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The human infection of the novel severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) is a public health emergency of international concern that has caused

more than 16.8 million new cases and 662,000 deaths as of July 30, 2020. Although

coronavirus disease 2019 (COVID-19), which is associated with this virus, mainly affects

the lungs, recent evidence from clinical and pathological studies indicates that this

pathogen has a broad infective ability to spread to extrapulmonary tissues, causing

multiorgan failure in severely ill patients. In this regard, there is increasing preoccupation

with the neuroinvasive potential of SARS-CoV-2 due to the observation of neurological

manifestations in COVID-19 patients. This concern is also supported by the neurotropism

previously documented in other human coronaviruses, including the 2002–2003

SARS-CoV-1 outbreak. Hence, in the current review article, we aimed to summarize

the spectrum of neurological findings associated with COVID-19, which include

signs of peripheral neuropathy, myopathy, olfactory dysfunction, meningoencephalitis,

Guillain-Barré syndrome, and neuropsychiatric disorders. Furthermore, we analyze the

mechanisms underlying such neurological sequela and discuss possible therapeutics for

patients with neurological findings associated with COVID-19. Finally, we describe the

host- and pathogen-specific factors that determine the tissue tropism of SARS-CoV-2

and possible routes employed by the virus to invade the nervous system from a

pathophysiological and molecular perspective. In this manner, the current manuscript

contributes to increasing the current understanding of the neurological aspects of

COVID-19 and the impact of the current pandemic on the neurology field.
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INTRODUCTION

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan,
China (1), in December 2019, and it has engulfed the world in an unprecedented global
pandemic. The coronavirus disease 2019 (COVID-19) associated with this virus has caused
more than 16.8 million new cases and 662,000 deaths as of July 30, 2020 (2), generating a
high burden of disease that has exceeded the assistance capacities of several healthcare systems
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around the world. The clinical characteristics of patients with
COVID-19 are similar to those observed during the outbreak of
SARS-CoV-1, which emerged in 2002–2003, causing more than
8,000 confirmed cases and ∼800 deaths (3). As such, the human
infection with SARS-CoV-2 mainly affects the lower respiratory
tract, causing mild to moderate respiratory symptoms in about
85% of patients with COVID-19 (4–6), including fever, headache,
fatigue, myalgia, dry cough, and diarrhea. Most symptomatic
individuals are men in their fifth and sixth decades of life that
attend medical centers after an incubation period of about 4
to 5 days (4–7). Another 15% of patients present moderately
severe forms of the disease manifested as pneumonia of atypical
features in radiological studies of the lung, such as bilateral
multi-lobe consolidations and ground-glass opacities (8). Finally,
in 5 to 30% of COVID-19 patients, the virus causes severe
acute respiratory syndrome (SARS), which is characterized by
profound respiratory distress that obligates the establishment
of intensive life support interventions, such as intubation and
mechanical ventilation (4–6). Initial reports estimated mortality
rates of about 2 to 4%. However, new analyses indicate a
higher lethality of COVID-19 (9), especially among individuals
older than 65 years, and patients with comorbidities (4–6).
Unfortunately, the risk of a fatal outcome is disproportionally
higher among patients requiring mechanical ventilation, with a
mortality rate close to 80% (7).

The rapid transmission of SARS-CoV-2 and the increasing
number of positive cases reported around the world have
overcome the resources of the healthcare systems in different
regions. This has significantly impacted all areas of medicine,
especially those directly related to the management of severe
respiratory infections, such as pneumology and critical care
medicine. Nonetheless, SARS-CoV-2 has the potential to spread
to different extrapulmonary tissues, and, in some of the most
severe cases, the infection can progress to multiorgan failure (5).
Therefore, all healthcare providers from any area of medicine
must acquire adequate knowledge of the principal characteristics
of COVID-19. Currently, there is increasing preoccupation about
the potential capacity of SARS-CoV-2 to invade the central
nervous system (CNS) and the peripheral nervous system (PNS).
These concerns are based on recent observations in individuals
infected with SARS-CoV-2 that present neurological findings
(10). A better understanding of the mechanisms underlying
the neurologic sequela of patients with COVID-19 is urgent
to discover novel targets for therapeutics development. In the
current review article, we therefore provide an overview of
the spectrum of neurological manifestations of COVID-19.
Additionally, we analyze host- and pathogen-specific factors that
determine the tissue tropism of SARS-CoV-2 and discuss the
possible routes employed by the virus to invade the nervous
system. Furthermore, we propose possible therapeutics for the
neurologic complications of COVID-19.

SARS-COV-2 BIOLOGY

Virology
SARS-CoV-2 is a novel member of the group of human
coronaviruses (HCoVs), which is constituted of HCoV-229E,

HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, and
MERS-CoV (11). These are RNA single-stranded viruses
belonging to the Coronaviridae family. Some of these pathogens
have caused a variety of respiratory diseases in the past. For
instance, SARS-CoV-1 infected more than 8,000 individuals
around the world (3). Also, the human coronavirus related to
the respiratory syndrome of theMiddle East (MERS-CoV), which
emerged in Saudi Arabia in 2012 and caused high mortality rates
among infected people (12, 13).

Based on sequence comparisons of viral genomes, HCoVs
are grouped into four genera: alpha, beta, gamma, and delta
coronaviruses. SARS-CoV-2 is a beta coronavirus genetically
related to another bat coronavirus named BatCoV RaTG13
as well as SARS-CoV-1 (14, 15). Furthermore, SARS-CoV-2
also shares its genetic identity with coronaviruses isolated from
pangolins (16, 17). Hence, it is believed that COVID-19 is a
zoonotic disease that originated from bats or pangolins. The
genome of SARS-CoV-2 consists of a single RNA strand of 29.903
bp that codifies for the replicase-transcriptase, as well as for the
structural proteins spike (S), envelope (E), membrane (M), and
nucleocapsid (N) (15).

