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Astrocytes regulate and respond to extracellular glutamate levels in the central nervous

system (CNS) via the Na+-dependent glutamate transporters glutamate transporter-1

(GLT-1) and glutamate aspartate transporter (GLAST) and the metabotropic glutamate

receptors (mGluR) 3 and mGluR5. Both impaired astrocytic glutamate clearance and

changes in metabotropic glutamate signaling could contribute to the development of

epilepsy. Dysregulation of astrocytic glutamate transporters, GLT-1 and GLAST, is a

common finding across patients and preclinical seizure models. Astrocytic metabotropic

glutamate receptors, particularly mGluR5, have been shown to be dysregulated in

both humans and animal models of temporal lobe epilepsy (TLE). In this review,

we synthesize the available evidence regarding astrocytic glutamate homeostasis and

astrocytic mGluRs in the development of epilepsy. Modulation of astrocyte glutamate

uptake and/or mGluR activation could lead to novel glial therapeutics for epilepsy.

Keywords: epilepsy, astrocytes, glutamate transporters, metabotropic glutamate receptors, GLT-1, GLAST,

mGluR3, mGluR5

INTRODUCTION

Epilepsy is a common neurological disorder and is characterized by the occurrence of unprovoked
seizures. Epilepsy is a major public health problem, affecting more than 65 million people
worldwide (1). Healthcare cost estimates associated with epilepsy in the United States range from
$9.6 to $12 billion per year (2). TLE is the most common form of epilepsy with focal seizures.
TLE is also frequently associated with refractory epilepsy. Approximately 1/4 of patients with TLE
develop refractory epilepsies that are pharmaco-resistant to currently available antiepileptic drugs
(AEDs) (3).

AEDs work primarily by targeting neurons through modulation of ion channels, enhancement
of inhibitory neurotransmission or attenuation of excitatory neurotransmission (4). Most AEDs
target channels on neurons to exert their antiepileptic effects. Newer generation AEDs still
primarily target neurons but through novel mechanisms and unique binding sites [e.g., AMPA-R,
CMRP2, SV2A, or inhibition of carbonic anhydrase activity (5)]. Modulation of neurotransmission
can consequently lead to dose-dependent “neurotoxic” adverse effects which are common
undesired effects associated with AED usage. Adverse cognitive and behavioral effects of AEDs
have been shown to lead to AED discontinuation in up to one-third of patients (6). Therefore,
new non-neuronal targets that could potentially have fewer side effects should be considered and
further investigated.
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Neuronal hyperexcitability is a major contributor to epilepsy
but increased evidence suggests that changes in astrocytes can
contribute to the development of epilepsy (7–13). Astrocytes
are involved in ionic homeostasis, regulation of extracellular
space volume and clearance of neurotransmitters. Astrocytes are
a critical component of the tripartite synapse, where they are
involved in the active control of neuronal activity and synaptic
neurotransmission. Astrocytes regulate extracellular glutamate
levels via Na+-dependent glutamate transporters, glutamate
transporter-1 (GLT-1) and glutamate aspartate transporter
(GLAST). GLT-1 is responsible for ∼90% of glutamate uptake
in the adult dorsal forebrain and is crucial for the maintenance
of low extracellular glutamate to permit efficient synaptic
transmission (14). The human homologs of GLAST and GLT-
1 are EAAT1 and EAAT2, respectively. In this review we will
be referring to these transporters in pre-clinical and clinical
studies by GLAST and GLT-1. Aside from perisynaptic glutamate
uptake, astrocytes can also sense extracellular glutamate to more
readily adapt to their microenvironments through metabotropic
glutamate receptors mGluR3 and mGluR5. These G-protein
coupled receptors can differentially modulate the expression
of glutamate transporters and glutamate release therefore
indirectly regulating synaptic activity. This review will provide
an overview of what we currently understand regarding the
regulation of astrocytic glutamate transporters and receptors in
the development of epilepsy. Targeting glutamate uptake and/or
glutamate receptor activation through astrocytes could lead to
novel treatment options for patients with refractory epilepsies.

