For each lower limb, the user-interface shows, in the same
screenshot: the foot-switch signal, the knee joint-angle kinematic
signal in the sagittal plane, and the sEMG signals over TA, LGS,
RF, LH, and Vastus Lateralis (VL) muscles, respectively. For
each muscle, the activation patterns are automatically recognized
by the system, and re-visualized in red (distinguished from
background noise, which remains yellow-colored).

A sEMG-GA test requires, overall, from 15 to 30min
(including sensor positioning). It is well-tolerated by children,
adults, and the elderly, and by patients affected by a wide
variety of pathologies altering locomotion patterns (2, 16,
18, 52, 56–63). The only requirement is the ability to walk
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FIGURE 2 | Example of signals acquired during a gait analysis session (multichannel recording system: STEP32, Medical Technology, Italy). Sixteen channels are

synchronized with a video recording of gait: 8 for the left side (channels from 1 to 8) and 8 for the right side (channels from 9 to 16). For each lower limb the screenshot

shows: 1 foot-switch-signal (green), 1 knee joint-angle kinematic signal in the sagittal plane (light blue), 5 sEMG signals over Tibialis Anterior (TA), Lateral

Gastrocnemius (LGS), Rectus Femoris (RF), Lateral Hamstrings (LH), and Vastus Lateralis (VL). For each muscle, the activation patterns are automatically recognized

by the system, and displayed in red, while the background noise is yellow-colored.

independently for a few minutes. The exam can be carried-
out also if the patient needs some walking aid or support
(64), but, in this case, results must be carefully interpreted
considering the specific situation. SEMG-GA is able to evidence
even subtle gait abnormalities or gait pattern changes that are
not perceivable at the naked eye by the clinician, in addition
to “macroscopic” alteration or modifications of gait patterns.
A possible application of sEMG-GA is the early evaluation of
the effectiveness of a rehabilitation program (65, 66). Using
sEMG-GA, clinicians will be able to obtain measurable outcomes
after a few weeks of rehabilitation, even if only sub-clinical
changes are present. In this manner, both the clinician and the
patient will have a documented evidence that the rehabilitation
program is working as expected or that it needs to be re-
designed, if it did not lead to any measurable improvement.
Therefore, performing sEMG-GA test during the patient’s follow-
up may also improve patient motivation and compliance to the
rehabilitation program.

Yet, although there is a relevant number of studies supporting
the use of sEMG in clinical gait analysis (2, 3, 16–18, 54, 60, 67),
they seldom translate into routine clinical practice. The aim of

this contribution is to critically analyze the key factors limiting
the widespread use, among clinicians, of powerful techniques of
clinical gait analysis based on sEMG signals. Possible solutions
will also be outlined and discussed.

ANALYSIS OF THE MAIN FACTORS
LIMITING THE USE OF sEMG-GA IN THE
CLINICAL PRACTICE

In this section, we discuss the following key factors limiting the
widespread use of the sEMG signals in clinical gait analysis:

• lack of normative (reference) data of sEMG patterns
[section Lack of Normative (Reference) Data Regarding
sEMG Patterns]

• low intra-operator repeatability and inter-operator
reproducibility in the collection of high-quality sEMG
signals (section Low Intra-operator Repeatability and Inter-
operator Reproducibility in the Collection of High-Quality
sEMG Signals)
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• inappropriate use of treadmill (instead of overground natural
walking) (section Inappropriate Use of Treadmill (Instead of
Overground Natural Walking)]

• difficulties in the sEMG-GA interpretability due to the
large intra-subject variability of myoelectric patterns (section
Difficulties in the sEMG-GA Interpretability Due to the Large
Intra-subject Variability of Myoelectric Patterns)

• lack of reliable/compact/unique clinical scores obtainable from
sEMG-GA (section Lack of Simple/Compact/Unique Clinical
Scores Obtainable From sEMG-GA)

and discuss their characteristics and criticalities. The
pinpointing of these limiting factors are the result of a 15-
year experience of cooperative work and tight collaboration
with clinicians of different specialties (neurologists, orthopedic
surgeons, neurosurgeons, physiatrists, rehabilitation therapists,
diabetologists. . . ), in different gait analysis laboratories (hosted
by hospitals, medical ambulatories, clinics, rehabilitation centers,
gyms), with the aim of solving the research and clinical questions
they had through sEMG-GA systems.