Mechanism of Infection and Determinants
of SARS-CoV-2 Tropism
The initial step of SARS-CoV-2 infection is the recognition of its
receptors on the surface of host cells. This step is mediated by
the viral spike (S) protein, which recognizes the human receptor
angiotensin I-converting enzyme 2 (ACE2), the same receptor
for the S protein of SARS-CoV-1 (18–20). This protein owns
two functional domains: the S1 domain contains the receptor-
binding domain (RBD), which attaches to ACE2, whereas the S2
domain mediates the fusion of the viral and host cell membranes
(20). Therefore, the organ distribution of the ACE2 receptor is
a crucial determinant of the virus infectivity and tropism. A
second step determinant in the infection process of SARS-CoV-2
is the activation of the S protein. This process is mediated
by different host proteases, which execute the cleavage of the
molecule at the S1/S2 and S’2 sites. This protein processing
allows the complete activity of the S2 domain and the fusion of
the viral and cellular membranes. For this purpose, and as in
the case of SARS-CoV-1, SARS-CoV-2 uses the transmembrane
serine protease 2 (TMPRSS2) (19, 21, 22). Interestingly, the
proteases TMPRSS4 and cathepsin L also promote SARS-
CoV-2 infection of human small intestinal enterocytes and
293/hACE2 cells (23, 24). Hence, the tissue patterns of expression
of TMPRSS2, TMPRSS4, and cathepsin L is another decisive
factor that determines the tropism of the virus, and, indeed,
some drugs that inhibit the activity of these proteases are now
proposed as potential therapeutic agents to prevent and treat
COVID-19 (19, 23).

Other factors implicated in the process of SARS-CoV-2
infection include the phosphatidylinositol 3-phosphate 5-
kinase (PIKfyve) (23). This enzyme mediates the production
of phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2], a
phosphoinositide that participates in the maturation process
of endosomes. Treatment with apilimod, a potent inhibitor for
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FIGURE 1 | Mechanisms of infection of SARS-CoV-2. This figure was created with BioRender.

PIKfyve, reduced the infectivity of SARS-CoV-2 and could be
a novel candidate for therapeutic applications. After the entry
into host cells, viral replication begins with the translation
of the replicase-polymerase gene and the assembly of the
replication-transcription complex. This complex subsequently
transcribes the genomic regions that codify for structural
proteins. New virions are assembled in the endoplasmic
reticulum and Golgi apparatus to finally egress from the cell
(11). A particular feature of SARS-CoV-2 is that it possesses
a polybasic furin cleavage sequence (PRRA) in the S1/S2 site,
which is absent in other close related coronaviruses (14, 20).
This inserted furin cleavage sequence is processed at the Golgi
apparatus during the biosynthesis of the S protein of novel
virions inside the host infected cells (20). The novel virions of
SARS-CoV-2 may thus contain an S protein primed and ready
to infect any other cells expressing the ACE2 receptor, with
no further requirement of TMPRSS2 activity. As virtually all
cells express furin under normal conditions, the inserted furin
cleavage sequence may expand the transmissibility and tissue
tropism of SARS-CoV-2. Figure 1 illustrates the process of
SARS-CoV-2 infection.

The Immune Response Against
SARS-CoV-2
SARS-CoV-2 elicits an exuberant immune response
characterized by a dysregulated production of soluble immune
mediators. This phenomenon has been called a “cytokine storm”
and is responsible for mediating tissue damage in patients
with COVID-19 that progress to severe illness (25–28). The
immune receptors that recognize the viral infection and initiate
the immune responses against SARS-CoV-2 are unknown. As
this virus is genetically related to SARS-CoV-1, it is presumed
that both viruses share mechanisms of infection. In this sense,
SARS-CoV-1 is recognized by the toll-like receptors (TLR) TLR3
and TLR4, which induce an immune reaction via MyD88 and
TRIF pathways (29, 30). Furthermore, SARS-CoV-1 triggers the
production of IL-1β through the activation of the inflammasome
(31). In this regard, the activation of the inflammasome is also
possible to occur during SARS-CoV-2 infection, as high levels
of IL-1β have been observed in COVID-19 patients (32). Other
immune mediators that are exaggeratedly produced in response
to SARS-CoV-2 include IL2, IL-6, IL7, IL10, G-SCF, CXCL10,
MCP-1, MIP-1A, and TNFα (5, 28, 33). From these, IL-1β, IL-6,
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CXCL10, and TNFα are the cytokines with a higher capacity to
generate tissue damage in several organs, including the CNS,
due to their pro-inflammatory properties. For instance, IL-1β
and IL-6 have been implicated in neurotoxicity associated with
chimeric antigen receptor (CAR) T cell therapy in patients with
hematological malignancies (34, 35). These cytokines possess
detrimental effects on endothelial function at several vascular
niches, which may be implicated in the pathophysiology of the
neurological complications of COVID-19, as discussed later.

Notably, despite the dysregulated production of immune
mediators, an ample range of immune cell subtypes are depleted
from the circulation of patients with severe SARS-CoV-2
infection. These cells include monocytes, dendritic cells, CD4+
and CD8+ T cells, and NK cells (36). Furthermore, the few
adaptive lymphocytes that remain in the blood express markers
of functional exhaustion (37). These data suggest that severe
COVID-19 is a state of immunosuppression similar to the known
sepsis-induced immunosuppression (38). However, it is also
possible that the robust recruitment of functional immune cells
to the sites of SARS-CoV-2 infection may explain the leukopenia
observed during COVID-19.

MECHANISM OF SARS-COV-2 ENTRY
INTO THE CNS

Expression of SARS-CoV-2 Viral Entry
Factors in the CNS
Several HCoVs, including SARS-CoV-1, have the potential to
infect different human tissues and organs (39, 40). Similarly,
SARS-CoV-2 may also spread to several extrapulmonary tissues,
including the CNS. Although recent analyses of autopsy
specimens from patients with COVID-19 have not explored
the presence of this virus in the brain (41), the neurological
manifestations observed among individuals with COVID-19
(10) and the isolation of other human coronaviruses from
neurological specimens support the notion of a possible
neurotropism of SARS-CoV-2 (42–47). The neurotropism of
other HCoVs has been extensively revised elsewhere (48).

