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Objective: To investigate the effects of the apolipoprotein E gene (APOE) on the cerebral

oxygen saturation of patients after traumatic brain injury (TBI).

Methods: Clinical data of 114 patients with TBI and 54 normal people were collected.

The APOE genotypes of all subjects were determined by quantitative fluorescent

polymerase chain reaction (QF-PCR). The regional cerebral oxygen saturation (rScO2) of

TBI patients and normal people were monitored by near-infrared spectroscopy (NIRS).

Results: The mean rScO2 of patients was (55.06 ± 7.60)% in the early stage

of TBI, which was significantly lower than that of normal people (67.21 ± 7.80)%

(P < 0.05). Single-factor and multifactor logistic regression analyses showed APOEε4

was an independent risk factor that caused the early decline of rScO2 in TBI patients.

Furthermore, in the TBI group, the rScO2 of APOEε4 carriers (52.23 ± 8.02)% was

significantly lower than that of non-ε4 carriers (60.33 ± 7.12)% (P < 0.05). But in the

normal group, no significant differences in rScO2 were found between APOEε4 carriers

and non-carriers.

Conclusion: The rScO2 may be significantly decreased after TBI, and APOEε4 may be

a risk factor for decreased rScO2 in the early stage of TBI.

Keywords: TBI, APOE, regional cerebral oxygen saturation (rScO2), cerebral oxygen saturation, near-infrared

spectroscopy (NIRS)

INTRODUCTION

Traumatic brain injury (TBI) is a common disease with high disability and mortality in the
neurointensive care unit (NICU) (1–3). Cerebral blood flow often changes after TBI, which may
lead to a series of pathological responses and irreversible brain damage (4, 5). As a result, TBI
is often followed by ischemia and hypoxia, resulting in severe neurological impairment and death.
Previous studies have shown that ischemia and hypoxia are strongly associated with poor outcomes
(6, 7), and a decrease of cerebral oxygen saturation usually indicates the possibility of cerebral
ischemia and hypoxia. Therefore, cerebral oxygen saturation monitoring is an important method
to evaluate the condition of TBI patients during neurointensive care (8).
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Near-infrared spectroscopy (NIRS) is a useful method to
monitor regional cerebral oxygen saturation (rScO2) (9, 10). It
has a good correlation with the jugular bulb oxygen saturation
(SvjO2) which is considered a gold standard for brain oxygen
metabolism (11) and is helpful for timely detection and
correction of cerebral ischemia and hypoxia (12).

Apolipoprotein E gene (APOE) can affect the prognosis of TBI
patients, and APOEε4, a subtype of APOE, is considered as a
risk factor for exacerbations of TBI outcome (13–16). However,
the mechanism through which APOEε4 influences the prognosis
of TBI patients remains unclear. In previous studies, we have
found that APOEmay affect the blood-brain barrier permeability
of mice after TBI (17), but it is unknown whether it affects
cerebral blood flow and cerebral oxygen saturation. Therefore, as
soon as we discovered the phenomenon by accident in our daily
clinical work that some TBI patients with APOEε4 had lower
cerebral oxygen saturation, it aroused our interest immediately.
So we proposed the hypothesis APOEε4 might be related to
lower rScO2 as compared with APOEε2 and APOEε3 after TBI.
To verify our hypothesis, we explored the relationship between
APOE and rScO2 in the early stage of TBI in this study. The
rScO2 wasmeasured by NIRS, and theAPOE types of the subjects
were determined by quantitative fluorescent polymerase chain
reac (QF-PCR).

MATERIALS AND METHODS

Subjects
This is a retrospective study that complies with the ethical
standards formulated by the Ethics Committee of the First
Affiliated Hospital of Chongqing Medical University and has
received its approval. The review batch number is 2019 Research
Ethics (2019-026). Subjects included in this study were admitted
to the hospital from March 2018 and to May 2019. For normal
people and those patients who were conscious and cooperative,
written informed consent were obtained from both patients and
their legal guardians. For comatose patients, written informed
consent was obtained from their legal guardians.