For each of these limiting factors, we also present, when
available, possible solutions to overcome the described
criticalities. When solutions are not currently available, we
suggest future developments that might help bridging the gap
between academic knowledge and clinical practice.

Lack of Normative (Reference) Data
Regarding sEMG Patterns
When a physician has available a sEMG-GA report, the first
question that comes to his/her mind is: “How do I interpret
this exam?” To provide a satisfying answer to this fundamental
question, normative (reference) data on healthy populations are
necessary. These normative data should be available, for each
age class (children, adolescents, adults, elderly), differentiated by
gender and body mass index (BMI). However, there is a lack
of open databases of “physiological” sEMG activations patterns.
One study analyzed 100 typically developing children aged 6–11
(52). Another study analyzed 40 healthy subjects, 20 aged 6–17
and 20 aged 22–72 (59). Most frequently, in the literature, only
small datasets of 15–20 healthy subjects can be found, typically
involving individuals recruited to build a control population
(e.g., patient caregivers) related to a specific pathological target
population (PD patients, diabetic patients. . . ), and selected for a
specific study aim. Only a few studies focus on making available
large datasets (larger than 100 subjects) of physiological muscle
activation patterns during locomotion. Furthermore, different
sEMG acquisition systems and acquisition protocols are used,
and there are different ways of processing and reporting data.
Therefore, a standard is unavailable at the moment.

The authors suggest that the sEMG-GA systems to be used
in clinics should be designed to automatically support clinicians
with reliable reference data. Just as reference ranges (and
eventually asterisks) appear on a blood test report, reference
ranges should appear on a sEMG-GA report. Consequently, it
is strongly advisable to integrate sEMG reference datasets into
newly designed systems for clinical gait analysis. It would be
ideal to produce these embedded reference datasets following

the recommendation guidelines established through worldwide
accepted standards, specifically developed for clinical gait
analysis (67).

Low Intra-operator Repeatability and
Inter-operator Reproducibility in the
Collection of High-Quality sEMG Signals
In a gait analysis laboratory, different professional figures may
perform the acquisitions, such as biomedical engineers, gait
analysis experts, physiatrists, physical therapists, and students.
They have different expertise and some of them may lack
experience in sEMG probe positioning, in recognizing the
presence of detrimental artifacts in the signals, or in being aware
of signal saturation or very low signal-to-noise ratio (SNR).
This can lead to low inter-operator reproducibility. However,
in clinical gait analysis, it is fundamental to guarantee that
the different operators alternating in the various shifts do not
affect the outcome measures derived from sEMG-GA. It follows
that user-independent systems are required. Furthermore, it is
also fundamental that the same operator is able to provide
repeatable outcome measures, at different time-points, for a
specific patient (e.g., to evaluate possible improvements after a
therapeutic intervention).

A key factor to promote intra-operator repeatability and
inter-operator reproducibility is the automatic assessment of the
quality of the sEMG signals acquired, performed during the
acquisition itself. However, there is a lack of systems designed
to provide this essential feature (68). We suggest designing
innovative systems that provide real-time information on the
quality of each sEMG channel being acquired. These devices
should help the training of less expert operators, independently
from their background. As an example, to display the sEMG
quality in real-time, a very intuitive semaphore’s color coding
might be used:

- GREEN: ok, good signal quality;
- YELLOW: sufficient, signal quality should be improved
if possible;

- RED: completely inadequate, please stop the acquisition and
check the electrodes.