As mentioned before, the patterns of expression of ACE2,
TMPRSS2, TMPRSS4, furin, cathepsin L, and other entry factors
used by SARS-CoV-2 for infection determine the tropism of
the virus. The ACE2 receptor is highly expressed in cells of the
alveolar epithelium (49, 50), which explains the vulnerability of
the lungs to infection. The expression of ACE2 has also been
found in other tissues, including the oral mucosa, endothelium,
heart, kidney, lymphoid organs, testis, gut, and urinary tract (49–
52). Nonetheless, distribution of TMPRSS2 has been assessed in
a limited variety of human tissues, showing high expression in
prostate cells, respiratory epithelial cells, salivary gland, kidney,
liver, stomach, small intestine, and colon (53–55). TMPRSS2
is regulated by androgens (53), which may explain the higher
susceptibility of men to suffer from severe forms of COVID-
19. Few studies have analyzed the expression of TMPRSS4
and cathepsin L in healthy human organs. According to the
Human Protein Atlas (https://www.proteinatlas.org/) dataset,
TMPRSS4 is present in the cerebral cortex, hippocampus,

caudate, thyroid gland, adrenal gland, nasopharynx, bronchi,
lung, stomach, duodenum, colon, rectum, gallbladder, pancreas,
and genitourinary tract. Meanwhile, cathepsin L shows medium
expression in lung and liver, and low expression at bronchi,
salivary gland, liver, kidney, pancreas, and genitourinary tract.

The expression in the human body of the known genes
mediating the entry of SARS-CoV-2 into human cells coincides
with the multiorgan pattern of COVID-19 manifestations.
Nonetheless, the presence of such factors is low in the CNS under
normal conditions. This may be in part because previous studies
have only analyzed the bulk organ gene expression patterns of
ACE2 and TMPRSS2. More recently, a comprehensive analysis
of several single-cell RNA-seq databases showed that there are
dual-positive ACE2+TMPRSS2+ cells in tissues beyond the
respiratory system, including oligodendrocytes in the brain, and
inhibitory enteric neurons (56). Furthermore, ACE2+CTSL+
cells were enriched in the olfactory epithelium. These data
support some of the possible routes of SARS-CoV-2 entry into
the CNS discussed below.

Routes of SARS-CoV-2 Entry Into the CNS
Themechanisms employed by SARS-CoV-2 to infect the nervous
system are unknown. Currently, the hypotheses about the routes
of viral entry into the CNS rely on previous observations made in
experimental studies of SARS-CoV-1 infection. One hypothesis
proposes that SARS-CoV-2 invades the brain by breaching the
blood-brain barrier (BBB). Evidence in favor of this infection
mechanism includes the high expression of the ACE2 receptor in
endothelial cells of blood vessels (49, 50). The virus may therefore
infect endothelial cells of the brain vasculature in the first term,
and it may then spread to the surrounding ACE2+TMPRSS2+
oligodendrocytes and, finally, to the neurons. This would explain
why SARS-CoV-1 has been observed inside neurons even when
they have a mild expression of ACE2 under normal conditions
(39, 40, 57). Despite this, SARS-CoV-1 has not been isolated from
or observed inside endothelial cells (58). Conversely, the high
concentrations of pro-inflammatory cytokines in the systemic
circulation of patients with severe forms of COVID-19 might
induce structural and functional alterations of the BBB (5, 28,
59). In this sense, it is well-known that different inflammatory
mediators have detrimental effects on BBB integrity, increasing
its permeability to neurotoxic molecules and immune cells (60).
SARS-CoV-2 could thus gain access to the CNS directly through
a paracellular route or within the immune cells, a mechanism
that has been called a “trojan horse”(61). It might be feasible
for this mechanism to occur during SARS-CoV-2 infection since
the previous SARS-CoV-1 has also been observed inside different
leukocyte subsets (40).

Secondly, the virus could enter the CNS through the olfactory
epithelium, crossing the cribriform plate of the ethmoid bone
and reaching the olfactory bulb from which it could spread to
different areas of the brain (62). This route was demonstrated
in mice intranasally inoculated with SARS-CoV-1, among which
a rapid viral spread from the olfactory bulb to the brain
stem was observed. This exposure to the virus caused high
lethality among infected animals due to the occurrence of
neuronal death in the respiratory centers of the brain stem (63).
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Similar results were observed in another animal model of CNS
infection with the HCoV-OC43 coronavirus (64). In humans,
some studies demonstrated olfactory neuropathy in patients
with SARS-CoV-1 infection (65). Likewise, recent investigations
have shown that the olfactory epithelium is enriched with
ACE2+CTSL+ cells (56). Moreover, hyposmia and anosmia are
frequent manifestations of COVID-19 (10, 66), suggesting that
SARS-CoV-2 might also infect the olfactory bulb in COVID-19
patients. In light of these findings, some researchers have
proposed that the neuroinvasive potential of SARS-CoV-2 could
contribute to the respiratory failure observed in patients with
severe COVID-19 (67).

Finally, as in the case of other respiratory viruses with
neurotropic potential, including the influenza A virus (68),
SARS-CoV-2 could gain access to the CNS through the vagus
nerve. The terminals of this nerve are located along the
respiratory and gastrointestinal tracts, sites with high expression
of ACE2 (49, 50) and enriched with ACE2+TMPRSS2+ enteric
neurons (56). From these organs, the virus could gain access
to the brain stem, taking advantage of the polarization of
neurons and the machinery responsible for retrograde neuronal
communication, or through endocytosis and clathrin-mediated
exocytosis, as observed in the case of the transsynaptic
transmission of the porcine coronavirus HEV 67N (69). The
possible CNS invasion routes used by SARS-CoV-2 are illustrated
in Figure 2.