TBI Group
Inclusion criteria were patients with clear head injury history,
admitted to hospital within 1–3 days after injury, and aged 15–
65. Exclusion criteria were: (1) having a medical history that
may affect cerebral oxygen saturation (e.g., TBI, cerebrovascular
diseases, intracranial space-occupying diseases, encephalitis,
psychosis or dementia, etc.); (2) with use of drugs that
may affect cerebral oxygen saturation; (3) suffering from the
respiratory circulatory system that seriously influences the
cerebral oxygen saturation; (4) having serious scalp injury
affecting the monitoring of cerebral oxygen saturation; (5) having
serious multiple injuries complicated by severe dysfunction
of other organs or systems (such as severe respiratory and
circulatory dysfunction, electrolyte disorders, etc.).

According to the inclusion and exclusion criteria, TBI patients
with medical histories that may affect cerebral oxygen saturation
were excluded. All TBI patients were treated according to the
guidelines of TBI (7, 18). In detail, for TBI patients, the possible

TABLE 1 | APOE genotype determination.

Signal channel Genotype Gene Loci

APOEε2 APOEε4

VIC FAM ε2/ε2 526T/T,388T/T

FAM/VIC FAM ε2/ε3 526C/T,388T/T

FAM/VIC FAM/VIC ε2/ε4 526C/T,388T/C

FAM FAM ε3/ε3 526C/C,388T/T

FAM FAM/VIC ε3/ε4 526C/C,388T/C

FAM VIC ε4/ε4 526C/C,388C/C

factors that may influence the levels of rScO2 and blood oxygen
saturation (SO2) were removed, such as cleaning and keeping
the respiratory tract unobstructed, performing endotracheal
intubation or tracheotomy, and utilizing a respirator. Meanwhile,
oxygen inhalation was given to TBI patients to keep vital signs
stable, partial pressure of oxygen (PO2), and partial pressure of
carbon dioxide (PCO2) levels within a normal range.

Normal Group
Inclusion criteria were normal people without a history of
TBI and aged 15–65. Exclusion criteria were: (1) suffering
from nervous system diseases (e.g., cerebrovascular diseases,
intracranial space-occupying lesions, encephalitis, psychosis, or
dementia, etc.); (2) having respiratory and circulatory system
diseases that severely affect cerebral oxygen saturation; (3) with
use of drugs that may affect cerebral oxygen saturation.

APOE Genotype Identification
Quantitative fluorescent polymerase chain reaction (QF-PCR)
was used to determine the APOE genotype of the subjects.
The steps were as follows: (1) 2ml venous blood was collected
from the subject to extract the DNA by using the QIAGEN
DNA extraction kit; (2) 2 ul genomic DNA of the sample
was added into the reaction tube containing 4 kinds of PCR
reaction solutions by using the human APOE gene detection kit
(Wuhan Youzhiyou Medical Technology Co., Ltd.); (3) the PCR
reaction tube was removed to the nucleic acid amplification area
for detection; and (4) determine the APOE genotype (Table 1
and Figure 1).

Monitoring of rScO2
MINR-P100 non-invasive cerebral blood oxygen monitor
(Chongqing Mingxi Medical Equipment Co., Ltd.) was used
in the present study to monitor rScO2. For TBI patients, the
monitoring of rScO2 by NIRS was performed during 1–3 days
after TBI. Meanwhile, NIRS was also used immediately to
monitor the rScO2 of patients once their condition changed.
For normal people, the monitoring of rScO2 by NIRS was
performed under a relaxed and awake condition. The forehead
skin was exposed and cleaned, and the probes were closely
attached and fixed to bilateral forehead skin. The probes were
located 1–2 cm from the upper edge of the eyebrow arch,
then rScO2 data was detected and collected. The average
monitoring time was 30min (Standard division, ±0.5) for each
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FIGURE 1 | APOE genotype of the subjects was identified as ε2/ε4. (A) APOEε2 gene locus FAM channel (+) VIC channel (+), (B) APOEε4 gene locus FAM channel

(+) VIC channel (+). Polymerase chain reaction multiple fluorescence quantitative determination (QF-PCR) was utilized in the present study.

patient, then an average rScO2 value was obtained from the
NIRS machine.

Statistical Analysis
The SPSS 25.0 statistical software was applied in the
study. Between-group differences in rScO2 value were
tested with the use of Student’s t-tests, and differences
in categorical outcomes with the use of Chi-square (χ2)
tests. Single-factor and multifactor logistic regression
analysis were applied to analyze independent risk factors
affecting the change of rScO2, and P < 0.05 was considered
statistically significant.