Inappropriate Use of Treadmill (Instead of
Overground Natural Walking)
Frequently, sEMG signals are collected while the patient walks
on the treadmill (12, 69, 70). This is often chosen merely for
“tradition” (71), because it is “easier” for the experimenter
(although not for the patient). Indeed, using treadmill allows
confining the subject’s cyclic motion to a small space-volume.
This simplifies the acquisition protocol if there is the need
to use a synchronized stereophotogrammetric system to detect
gait events and jointly analyze 3D kinematics. Indeed, optical
motion-capture systems were considered as the gold standard
in the past, but they require to be calibrated over small sample
volumes, in a confined lab space (72). Another “historical” reason
why researchers frequently use the treadmill to study human
gait is the possibility to obtain more controlled conditions, e.g.,
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the possibility to set the velocity or the inclination to a pre-
defined value.

However, the use of treadmill to study gait in pathological
subjects may be rather inappropriate. Indeed, patients affected
by neurological or musculoskeletal pathologies are not always
able to walk on a treadmill, or it could be unsafe testing them
on a treadmill, since additional balance skills are required to
walk on a treadmill with respect to walk overground, naturally,
at self-selected speed. Furthermore, when on the treadmill, the
use of harnesses, or the fact that the patient, to maintain balance,
leans on the treadmill horizontal bars or grasps vertical bars
alters patient’s perception, proprioception and muscle activation
patterns. In addition, also if dynamic balance can be properly
maintained without any external help, the muscle activations
patterns during natural and treadmill gait are not the same (73).
It was also demonstrated that the coordination between upper-
and lower-limb movements is different during overground and
treadmill walking (74). Hence, the possibility to perform sEMG
analysis during “physiological” overground walking, instead of
using a treadmill, can be important from a clinical point of view.
This is something that should be carefully considered in the
design of systems for clinical gait analysis.

Already 15 years ago, our research team designed a
multichannel recording system for clinical gait analysis that
integrated this design concept. The system was technologically
transferred to an Italian company to reach the market (STEP32,
Medical Technology) and it is being sold mainly in Italy and
Spain. Thanks to this device, the possibility to perform sEMG-
GA in the clinical setting, during overground walking, was fully
demonstrated by several works (11, 16, 52, 63, 75, 76).

In recent years, the market revolution around wearable
sensors based on Inertial Measurements Units (IMUs) has taken
hold and is trying to substitute traditional motion capture
systems with new devices, allowing for out-of-the-lab and low-
cost motion analysis (77–79). We expect that this will reduce
the use of treadmill in favor of the overground study of
locomotion. Therefore, it seems promising to integrate wireless
sEMG probes with IMUs to probe the dynamic muscle activity
during overground locomotion, while reconstructing gait events
and 3D joint kinematics. We think that such integrated wearable
systems might greatly increase the use of sEMG-GA analysis in
hospitals, rehabilitations centers and assisted-living facilities.

Difficulties in the sEMG-GA Interpretability
Due to the Large Intra-subject Variability of
Myoelectric Patterns
It is well-known that human locomotion is characterized by a
high intra-subject variability (80). Each gait cycle is different
from the other, when muscle activation patterns are analyzed.
Even in individuals with physiological walking patterns, sEMG
activations noticeably vary from stride to stride (81). The sEMG
variability can further increase in pathological subjects (11).
This is the main reason why previous literature in clinical gait
analysis discouraged analyzing a few gait cycles, and, it rather
suggested analyzing “long” natural walks, lasting at least 3–
5min (16, 60, 82). Indeed, analyzing prolonged overground

walks, carried out at natural pace, has been a successful strategy
to obtain repeatable and reliable outcome measures, both in
normal and pathological gait. However, this requires the use
of advanced techniques of sEMG processing to automatically
analyze hundreds of strides. Furthermore, if appropriate post-
processing algorithms are not applied, the results obtained are
cumbersome and the interpretation of muscle activation patterns
becomes difficult or even impossible.