DYSREGULATION OF GLUTAMATE
UPTAKE IN EPILEPTOGENESIS

GLT-1 and GLAST are the primary transporters responsible
for glutamate clearance in the central nervous system (CNS)
following excitatory neuronal transmission. It is crucial to
maintain low levels of basal extracellular glutamate in the
brain to permit efficient and localized synaptic transmission.
Evidence of increased glutamate levels have been observed
in patients suffering from TLE and in preclinical seizure
models (15–17). The vast majority of GLT-1 is astrocytic
with synaptic localization, with ∼5–10% of expression in
neurons (18, 19). Mice that globally lack GLT-1 develop lethal
spontaneous seizures, while transgenic mice that overexpress
GLT-1 have a higher seizure threshold than wild-type mice,
suggesting that GLT-1 plays an important role in preventing
seizures and protection against glutamate toxicity (20, 21).
In multiple preclinical studies, GLT-1 protein levels have
been shown to be downregulated during the development
of epilepsy (Figure 1). Perisynaptic GLT-1 at the plasma
membrane in astrocytes is significantly reduced around CA3-
CA1 synapses during the latent period following systemic
kainate-induced status epilepticus (SE) (22). Hippocampal GLT-
1 total protein levels have been found to be downregulated
following intrahippocampal kainate-induced SE (11). Crude
synaptosomal GLT-1 levels, which include components of the
tripartite synapse, are also reduced nearly 80% 1 week following

intrahippocampal kainate induced-SE in the hippocampus early
in the epileptogenic process (13). These data suggest that the
pool of transporters available for glutamate uptake at excitatory
synapses is substantially reduced in epileptogenesis. The kainic
acid (KA) model of TLE is characterized by a period of SE, that
serves as the initial insult, followed by a latency period where the
mice are seizure-free followed by the occurrence of spontaneous
recurrent seizures (23–25). Downregulation in GLT-1 protein
levels observed in these studies interestingly coincides with
the approximate onset of spontaneous seizures, demonstrating
that glutamate transporter dysregulation could contribute to the
development of epilepsy (13, 22, 26–28). Interestingly, GLT-1
protein levels were found to be upregulated in in a spontaneously
epileptic rat, a double mutant (zi/zi, tm, tm), compared to control
Wistar rats (29). GLT-1 protein levels have also been shown to
be disrupted in patients with TLE (8, 9). GLT-1 levels have been
found to be decreased in the hippocampus of TLE patients with
hippocampal sclerosis (HS) in most (8, 9) but not all (30) studies.
In patients with decreased GLT-1, severe neuronal cell loss was
observed suggesting that loss of glutamate transporters could
exacerbate neurotoxicity in epilepsy (8, 9).

GLAST has also shown to be dysregulated in the epileptic
brain. GLAST is found in the dorsal forebrain postnatally and
homogenously distributed among astrocytic soma and endfeet
compared to its counterpart GLT-1 (18, 31). GLAST-deficient
mice have significantly longer seizure duration compared to wild-
type mice suggesting that GLAST also plays a role in seizure
susceptibility (32). In a preclinical model of TLE, synaptosomal
GLAST protein levels were elevated in the epileptic hippocampus
while overall total protein levels were unchanged at chronic
time points (13). GLAST protein levels were found to be
significantly lower in a spontaneously epileptic rat, a double
mutant (zi/zi, tm, tm), compared to control Wistar rats (29). In
TLE patients with HS, GLAST protein levels have been shown to
be downregulated while GLAST protein levels are unchanged in
TLE patients without HS (8). Astrocytic glutamate synthetase is
responsible for the rapid conversion of intracellular glutamate to
glutamine and is a prerequisite for efficient glutamate clearance
from the extracellular space. Loss of glutamine synthetase has
also been observed in patients with TLE which could have
an impact on glutamate transporter clearance (30). These
findings suggest that glutamate transporter dysregulation could
contribute to increased extracellular glutamate and ictogenesis in
the epileptic brain.