NEUROLOGICAL MANIFESTATIONS OF
COVID-19 DUE TO CNS INVOLVEMENT

Non-specific Neurological Symptoms
Some of the initial descriptions of the clinical phenotype
of patients infected with SARS-CoV-2 showed that up to
10% of individuals with COVID-19 manifested non-specific
neurological symptoms such as headache and dizziness (5,
6, 70). In a more recent report by Mao et al., a third of
patients with COVID-19 presented non-specific neurological
manifestations, including dizziness (16.8%), headache (13.1%),
loss of consciousness (7.5%), and seizures (0.5%) (10). Two recent
systematic reviews and meta-analyses showed that headache and
dizziness are among the most frequent neurological symptoms
affecting COVID-19 patients (71, 72). Interestingly, headache can
occur even in the absence of fever and can be manifested as a
migraine, tension-type, or cluster headache (73).

These non-specific neurological symptoms may reflect the
neurotoxic effect of hypoxemia and the cytokine storm observed
in patients with severe COVID-19. However, some of these
manifestations must be differentiated from delirium, and other
secondary causes, such as metabolic, gastrointestinal, renal, and
hematological complications, must be ruled out, particularly
in aged patients with underlying comorbidities. Interestingly,
non-specific neurological manifestations are more frequent in
patients who progress to respiratory failure, which supports
the hypothesis about a possible contribution of the CNS
infection to the respiratory failure caused by SARS-CoV-2 (67).
Furthermore, patients with unspecific neurological symptoms

have shown higher degrees of leukopenia, thrombocytopenia,
and elevated blood urea nitrogen levels (BUN) (10). These
data suggest that some of these findings might have certain
prognostic value to predict the occurrence of more severe
neurological complications. However, the predictive potential
of non-specific neurological symptoms needs to be further
evaluated in prospective studies. This would be of great help for
the timely detection of patients at risk of neurologic sequela.

COVID-19 Associated Meningitis,
Encephalitis, and Acute Necrotizing
Encephalopathy
Acute meningitis and encephalitis are dramatic complications of
various viral infections that often result in high morbidity and
mortality rates due to their severity. Coronaviruses have also been
associated with these neurological complications in humans. For
instance, the HCoV-OC43 coronavirus was isolated from the
brain of a patient who died of viral encephalitis (74). Likewise,
both SARS-CoV-1 (46) and MERS-CoV have been reported to
cause encephalitis (75).

In this context, SARS-CoV-2 can also cause viral meningitis
and encephalitis, as demonstrated by a recent report of a 64-year-
old patient with laboratory-confirmed COVID-19 who presented
neurologic manifestations during the infection, including
lethargy, clonus, and pyramidal signs in the lower limbs as well
as stiff neck and Brudzinski sign (76). The cerebrospinal fluid
(CSF) study revealed high protein levels and hypoglycorrhachia,
although the virus could not be isolated from CSF in this case.
The patient received antiviral drugs and symptomatic measures,
progressing favorably without neurological complications.
Similarly, in another report, a 24-year-old man with a 3-day
history of headache developed fever, loss of consciousness,
and seizures (77). Upon hospital admission, he presented
signs of meningeal irritation and a low Glasgow Coma Scale
(GCS) score, requiring mechanical ventilation. During his
medical follow-up, he continued presenting seizures resistant to
pharmacological treatment. His laboratory studies revealed high
protein levels and pleocytosis in the CSF, and the MRI showed
hyperintensities in the mesial temporal lobe. The patient tested
negative for COVID-19 when his nasopharyngeal swab specimen
was analyzed. Nonetheless, the result of the test was positive
in the CSF sample. This finding was the first demonstration
of the presence of SARS-CoV-2 in the CNS. The occurrence
of encephalitis as the initial and even only manifestation of
COVID-19 has latter been reported in three additional cases
from China and the United States (78–80). Finally, another
case report showed that SARS-CoV-2 infection could cause
acute necrotizing encephalopathy (81). This entity is a severe
neurological complication resulting from the disruption of the
BBB associated with the cytokine storm observed in individuals
with a critical illness.

Together, these cases illustrate the development of severe
acute neurological complications in patients with COVID-19,
confirming the neurotropism of SARS-CoV-2. These findings
justify the intentional search for SARS-CoV-2 infection in
patients attending with acute neurological manifestations and
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FIGURE 2 | Mechanisms of SARS-CoV-2 invasion to the central nervous system. (A) SARS-CoV-2 can enter the CNS through the olfactory bulb. Indeed, recent

investigations have shown that the olfactory epithelium is enriched with cells that express the receptor ACE2 and the protease cathepsin L. (B) The virus can also

infect the CNS via the hematogenous route, attaching to the ACE2 receptor expressed in endothelial cells of the cerebral blood vessels, or inside an immune cell.

(C) Finally, SARS-CoV-2 can infect the nerve terminals of the vagus nerve located in the respiratory system and the gastrointestinal tract. From these sites, the virus

can reach the CNS using the mechanisms of retrograde neuronal protein transport and transsynaptic transmission. This figure was created with BioRender.

febrile illness even in the absence of respiratory symptoms.
The frequency and factors related to the severity of these
complications need to be extensively investigated in future
studies. This would require the conduction of comprehensive
characterizations of genetic and immunological characteristics
associated with the risk of severe neurological complications in
COVID-19 patients. In addition, future studies evaluating the
relationship between the temporal dynamics of neurological
findings, the kinetics of viral loads in the circulation and CNS,
and distinctive patterns of circulating immune mediators
are warranted. This might inform about the potential of

contagiousness of COVID-19 patients according to their
neurological symptoms and reveal possible candidate
biomarkers to distinguish individuals at high risk of severe
neurologic sequela.