RESULT

A total of 176 consecutive TBI patients were collected
in this study, and 8 patients were excluded according
to the inclusion and exclusion criteria. Therefore, 168
subjects including 114 TBI patients and 54 normal people
were enrolled.

Genotype Distribution
APOE has three alleles (APOEε2, APOEε3, and APOEε4), which
encode six phenotypes including three homozygotes (ε2/2, ε3/ε3,
ε4/ε4) and three heterozygotes (ε2/ε3, ε3/ε4, ε2/ε4). The gene
distribution and allele frequency of the TBI group and the

TABLE 2 | APOE genotypes and allele frequencies in the TBI group and the

normal group.

Group Genotype (n) Allele Frequency (%)

ε2/ε2 ε2/ε3 ε2/ε4 ε3/ε3 ε3/ε4 ε4/ε4 ε2 ε3 ε4

TBI Group

(n = 114)

4 11 4 81 9 5 10.09 79.82 10.09

Normal

Group

(n = 54)

2 4 2 39 5 2 9.26 80.56 10.18

normal group in this study are consistent with Hardy-Weinberg’s
law (Table 2).

Clinical Data of Normal Group and TBI
Group
A total of 168 patients were included in this study, including
114 TBI patients and 54 normal people. The general clinical
data, such as gender, age, smoking, alcohol-drinking, and
hypertension, showed no significant difference between ε4
carriers and ε4 non-carriers in both the TBI group and normal
group (P > 0.05 by Chi-square tests for differences in the
composition of these data) (Tables 3, 4).
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TABLE 3 | Comparison of characteristics in 54 normal subjects and their

condition.

Items APOEε4

non-carriers (n = 48)

APOEε4

carriers (n = 6)

P

Sex

Male 23 4 0.669

Female 25 2

Alcohol-drinking

Yes 20 3 1.000

No 28 3

Smoking

Yes 19 1 0.395

No 29 5

TABLE 4 | Comparison of clinical data of ε4 non-carriers and ε4 carriers in TBI

patients.

Items APOE ε4

non-carriers (n = 96)

ε4 carriers

(n = 18)

P

Gender

Male 56 11 0.826

Female 40 7

Age (year)

<45 36 4 0.191

45–60 42 9

>60 18 5

Alcohol-drinking

Yes 51 10 0.850

No 45 8

Smoking

Yes 28 9 0.083

No 68 9

Hypertension

Yes 29 7 0.467

No 67 11

Diabetes

Yes 16 4 0.570

No 80 14

Hemoglobin (g/L)

<120 18 2 0.848

120–150 53 12

>150 25 4

rScO2 in TBI Group and Normal Group
Comparison of rScO2 Between TBI Group and

Normal Group
The rScO2 data were compared between the TBI group and
the normal group by t-test. We found that the mean rScO2 of
TBI patients was (55.06 ± 7.60)%, which was significantly lower
than that ((67.21 ± 7.80)%) of the normal group (P < 0.001
by Student’s t-test, Figure 2). This indicated that the rScO2 of
patients in the early stage of TBI was significantly lower than that
of normal people.

FIGURE 2 | The rScO2 (55.06 ± 7.60)% of the TBI group was significantly

lower than that of the normal group (67.21 ± 7.80)% (*P < 0.05). (A) Shows

the distribution of data in two groups, (B) indicates the mean ± standard

division.

Independent Risk Factors Affecting rScO2 in the TBI

Group
In the present study, patients with rScO2 below 55% (29 patients)
were considered having hypoxia (19), while patients with
rScO2 above 55% were considered non-hypoxia (85 patients).
Single-factor logistic regression analysis showed APOEε4 (P <

0.001), GCS (P = 0.001), Marshall CT Class (P = 0.013), and
hypertension (P = 0.002) were independent risk factors for
decreased rScO2 after TBI. Furthermore, multifactor logistic
regression analysis also showed that APOEε4 (P = 0.013, OR =

6.742, 95% CI = 1.364–30.125), GCS (P = 0.041, OR = 4.591,
95% CI = 1.587–19.512), Marshall CT Class (P = 0.007, OR =

7.140, 95% CI = 0.775–22.145) and hypertension (P = 0.023, OR
= 4.462, 95% CI = 1.228–16.239) were independent risk factors
that related to the decrease of rScO2 after TBI (Table 5).