In the following, we will analyze various issues related to
the sEMG gait variability and how it can make it difficult
to interpret sEMG-GA, if not properly handled. In particular,
we will distinguish between extrinsic and intrinsic sources of
sEMG variability.

Extrinsic Sources of sEMG Variability: The Walking

Track and the Need to Time Gait Events
Among the problems to tackle for analyzing a natural walk lasting
several minutes, there is the fact that the acquisition should
be performed, at least in theory, along a straight walking track
between 200 and 500m of length. However, this is unfeasible in
many practical situations, for both technical and logistic issues,
and it would require outdoor pathways. A reasonable solution
is to have available, indoor, a large room or a long corridor (of
length 10–15m), which is not difficult to obtain in a hospital
setting. Therefore, the patient can walk continuously, without
interruptions, back and forth along the corridor. When arrived
at the end of the walking track, the patient simply turns, reverses
his/her direction, and keeps on walking, for many rounds. At
each round, the patient travels for 10–12 gait cycles along
the straight path, at an approximately steady velocity. Walking
uninterruptedly for several minutes allows the patient to walk
naturally, as in everyday life. Indeed, after a few rounds, the
patient feels at ease and walks at his/her natural pace. Then, the
signal acquisition can start.

To process gait signals during overground walking, the first
step is to segment gait cycles occurred during straight steady-
state locomotion, separating them from the cycles relative
to the direction changes, including decelerations before, and
accelerations after the U-turns. Figure 3 shows this concept.
In this way, gait parameters can be calculated in a repeatable
manner, ruling out a first source of sEMG variability. However,
it should be noticed that not only the U-turns, and their
surroundings, must be discarded from the analysis, but also any
other possible signal-epoch outliers, such as those corresponding
to the abrupt distraction or sudden stop of the patient for
any reason, or the unexpected change in his/her walking
style that may happen along the walk. This issue can be
properly handled if additional signals for timing gait events
are collected, synchronous to the sEMG signals. These signals
can be acquired through: (1) indirect measurements, by using
stereophotogrammetric systems or wearable IMU sensors; (2)
direct measurements, by using sensorized mats, foot-switches or
foot-pressure insoles.

Indirect measurements to time gait events
As mentioned above, sterephotogrammetric systems have been
historically considered the gold standard in gait analysis, both
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with and without an associated sEMG investigation. However,
they never truly succeeded to help medical practitioners
in clinical gait analysis, and most of the research-work
done remained confined to academic studies. Indeed,
stereophotogrammetric systems are expensive, they require
a dedicated gait analysis laboratory and technical personnel,
their sample volume is intrinsically limited to a few cube-
meters, and they are complex to use, necessitating highly

trained experts (typically biomedical engineers) to manage
the system calibration and acquisition procedures. On the
other hand, IMU systems are experiencing a “market boom”
in many different applications, since they are lightweight,
low-cost, and wearable, allowing for out-of-the-lab applications.
Researchers, as well as medical-device producers, are actually
trying to improve the performances of IMU systems on
the reconstruction of joint angle measurements and 3D

FIGURE 3 | Scheme of the walking protocol for gait analysis. The patient walks back and forth, without interruptions, along a straight path of 10–15m, for 3–5min.

The U-turns must be automatically removed from the analysis.

FIGURE 4 | Example of STEP32 interface showing the automatic segmentation and classification of gait cycles for a walk lasting 5:06min (Parkinson disease subject).
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biomechanical models, and to mitigate drift errors observed
during gait analysis (55, 79, 83, 84).