Cerebrovascular Disease
The antecedent of a recent respiratory infection, such as
influenza, or influenza-like illness, has been related to acute
cardiovascular complications, including acute myocardial
infarction and stroke (82). Among infectious causes of vascular
events, the infection with the varicella-zoster virus (VSV) is
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the most frequent viral cause of stroke (83). The study by Mao
et al. revealed that 3% of patients with COVID-19 also present
stroke as their only neurological manifestation of the infection.
From these, the majority were affected by ischemic strokes
(six ischemic vs. one hemorrhagic from a total of 214 patients
included in the study) (10). Stroke in individuals with COVID-19
occurs late during the disease and is more frequently observed
among patients with severe respiratory failure. Interestingly,
some COVID-19 patients were admitted to medical centers with
hemiplegia and no history of respiratory symptoms (10). Other
studies have also reported stroke in patients with severe COVID-
19, even among young individuals (84, 85). This might indicate
that stroke could be a result of vascular alterations directly
driven by the virus, although the presence of cardiovascular
risk factors can increase the incidence of this complication.
A recent meta-analysis found that stroke, apart from being
a frequent complication of COVID-19, has a considerable
prognostic value to predict the risk of mortality. As such, patients
with stroke have a 3-fold increase in the risk of death due to
COVID-19 (86).

The association between stroke and COVID-19 might result
from the critical condition and the pro-inflammatory state that
prevails in most severely ill patients. The increased levels of
pro-inflammatory cytokines in these individuals could alter the
normal function of the cerebral vessels. These factors, along with
the high prevalence of cardiovascular risk factors among patients
with COVID-19, can trigger cerebrovascular complications.
The endothelial infection of the cerebral vasculature due
to its high expression of the ACE2 receptor might further
contribute to these complications (49). In fact, the incidence
of stroke in patients with VSV infection is a consequence of
the invasion of the cerebral arteries by the virus (83). Other
mechanisms by which SARS-CoV-2 could cause stroke include
coagulation disorders. The abnormalities in the coagulation
of severe COVID-19 patients have unique characteristics that
partially resemble disseminated intravascular coagulation (DIC)
or thrombotic microangiopathy. These alterations increase the
risk of thrombotic complications and death due to COVID-
19 (87). Acute myocarditis has been reported in patients with
SARS-CoV-2 infection (88, 89). This cardiac complication could
trigger events of brain embolization and stroke, which might
explain the incidence of cerebral infarctions in young patients
with COVID-19 in the absence of cardiovascular risk factors.

NEUROLOGICAL MANIFESTATIONS OF
COVID-19 DUE TO PNS INVOLVEMENT

Peripheral Neuropathy and Myopathy
Associated With SARS-CoV-2 Infection
During the outbreak caused by SARS-CoV-1, some studies
described the occurrence of peripheral motor neuropathy and
myopathy among infected individuals, mostly as part of the
spectrum of manifestations of the critical illness polyneuropathy
and myopathy disorders (90). Similarly, 2.3% of patients with
COVID-19 have presented neuropathic pain, probably associated
with peripheral neuropathy, whereas 10.7% of the cases showed

data of skeletal muscle injury with elevated serum levels of
creatine phosphokinase (CPK) (10). As in the case of other
neurological manifestations, neuropathic pain and myopathy
have been more frequently observed in patients with severe
forms of COVID-19. Notably, these symptoms occur earlier
during the disease in individuals with SARS-CoV-2 infection
as compared to patients affected by SARS-CoV-1 (10). This
suggests that the neuropathy and myopathy of COVID-19 are
directly associated with the injury of peripheral nerves and
striated muscles driven by the virus. COVID-19 patients with
neuropathy and myopathy, however, exhibit higher levels of
neutrophils and acute phase reactants than individuals without
neurological manifestations (10). The nerve andmuscle disorders
observed during SARS-CoV-2 infection might thus be associated
with a critical illness polyneuropathy of rapid development due
to the more deteriorated clinical condition of patients with
COVID-19 as compared to cases of SARS-CoV-1 infection.
Vascular, thrombotic, ischemic, and direct nerve and muscle
alterations driven by SARS-CoV-2 can contribute to neuropathy
and myopathy of COVID-19 patients.

Cranial Neuropathies in Patients With
COVID-19
A wide range of infectious diseases can cause complicate within
cranial neuropathies like facial palsy and ophthalmoplegia.
Among the pathogens that cause these manifestations with
more frequency are HIV and VSV (91). Cranial nerves might
also be susceptible to a direct or indirect injury caused by
SARS-CoV-2. In fact, according to a recent study, about 85%
and 88% of patients with COVID-19 develop olfactory and
gustatory dysfunction (66). Similarly, in another investigation
conducted in Italy, about 33% of patients with COVID-19
reported taste and/or olfactory disorders (92). These findings
might be specific for SARS-CoV-2 infection and could predict
the causative pathogen in patients with acute respiratory illness.
Indeed, smell and/or taste disorders were more frequently
observed among COVID-19 patients as compared to individuals
with laboratory-confirmed influenza infection in a case-control
study conducted in Spain (93). These observations might be
of particular relevance for the upcoming flu season, which is
predicted to be historically unique due to the convergence of
influenza and COVID-19. During such an envisioned scenario,
the differentiation of these diseases by clinical manifestations
could be complicated. Nonetheless, the correct identification of
the causative pathogen have therapeutic implications, such as
the selection of adequate antiviral treatment. The presence of
smell and taste dysfunction could thus be useful to distinguish
COVID-19 from influenza. Furthermore, these symptoms can
precede the onset of respiratory symptoms (94, 95), and their
presence may predict a milder clinical course of the disease (96).
Notably, COVID-19-related olfactory dysfunction has not been
associated with rhinorrhea or nasal congestion, and more than
half of the affected patients did not recover the function of the
olfactory nerve (66). This suggests direct damage to the olfactory
epithelium, which further reaffirms the possibility of an entry
route of SARS-CoV-2 through the cribriform plate, reaching
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the olfactory bulb from where it spreads to other parts of the
CNS (62).