REGULATION OF ASTROCYTIC
GLUTAMATE RECEPTORS IN
EPILEPTOGENESIS

Metabotropic glutamate receptors (mGluRs) are G-
protein coupled receptors (GPCRs) important in synaptic
neuromodulation. These receptors can be divided into three
separate families: Group I, Group II, and Group III, based on
their structure and downstream function (33). Metabotropic
glutamate receptors found on astrocytes can influence astrocytic
functions in physiology and disease. Astrocytes dominantly
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FIGURE 1 | Proposed protein expression of glutamate transporters and mGluRs in the hippocampus during epileptogenesis compared to controls. ↑ represents

increased protein expression observed compared to control. ↓ represents decreased protein expression observed compared to control. ↓↑ represents decreased and

increased in protein expression observed compared to control.

express mGluR3 and mGluR5 receptors and differential
regulation of these receptors has been observed in epilepsy
(10, 34, 35). Astrocytic mGluR5 signaling plays an important role
in astrocytic motility, ensheathment and glutamate transport in
the developing brain (36, 37). Expression of astrocytic mGluR5
is typically limited to the first few weeks of brain development
(37–39). Activation of Group I mGluR5 receptors, coupled to
Gαq proteins, has been shown to acutely alter GLT-1 activity by
increasing glutamate clearance in astrocytes (40) but chronic
stimulation can lead to a reduction in astrocytic GLT-1 and
GLAST levels resulting in reduced glutamate transport (35).

Differential expression of astrocytic mGluRs have been
reported in patients and preclinical models of epilepsy. mGluR5
levels have been shown to be overexpressed in murine seizure
models. mGluR5 expression in reactive astrocytes is persistently
upregulated following electrically induced SE in a kindling
model and in TLE (34). Selective positive modulation of mGluR5
in the Theiler’s murine encephalomyelitis virus (TMEV)-
induced model of epilepsy attenuates seizures (41). Additionally,
selectively knocking out astrocytic mGluR5 signaling during

epilepsy slows glutamate clearance through glutamate
transporters, suggesting that mGluR5 plays an important
function in regulating these transporters in epileptogenesis (42).

Multiple studies have shown that mGluR5 levels are also
increased in patients with TLE (10, 43). mGluR5 expression levels
in patients have been associated with seizure frequency. Lower
mGluR5 expression was found to be negatively correlated with
seizure frequency and epilepsy duration in patients with TLE
(non-HS) (10). Conditional knockout of mGluR5 signaling from
astrocytes slowed glutamate clearance in epileptogenesis (42).
These data support the hypothesis that mGluR5 upregulation
could act as a compensatory mechanism to counterbalance the
hyperexcitability observed in epilepsy.

It is important to note that activation of mGluR5 has also
been shown to lead to increased excitability. For example,
stimulation of group I mGluRs, including mGluR5, elicits ictal-
like events in hippocampal slices (44). Following SE, mGluR5
activation has also been shown to enhance astrocytic calcium
signals during the latency period of epileptogenesis in the
pilocarpine model of TLE (45). Moreover, increases in astrocytic
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calcium transients can lead to release of gliotransmitters,
including glutamate, and activation of NMDA receptors (46).
In one study, intrahippocampal perfusion of the mGluR group
1 agonist, DHPG (R,S-3,5-dihydroxyphenylglycine), induced
seizures while infusion of themGluR5 receptor antagonist,MPEP
(2-methyl-6-(phenylethynyl)-pyridin), attenuated pilocarpine-
induced seizures (Table 1) (52).

Hyperexcitability associated with mGluR5 activation has also
been observed in other neurological diseases. For example,
preclinical data suggest that in Fragile X Syndrome, a genetic
form of autism, the absence of fragile X mental retardation
protein (FMRP) leads to overstimulation of the mGluR5 pathway
enhancing glutamatergic signaling contributing to phenotypes
observed in this disease (53–55). Interestingly, treatment of
Fmr1 knockout mice with negative modulators of mGluR5
ameliorates phenotypes (56, 57). These studies indicate that
although acute activation of mGluR5 can decrease excitability,
chronic stimulation, which could occur in a diseased state, can
be detrimental.