Direct measurements to time gait events
For what concerns direct measurements systems for timing
gait events synchronous to sEMG signals, foot-switches already
demonstrated their high potentialities in terms of accuracy,
versatility, and ease of use in the past decades (85). Like
IMUs, foot-switches are low-cost, lightweight, and allow for
unconstrained acquisitions. At this time, they are the most
valid alternative for timing gait events in clinical sEMG-GA.
Timing gait events directly through foot-switches, the gait
signals acquired from the whole walk of 3–5min can be
divided into strides, identifying the start and end of each
gait cycle. Furthermore, within each gait cycle, the sequence
of gait phases and their duration can be obtained. Then,
sEMG signals corresponding to straight steady-state gait cycles,
can be extracted and further analyzed, while disregarding
outliers cycles. This can be performed by applying appropriate
classification algorithms to recognize each gait cycle sequence
(“cycle typology”) (85), and multivariate statistical filters based
on gait phase duration (Hotelling T-square test) (86, 87).
It should be noticed that this can be performed both in

physiological and pathological gait, without the need for pre-
defined stride templates, or complex algorithm customization
targeting specific pathologies.

More specifically, placing 3 foot-switches under the heel, the
first, and the fifthmetatarsal heads (themain contact points of the
foot with the ground in a normal subject) it is possible to obtain a
4-level basography, as shown by the green lines in Figure 1. This
allows establishing the sequence of foot-floor contact gait phases
and their duration. In normal gait, the standard sequence of gait
phases of a stride is Heel contact (H), Flat foot contact (F), Push-
off (P), Swing (S). Therefore, HFPS is the name assigned to the
“normal” gait cycle. The average duration of gait phases in young
adults (53), expressed as percentage of gait cycle (% GC), is:

• H= 6.6± 2% GC
• F= 26.4± 4% GC
• P= 22.6± 4% GC
• S= 44.4± 4% GC

However, other gait cycle typologies are also observed, especially
(but not exclusively) during U-turns. Amarkedly different sEMG
activity is expected in these cases. Furthermore, the specific
duration of gait phases, within a specific cycle typology, depends
on the individual subject and gait speed, and it slightly changes

FIGURE 5 | Example of STEP32 interface showing the results of the sEMG analysis. After the selection of the HFPS cycles reported in Figure 4, the most frequent

activation patterns are shown for Vastus Medialis (VM), Tensor Fasciae Latae (TFF), Gluteus Medius (GMD), Medial Hamstring (MH), Longissimus Dorsii (LD), Tibialis

Anterior (TA), Lateral Gastrocnemius (LGS), Peroneus Longus (PL), Soleus (SOL), Rectus Femoris (RF), Lateral Hamstring (LH) of the right side (most affected side of

the PD subject). For each muscle, the orizontal bars represent the average activation intervals of the most frequent activation modality. The normalized amplitude is

color-coded in three levels: high amplitude in red, medium amplitude in green, and small amplitude in yellow. Orange bars represent the standard error on the

onset/offset detection of the activation intervals. The basographic signal is also shown superimposed (green line).
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from cycle to cycle. For each subject, and for each gait cycle
type (e.g., HFPS), the mean, or the median value (more robust
against outliers), of each gait phase duration can be calculated.
In correspondence of the U-turns/outlier epochs, a relevant
change in the sequence or in the duration of the gait phases
appears in the basography and can be automatically detected.
In pathological gait, the number of gait phases, their sequence,
and duration can change with respect to normal gait, as well as
the overall intra-subject variability. As an example, hemiplegic
children after cerebral palsy, with a foot drop on the affected
lower limb, typically strike the floor with the forefoot instead
of the heel. They mainly show PFPS and/or PS sequence of
gait phases instead of HFPS (82). Nevertheless, in the same
manner as for healthy subjects, proper algorithms can handle gait
cycle segmentation and classification, discarding outlier cycles,
based on a statistical analysis (85). This approach is known
as Statistical Gait Analysis (SGA) and it was developed and
validated by our research group, specifically to deal with the
challenges of clinical gait analysis mentioned above, to analyze
hundreds of gait cycles in a user-independent way. The software
of the STEP32 system integrates this “SGA philosophy”. Figure 4

shows the user interface where the gait cycles are classified
and sorted by their frequency of occurrence (for a PD subject).
Then, only sEMG signals corresponding to the gait cycles sharing
the same foot-floor contact sequence are considered (HFPS
was selected in this case). Figure 5 shows the results of the
sEMG analysis.