AUTOIMMUNE NEUROLOGICAL
SYNDROMES ASSOCIATED WITH
COVID-19

Guillain-Barré Syndrome
The association between viral infections and Guillain-Barré
syndrome has been largely described in the past (97). Infection
with Campylobacter jejuni, cytomegalovirus, or Mycoplasma
pneumoniae precedes Guillain-Barré syndrome in up to two-
thirds of affected individuals (98). More recently, several viral
emerging diseases have shown this syndrome as one of its
more common and severe complications, as is the case of the
infection with the Zika virus (99). Although this association
was not described in patients infected with SARS-CoV-1, cases
of Guillain-Barré syndrome were observed during the outbreak
of MERS-CoV (100). In this context, the infection with SARS-
CoV-2 could also complicate with or manifests as Guillain-Barré
syndrome. In a recent report, Zhao et al. described the case
of a woman that developed asymmetric and progressive muscle
weakness in the lower limbs, associated with leukopenia and high
protein levels in the CSF without pleocytosis, accompanied by
data of demyelinating neuropathy in studies of nerve conduction
(101). The patient had a history of a recent trip to the city
of Wuhan, and she showed no evidence of respiratory system
involvement at the time of symptom onset. A total of 8-
days later, the appearance of fever, respiratory symptoms, and
radiological data compatible with pneumonia was documented,
confirming the SARS-CoV-2 infection by laboratory testing in a
nasopharyngeal swab sample. The patient received intravenous
immunoglobulin treatment recovering the neurological function
without sequel. Similarly, in another case from Italy, a 71-year-
old male also developed Guillain-Barré syndrome before the
onset of any respiratory symptom (102).

These reports suggest that Guillain-Barré syndrome may be
the first manifestation of COVID-19, presenting as a para-
infectious phenomenon. This is due to the parallel occurrence
of neurological and respiratory symptoms, instead of the
postinfectious pattern observed in other infections, including
the MERS-CoV (100). Nonetheless, two new case reports of six
COVID-19 patients demonstrated that Guillain-Barré syndrome
could occur a few days after the onset of respiratory symptoms
(103, 104). Collectively, these findings obligate physicians to
continuously monitor the neurological condition of patients with
suspected or confirmed SARS-CoV-2 infection to identify any
sign of demyelinating neuropathy. Furthermore, the occurrence
of Guillain-Barré syndrome associated with COVID-19 must
be carefully distinguished from the myopathy and neuropathy
disorders of the critically ill patient.

Miller Fisher Syndrome
Miller Fisher syndrome is a rare neurological disease that
is considered a variant of the Guillain-Barré syndrome. This
disorder is characterized by the triad of abnormal muscle

coordination, paralysis of the eye muscles, and the absence
of tendon reflexes. Miller Fisher syndrome can be associated
with a history of recent viral illness; however, no evidence
exists of its association with human coronavirus infections.
Interestingly, a recent paper has reported the occurrence of
the triad of ataxia, areflexia, and ophthalmoplegia in a 50-year-
old man that presented cough, fever, anosmia, and hypogeusia
some days before the onset of the neurological symptoms.
The infection with the SARS-CoV-2 infection was confirmed
in an oropharyngeal swab sample, and blood tests showed
lymphopenia, elevated C-reactive protein levels, and anti-
GD1b-IgG antibodies. He received treatment with intravenous
immunoglobulin, which caused significant improvement in his
neurological functions. Collectively, the literature summarized
here indicates that neurological syndromes caused by aberrant
immune responses, such as Guillain-Barré and Miller Fisher
syndromes, can occur as part of the clinical spectrum of
SARS-CoV-2 infection. Despite this, the immune mechanisms
implicated in these phenomena, and the possibility of a direct
neuropathic effect driven by the virus are unknown.

Molecular mimicry has been proposed as the primary
immune alteration underlying the development of Guillain-Barré
syndrome during infections (105). This phenomenon is related
to the presence of carbohydrates in infectious agents of similar
structural characteristics as compared to carbohydrates expressed
on neuronal membrane ganglioside and galactocerebrosides. For
instance, the lipopolysaccharides of Campylobacter jejuni share
ganglioside-like epitopes with peripheral nerves (106), whereas
galactocerebroside-like structures are present in glycolipids of
Mycoplasma pneumoniae (107). These molecular similarities
trigger the production of anti-glycolipid antibodies, which
mediate autoimmune damage to peripheral nerves. Ganglioside-
or galactocerebroside-like epitopes have not been described in
SARS-CoV-2. However, the S protein of this virus possesses 22 N-
linked glycan sequons per promoter (20), that could potentially
share certain similitude with carbohydrates localized on the
surface of the host nerve cells. Future studies are required
to evaluate the serologic features of anti-glycolipid antibodies
in patients with COVID-19 to elucidate possible mechanisms
underlying the association between SARS-CoV-2 infection and
Guillain-Barré syndrome.

NEUROPSYCHIATRIC MANIFESTATIONS
OF COVID-19

Several viruses affecting humans have been implicated in the
development of psychiatric symptoms due to their neurotropism.
The immediate antecedent for the global transmission of a
respiratory pathogen was the 2009 pandemic associated with
the emergence of a novel influenza A (H1N1) virus. Several
neuropsychiatric manifestations during the outbreak of influenza
were observed among infected patients, including fear and
behavioral changes (108). Similarly, during the SARS-CoV-1, a
range of psychiatric disorders was identified, including anxiety,
depression, suicidal ideation, and hallucinations (109, 110). A
recent systematic review found a high incidence of confusion,

Frontiers in Neurology | www.frontiersin.org 8 September 2020 | Volume 11 | Article 1039

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Guadarrama-Ortiz et al. Neurological Aspects of COVID-19

depression, anxiety, memory impairment, insomnia, and steroid-
induced psychosis among patients with SARS-CoV-1 or MERS-
CoV infection (111). The mechanisms underlying psychiatric
disorders in patients with viral infections are not precise, but
they might be related to the structural and functional disruption
of the BBB mediated by circulating inflammatory cytokines
produced in response to viruses. These mediators might also
alter neuronal networks implicated in cognitive functions.
Indeed, several psychiatric illnesses, including schizophrenia,
have been proposed to result from immune-mediated pathogenic
mechanisms (112).