Activation of Group II mGluR3 receptors, which are coupled
to Gαi proteins in astrocytes, may have neuroprotective functions
including increasing the capacity for glutamate clearance in the
CNS through upregulation of glutamate transporters (35, 58).
mGluR3 receptor activation has been shown to upregulate GLT-1
and GLAST protein levels promoting increased glutamate uptake
in astrocytes (35, 58). mGluR3 receptors are also found in the
presynaptic terminals of glutamatergic neurons (59). mGluR3
receptor agonists have also been shown to protect neurons
from excitotoxicity and astrocytes from nitric oxide-induced
death (60). Astrocyte-specific mGluR3 expression is markedly

increased at early and chronic time points following SE in CA3
and hilar region following electrically induced SE in a kindling
model and in TLE (34). A reduction in astrocyte-specificmGluR3
was observed in the molecular layer and stratum lacunosum
moleculare of the hippocampus at chronic time points (34).
mGluR2/3 expression was also found to be markedly decreased
both acute and chronic time points following pilocarpine-
induced SE (50).

Whether mGluR3 expression levels are upregulated or
downregulated in patients with TLE is controversial. One study
found mGluR2/3 expression is downregulated (50) while a
separate study showed that mGluR2/3 is upregulated in the
hippocampi of TLE patients (61). Whether this discrepancy
is due to study design, severity or stage of epilepsy, region-
specific effects, or technical differences remains to be determined.
Future studies could further examine the use of selective negative
modulators of mGluR5 or positive modulators of mGluR3 as an
alternative therapeutic approach to treat epilepsy.

ASTROCYTIC GLUTAMATE UPTAKE AND
TARGETING OF GLUTAMATE RECEPTORS
AS THERAPIES FOR REFRACTORY
EPILEPSIES

Non-neuronal targets, including glial cells, are an attractive
alternative approach to treat patients whose seizures are not
well-controlled with currently available AEDs. Increasing
astrocytic glutamate uptake capacity by upregulation of
glutamate transporters has been shown to have neuroprotective

TABLE 1 | Positive and negative outcomes of glutamate transporter modulation and mGluR agonists/antagonist in preclinical seizure models.

Drug candidate Selectivity Dose Model Antiepileptic

effect

Other effects References

17AAG HSP90β inhibitor 50 µl, 200; mg/kg, i.p. KA model of TLE ↓ seizures ↑ GLT-1

↓ astrogliosis

(47)

Ceftriaxone GLT-1 transcriptional

activator

200 mg/kg; i.p. Knock out mouse model of

TSC

↓ seizures ↑ GLT-1

↓ glutamate

↓ neuronal death

(48)

APDC Group II mGluR agonist 0.6 nmol; i.c.v. infusion DL-HCA model of seizure ↓ seizures (49)

APDC Group II mGluR agonist 12.5, 50, 200, 400, and 600

mg/kg; i.v.

Pilocarpine model of TLE No effect (50)

DCG-IV Group II mGluR agonist 0.5 µl, 1 nm;

intra-amygdaloid

Kindling of the basolateral

amygdala

↓ seizures (51)

DCG-IV Group II mGluR agonist 0.6 nmol/side; i.c.v. infusion DL-HCA model of seizure Partial effect (49)

DCG-IV Group II mGluR agonist 5–100 nmol/side; i.c.v.

infusion

DL-HCA model of seizure ↑ seizures (49)

DCG-IV Group II mGluR agonist 1µM; intrahippocampal Pilocarpine model of TLE Partial effect ↓ extracellular glutamate (52)

DCG-IV Group II mGluR agonist 10µ; intrahippocampal Pilocarpine model of TLE Partial effect ↑ glutamate and GABA (52)

DHPG Group I mGluR agonist 1mM; intrahippocampal Pilocarpine model of TLE ↑ seizures ↑ glutamate and GABA (52)

Cyclobutylene

AP5

Group II mGluR agonist 4, 8, and 16 nmol/side; i.c.v.