We would like to stress that, if the subject contacts the floor
differently in different gait cycles (e.g., with the forefoot instead
of with the heel), it is evident that different sEMG patterns are
produced. These differences are more pronounced in the distal
part of the lower limb, e.g., for the ankle flexo-extensor muscles
(TA and LGS). If this source of extrinsic sEMG variability is not
properly handled, the results of the analysis cannot be accurate.
Hence, a fundamental step before analyzing sEMG patterns is to
group together only those patterns belonging the same typology
of gait cycle.

While a gait analysis expert can select the subject’s most
representative gait cycles, choosing them one-by-one “manually,”
this is unfeasible in clinical applications, requiring a reliable
and repeatable analysis of hundreds of gait cycles, in a user-
independent manner. Therefore, in summary, it is advisable

FIGURE 6 | Example of different activation modalities of the Rectus Femoris, observed in sEMG signals collected from an healthy subject, on 3 gait cycles of the

same type (HFPS) collected during the same walk. The colored boxes highlight the intervals in which the muscle activity is present.
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that systems designed for clinical sEMG-GA incorporate
algorithms to:

- remove U-turns and outlier epochs
- segment and classify gait cycles and their frequency
of occurrence

- focus sEMG analysis on representative gait cycles of the
same type.

Intrinsic Sources of sEMG Variability
Even if sEMG signals are processed separately for each class
of representative gait cycles, there are other sources of intra-
subject variability that must be accounted for. More specifically,
literature reports that, even in normal HFPS gait cycles of
healthy subjects, a specific subject’s muscle does not show a
single “preferred” pattern of activation. Instead, from 3 to 5
distinct sEMG patterns are usually observed, each characterized
by a different number of activation intervals occurring within
the gait cycle. These are called “activation modalities” (52).
Figure 6 shows sEMG variability on a representative subject
(young healthy individual). However, especially when analyzing

pathological subjects, inspecting separately each modality of
activation and its frequency of occurrence (88) may be rather
cumbersome. Consequently, clinicians may lose interest, since
results are difficult to interpret.

In recent years, a clustering algorithm was proposed
and validated, both on healthy and pathological subjects, to
manage intrinsic sources of within-subject sEMG variability
in overground locomotion. This algorithm, named CIMAP
(Clustering for Identification of Muscle Activation Patterns)
allows grouping together sEMG patterns sharing similar
timing patterns (58, 81, 89). Then, it is possible to define,
in a unique manner, the sEMG principal activations (PA)
of a subject during gait (63, 90–93). A single binary
string, representing PA intervals, is associated to the
overall dynamic activity of the muscles during a subject’s
locomotion (1: the muscle is active; 0: the muscle is non-
active). Figure 7 shows the effects of intra-subject variability
on the interpretation of sEMG activation patterns, graphically
illustrating the importance of using clustering algorithms.
Figure 8 schematically depicts the extraction of PA in a
representative subject.

FIGURE 7 | Description of the effects of intrasubject variability on the interpretation of muscle activation patterns during gait. (A) Example of variability in the

activationd of the Tibialis Anterior (TA) muscle of an healthy subject. Gray bars represent the activation intervals in different gait cycle of the same walk. Observing the

average activity, represented in the color bar below (A) or represented as a “linear envelope” in (B), one would conclude that TA muscle is almost always active. (C)

After grouping together the gait cycles sharing the same activation-timing patterns, the average activation intervals (within each group) really represent the muscular

activation patterns. In the latest case, the biomechanical task of each activation interval becomes clear.
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FIGURE 8 | Example of application of CIMAP (Clustering algorithm for Identification of Muscle Activation Patterns) for the Rectus Femoris muscle. Gray bars represent

the activation intervals in different gait cycles of the same walk. The Principal Activation (PA) is univoquely determined as the intersection of cluster’s prototypes.