In this sense, it is clear that the current pandemic can
cause indirect effects on the mental health of infected and
non-infected people due to quarantine and social distancing
measures, which constitute sources of distress additional to
the daily life problems (113). At this moment, however, there
is little literature about neuropsychiatric disorders directly
associated with the infection with SARS-CoV-2. In a case
series of three patients with laboratory-confirmed COVID-
19 and no evidence of respiratory symptoms, it was found
that such individuals presented anxiety, agitation, paranoid
behavior, disorganized thinking, and auditory hallucinations
(114). Other authors have also reported that delirium can be
present in a high percentage of COVID-19 patients (111). Thus,
as mentioned before, delirium must also be considered in the
differential diagnosis of individuals with acute neuropsychiatric
manifestations associated with SARS-CoV-2 infection. Finally,
the virus could lead to long-term neuropsychiatric and cognitive
sequels. In fact, survivors of SARS-CoV-1 and MERS-CoV
have been found to present depression, anxiety, and post-
traumatic distress syndrome several months after the diagnosis
(111). Therefore, it is essential to conduct long prospective
observational studies to estimate the incidence of psychiatric
disorders in the post-illness stage of COVID-19. Future studies
must address possible links between the antecedent of SARS-
CoV-2 infection and the incidence of chronic neurodegenerative
disorders. The studies about the spectrum of neurological and
psychiatric manifestations of COVID-19 are summarized in
Table 1.

POTENTIAL THERAPEUTICS FOR THE
NEUROLOGICAL COMPLICATIONS OF
SARS-COV-2 INFECTION

Supportive measures, along with strict control and prevention of
fever, high blood pressure, elevated glucose, and seizures, may
ameliorate the neurotoxic potential of SARS-CoV-2 infection.
Currently, there are no mechanism-based therapeutics specific
for neurological complications of COVID-19. The evidence
curated in this review suggests possible pathologic processes
underlying the involvement of the CNS/PNS during SARS-
CoV-2 infection. A better understanding of these mechanisms
may reveal targets for therapeutic interventions. Direct effects
driven by the virus, such as the infection of brain blood vessels
and nerve cells, are proposed to play a role in neurologic
manifestations of COVID-19. Although studies addressing the

TABLE 1 | The spectrum of neurological manifestations of SARS-CoV-2 infection.

Clinical finding No. of

patients

Author Country References

Headache 3/39 Huang et al. China (5)

9/138 Wang et al. China (6)

8/99 Chen et al. China (70)

28/214 Mao et al. China (10)

29/112 Porta-Etessam

et al.

Spain (73)

Dizziness 13/138 Wang et al. China (6)

36/214 Mao et al. China (10)

Loss of

consciousness/

altered mental status

9/99 Chen et al. China (70)

16/214 Mao et al. China (10)

Seizures 1/214 Mao et al. China (10)

Cerebrovascular

disease

6/214 Mao et al. China (10)

3/58 Helms et al. France (84)

5 cases Oxley et al. United States (85)

Meningitis/

encephalitis

1 case report Moriguchi et al. Japan (77)

1 case report Yin et al. China (76)

1 case report Duong et al. United States (78)

1 case report Filatov et al. United States (79)

1 case report Ye et al. China (80)

Olfactory and/or taste

dysfunction

20/59 Giacomelli et al. Italy (92)

31/79 Beltrán-

Corbellini

et al.

Spain (93)

128/169 Yan et al. United States (96)

130/374 Spinato et al. Italy (95)

357/417 Lechien et al. Belgium (66)

23/214 Mao et al. China (10)

2 cases Lorenzo Villalba

et al.

Spain (94)

Peripheral

neuropathy/nerve

pain

5/214 Mao et al. China (10)

Myopathy 23/214 Mao et al. China (10)

Guillain-Barre

syndrome

1 case report Zhao et al. China (101)

1 case report Alberti et al. Italy (102)

1 case report Sedaghat et al. Iran (103)

5 cases Toscano et al. Italy (104)

Miller-Fisher syndrome1 case report Gutierrez-Ortiz

et al.

Spain (115)

Neuropsychiatric

manifestations

3 cases Ferrando et al. United States (114)

Other neurological manifestations reported in COVID-19 patients include ataxia, acute

hemorrhagic necrotizing encephalopathy, polyneuritis cranialis, and neuralgia (10, 81).

relationship between viral loads in the CNS and the severity
of such manifestations are required, reducing the number of
copies of SARS-CoV-2 in the circulation and tissues might be
a useful strategy. Remdesivir is the only antiviral drug with
demonstrated capacity to blocking SARS-CoV-2 replication in
pre-clinical trials approved for usage in humans. This antiviral
drug reduces the time of clinical recovery in patients with
COVID-19 (116). The benefits of remdesivir for patients with
neurological complications have not been evaluated. Other
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candidate agents that antagonize the activity of the host proteases
implicated in the infection process of SARS-CoV-2 may be useful
to limit the infective capacity of this virus. These include the
camostat mesylate and nafamostat mesylate, two compounds
that block the activity of TMPRSS2 (19, 117). The effects of
these drugs on the severity and recovery of neurologic sequela
associated with COVID-19 must be evaluated in future clinical
trials. Passive immunization by transfer of convalescent human
plasma may also contribute to reduce the viral loads and prevent
or reverse the development of neurological symptoms. This
assumption is supported by recent systematic reviews that found
that convalescent plasma therapy improves symptoms, reduce
viral loads, and diminishes mortality in COVID-19 patients
(118). The time at which these proposed interventions would
be more useful to counteract neurologic sequela of COVID-19
is unknown.