infusion

DL-HCA model of seizure ↓ seizures (49)

MPEP mGluR5 antagonist 50 mg/kg; i.p. Pilocarpine model of TLE ↓ seizures ↓ glutamate and GABA (52)

MPEP mGluR5 antagonist 1µg/g; I.V. Pilocarpine model of TLE No effect ↓ neuronal death (45)

Up-arrow notation represents an increase and down-arrow notation represents a decrease in the table.
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and anti-epileptic effects. Seizures were significantly reduced
and astrogliosis was attenuated when mice were administered
an HSP90β inhibitor to increase GLT-1 expression in a mouse
model of TLE (47). Ceftriaxone, a β-lactam antibiotic, has
also been shown to upregulate GLT-1 protein expression and
reduce seizures in multiple preclinical studies (48, 62, 63).
Treatment with ceftriaxone has shown negative adverse side
effects including impairment in synaptic plasticity and memory
recognition (64, 65). Ceftriaxone affects many pathways in
the CNS, therefore, it is currently not well-understood if these
adverse effects are a result of GLT-1 activation. Nevertheless,
selectively targeting aberrant astrocytes could reduce adverse
side effects. Intraspinal delivery of AAV8-Gfa2-GLT1 has been
used to selectively increase GLT-1 protein expression under the
truncated glial fibrillary acidic protein promotor in a model of
spinal cord injury showing promising results (66). Gene therapy
could potentially be used to target subpopulations of astrocytes
by selecting genes known to be overexpressed in the epileptic
brain. For example, adenosine kinase is strikingly upregulated in
reactive astrocytes after kainic acid-induced SE and its promotor
could be used to selectively target this cell population (67).

The mGluR5 receptor antagonist MPEP reduced seizures
when administered i.p. in the pilocarpine seizure model (52).
In contrast, another study also using the pilocarpine seizure
model found that MPEP suppressed neuronal death but did
not result in a change in synaptic activity, suggesting that
astrocytes could have neurotoxic roles in epilepsy through
increased gliotransmission (45). Future studies should further
examine mGluR5 antagonists as potential adjunctive therapies to
decrease the severe neuronal loss observed in TLE patients with
HS. The mGluR2/3 agonist, APDC, was shown to reduce seizure
in the DL-homocysteic acid (DL-HCA) seizure model (49). In
the pilocarpine seizure model, APDC did not reduce seizures
nor neuronal death (50). These studies indicate that selection of
agonist/antagonists can have differential outcomes. Two Group
II mGluR agonists targeting mGluR2/3, cyclobutylene AP5 and

DCG-IV, have both demonstrated positive effects on seizure

control in the DL-homocysteic acid (DL-HCA) seizure model
and kindling model of TLE (49, 51). Interestingly, at higher
doses DL-HCA has been shown to have pro-epileptic effects
(49, 52). Thus, activation of Group II mGluRs may be another
promising avenue for alternative therapies for treating epilepsy.

CONCLUSION

Astrocytes play a critical role in the development and
progression of epilepsy (7, 8, 30, 68–76). Astrocytic glutamate
uptake is dysregulated in both preclinical models and in
patients with TLE leading to increases in basal glutamate
levels, and activation and signaling of astrocytic metabotropic
glutamate receptors, mGluR3 and mGluR5, is also altered
in animal models and patients with TLE. It is not clear
yet whether targeting glutamate transporters and receptors
would be more effective as a novel antiepileptic (controlling
seizures in pharmacoresistant epilepsies) or antiepileptogenic
(disease-modifying prevention of development of epilepsy after
epileptogenic insults) strategy. Future studies should distinguish
antiepileptic vs. antiepileptogenic effects, for example of GLT1
upregulation in appropriate animal models. Targeting of altered
“epileptic” glutamate metabolism and signaling in astrocytes has
the potential of efficacy with fewer side effects compared to
traditional suppression of glutamatergic neurotransmission in
neurons. This could lead to novel approaches to antiepileptic,
antiepileptogenic, and/or neuroprotective therapies.
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