The use of this kind of algorithms would enormously simplify
the interpretation of sEMG signals during locomotion. Indeed, a
single (but representative) PA-string might be compared before
and after a rehabilitation program, or a therapeutic intervention,
helping clinicians in their work. Notice that this process is
scalable, and can be repeated to obtain unique PA from a cohort
population (instead of a single patient) to ease the interpretation
of randomized clinical trials using sEMGmeasurements (91).

However, the described advanced sEMG processing tools,
aimed at managing the intrinsic sources of sEMG variability,
are currently not available to clinicians. Presently, there are
no medical system integrating these important features. Future
systems designed for clinical sEMG-GA should incorporate,
cascaded to the algorithms mentioned in the previous section,
CIMAP-like algorithms.

Lack of Simple/Compact/Unique Clinical
Scores Obtainable From sEMG-GA
After many years of tight collaborative work with clinicians,
and fervent requests of help in the interpretation of sEMG
signals during gait, we understood that an essential point
is providing simple/compact/unique clinical scores for easily
comparing the patient outcome at different time points (and with
reference data).

The great majority of research papers typically presents results
from dozens of different parameters, typically estimated from
signals of each specific muscle under study. This makes the
application to patient management difficult. A few attempts can
be found in literature to summarize the information obtained
from sEMG-GA test in a unique and representative value of
the patient’s locomotion performance. One successful recent
example is the introduction of a sEMG-based “asymmetry
index” (54). This index defines the patient’s global asymmetry
during gait, and it was validated on different orthopedic
populations (total hip arthroplasty, total knee arthroplasty) and
neurological populations (hemiplegic children, normal pressure
hydrocephalus). Furthermore, reference values for different age
populations (children, adults, elderly) were also provided.

However, none of the available systems for sEMG-GA
integrates this index or similar ones.

DISCUSSION AND CONCLUSIONS

One of the fathers of modern sEMG analysis, Prof. C.J. De
Luca, already 30 years ago warned that the sEMG signal, if not
properly analyzed, could become “a seductive muse.” In the last
decade, there have been intense efforts to find reliable methods
to process and correctly interpret muscle activation patterns in
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locomotion. Nevertheless, there is still an evident gap between
literature findings and clinical practice. In this contribution, we
critically analyzed the main key factors limiting the widespread
use of sEMG signals in clinical gait analysis.

In synthesis:

• There is a lack of open databases related to reference
populations (of healthy children, adults, and elderly)
containing normative activation patterns as well as raw
sEMG signals, collected during gait. Furthermore, there
are no accepted standards on how to report muscle
activation patterns.

• There is a lack of systems for clinical gait analysis that integrate
quality information about the collected sEMG signals, in
real-time, to improve intra-operator repeatability and inter-
operator reproducibility.

• There is a lack of (wearable and wireless) systems for sEMG
detection that integrate algorithms for the study of gait in
natural conditions.

• There is a lack of systems that integrate algorithms aimed at
managing the high intra-subject variability of sEMG patterns
in human gait (both of extrinsic and intrinsic nature).

• There is a lack of systems that integrate simple scores
or indexes, calculated from sEMG-GA data, to help
clinical interpretation.

Therefore, the authors believe that it is fundamental to rethink
this research field, organizing debates, consensus meetings,
interdisciplinary projects and other initiatives to provide a critical

view of the topic and, last but not least, redesign user-friendly
systems for sEMG-GA, usable in clinics. In addition, it would be
important to offer training on sEMG-GA techniques to clinicians
and health practitioners, including open education and open data
resources. If the proposed “positive actions” will be successful,
good clinical practices will benefit from new evidence-based
approach to rehabilitation.
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