Immune-mediated neurotoxicity is an obvious therapeutic
target for individuals with SARS-CoV-2 infection (59). The
immune profile of patients with severe COVID-19 resembles
the cytokine release syndrome (CRS) observed after CAR-T-
cell therapy (34, 35). As aforementioned, individuals receiving
CAR-T cells who develop CRS are at risk of injury to the
nervous system. Therefore, lessons from the treatment of
patients with CAR-T-cell-therapy-associated neurotoxicity might
be applicable to COVID-19 patients. Tocilizumab, an anti-
IL-6 monoclonal antibody, is the primary treatment for CRS
(119), and is currently being used to ameliorate inflammatory
manifestations caused by SARS-CoV-2 infection (120). In
patients with severe COVID-19, tocilizumab declined cytokine
production and reduced the risk of intubation requirement (120).
However, the utility of tocilizumab for management of CRS-
associated neurotoxicity is controversial (121). Interestingly,
mouse models have revealed that the antagonist of the
receptor of IL-1β anakinra might be a better option than
tocilizumab for the treatment of CRS and neurotoxicity after
CAR-T-cell therapy (122). As a strong induction of IL-1β
has been observed in severely ill COVID-19 patients (32),
the potential use of anakinra deserves further investigation.
Monocytes and macrophages also contribute to the development
of CRS and neurotoxicity after CAR-T-cell therapy. As such,
inhibition of GM-CSF with monoclonal antibodies has shown
to reduce neuroinflammation in Phase I studies of patients
receiving CAR-T-cell therapy (123). Interestingly, in a recent
study conducted in patients with COVID-19, the GM-CSF
blockade with mavrilimumab improved clinical symptoms,
survival, and reduced intubation requirement (124). Inhibition
of GM-CSF is thus a potential therapeutic for patients with
COVID-19 that develop neurological complications. Short
courses of steroids are safe and provide some benefits for
the treatment of immune-mediated neurotoxicity. Specifically,
dexamethasone may constitute a good candidate due to
its excellent CNS penetration and beneficial effect on the
integrity of the BBB. Dexamethasone has been safely used
in patients with acute respiratory distress syndrome, reducing
the requirement of mechanical ventilation and mortality (125).
These data may support the use of dexamethasone for the
management of neurological manifestations of SARS-CoV-2

infection, although possible consequences of the dexamethasone-
induced immunosuppression need to be evaluated.

The breaching of the BBB is an important event for
the development of neurotoxicity in COVID-19 patients and
individuals under CAR-T-cell therapy. Pharmacological agents
targeting the BBB may thus be useful to treat severe neurological
manifestations of COVID-19. The sonic hedgehog (SHH)
signaling pathway is essential for the maintenance of integrity
and immune homeostasis of the BBB (126). Agonists of SHH,
such as purmorphamine, a compound that activates the SHH
by promoting smoothened protein (127), reduce BBB damage
in animal models of infection and ischemic stroke (128–130).
Although little evidence exists of the safety of purmorphamine
in humans, this agent warrants further exploration for the
management of neurotoxicity associated with severe infections,
including COVID-19.

IMPLICATIONS OF COVID-19 PANDEMIC
FOR THE NEUROLOGY FIELD

The magnitude of the current pandemic has generated concerns
among professionals from various areas of medicine. The
evidence summarized in this review shows that neurology is
an active area of medicine at the frontline of the current
pandemic. Actually, due to the increasing number of confirmed
cases around the world and the neurotropic potential of SARS-
CoV-2, it is highly likely that neurologists would have to
provide medical care to patients with COVID-19, some of
which might present neurological manifestations. The first and
most important precautionary measure that must be taken
by neurological centers around the world is to improve the
knowledge of the disease among health care professionals.
Obviously, measures of personal protection and social distancing
should be extreme in neurology and neurosurgery clinics since
it is possible that some COVID-19 patients attending with
neurological symptoms with a not yet confirmed SARS-CoV-2
infection may constitute potential foci of inadvertent contagion
for doctors, especially if they do not manifest respiratory
symptoms initially. To prevent contagions, it is important
to investigate previous contact with people with laboratory-
confirmed COVID-19 in patients attending to neurological
centers. Similarly, it is crucial to maintain a high degree of clinical
suspicion about possible SARS-CoV-2 infection in patients
presenting an acute neurological condition. Furthermore, the
continuous surveillance and intentional search for neurological
complications in patients with confirmed SARS-CoV-2 infection
are necessary and even mandatory because these measures
could allow the timely establishment of therapeutic strategies for
limiting neurologic sequelae.

Finally, the current pandemic may obligate some changes
in normal care to patients with neurologic disorders at
medical centers receiving many COVID-19 cases. Of particular
importance is the possible impact of this pandemic in the
triage and management of patients with stroke and other acute
neurological emergencies due to resource re-allocation. Also, the
interruption of activities at many neurology outpatient clinics

Frontiers in Neurology | www.frontiersin.org 10 September 2020 | Volume 11 | Article 1039

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Guadarrama-Ortiz et al. Neurological Aspects of COVID-19

may affect the management of chronic neurological conditions,
requiring increased usage of tools such as telemedicine
and e-care.

CONCLUSIONS

The clinical phenotype of COVID-19 encompasses a spectrum
of neurological manifestations of varying severity that,
besides respiratory symptoms, can cause high morbidity
and mortality rates in individuals with SARS-CoV-2 infection.
The current review constitutes a useful reference to improve
our understanding of the pathophysiological mechanisms of
SARS-CoV-2 infection and should motivate further studies about
novel strategies to mitigate the impact of the current pandemic
on the field of neurology.
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