Effects of APOE Gene Polymorphism on Early rScO2

in TBI Patients
According to Table 5, APOEε4 was an independent risk factor
that affected rScO2 of patients in the early stage of TBI. To further
study the influence of APOEε4 on rScO2, both TBI patients and
normal people were divided into ε4 non-carriers group and ε4
carriers group. Statistical analysis showed that, in the early stage
of TBI, the rScO2 [(52.23±8.02)%] of ε4 carriers was remarkably
lower than that of ε4 non-carriers [(60.33 ± 7.12)%], which was
statistically significant (P< 0.001 by Student’s t-test). Meanwhile,
the rScO2 of ε4 non-carriers and ε4 carriers in the normal group
was (68.37 ± 5.56) and (68.75 ± 5.49)% (Table 6 and Figure 3)
respectively, indicating no significant difference (P > 0.05 by
Student’s t-test).

Furthermore, in the TBI group, up to 57.89% (11 of 19) ε4
carriers had hypoxia, which was significantly higher than that
(18.95%, 18 of 95) of ε4 non-carriers (P = 0.001 by Chi-square
tests). However, in the normal group, only 11.11% (1of 9) ε4
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TABLE 5 | Independent risk factors affecting rScO2 in the TBI group by

single-factor and multi-factor logistic regression analysis.

Items Non-

Hypoxia

Hypoxia Single-factor

logistic

regression (P)

Multi-factor

logistic regression

analysis

(n = 85) (n = 29) P OR (95% CI)

Gender 0.184

Male 53 14

Female 32 15

Age (year) 0.936

<45 31 10

45–60 36 14

>60 18 5

Genotype <0.001 0.013 6.742 (1.364–

30.125)

APOEε4 carriers 7 11

APOEε4

non-carriers

78 18

Injury mechanism 0.639

Striking injury 22 7

Traffic injury 32 14

Falling or others 31 8

GCS 0.001 0.041 4.591 (1.587–

19.512)

<8 16 10

9–12 26 15

13–15 43 4

Marshall CT Class 0.013 0.007 7.140 (0.775–

22.145)

I (Normal CT) 12 1

II (cisterns

present,

shift<5mm)

20 2

III (cisterns

compressed,

shift<5mm)

11 2

IV (shift>5mm) 9 10

V (evacuated

mass)

21 6

VI

(non-evacuated

mass)

12 8

Smoking 0.075

Yes 23 13

No 62 16

Alcohol-drinking 0.835

Yes 45 15

No 40 14

Hypertension 0.002 0.023 4.462 (1.228–

16.239)

Yes 20 16

No 65 13

Diabetes 0.280

Yes 13 7

No 72 22

Hemoglobin (g/L) 0.371

<120 16 4

120–150 49 16

>150 20 9

carriers and 4.44% (2 of 45) ε4 non-carriers showed hypoxia,
which showed no statistical significance (P= 0.428 by Chi-square
tests) (Table 6).

DISCUSSION

TBI and Cerebral Oxygen Metabolism
As shown in the results, the mean rScO2 of TBI patients (55.06±
7.60)% in the early stage of TBI was significantly lower than that
of normal people (67.21 ± 7.80)% (P < 0.05), which suggested
that the rScO2 of patients significantly decreased in the early
stage of TBI. Cerebral blood flow often decreased after TBI, which
may lead to ischemia and hypoxia in brain tissue and result in
irreversible brain damage. Relevant literature reported that more
than 90% of people who died of TBI may have secondary cerebral
ischemia and hypoxia (20). Similarly, the results of this study also
showed the rScO2 of patients was significantly decreased in the
early stage of TBI as compared with normal people. Furthermore,
the rScO2 was considered abnormal when it was below 55%, and
an over 12% decrease in rScO2 usually indicated the possibility of
cerebral ischemia, which needs clinical intervention (7, 19, 21).
Therefore, timely and accurate monitoring of rScO2 is extremely
important for TBI patients in the NICU.

Presently, multiple methods including NIRS are used to
monitor and evaluate the condition of TBI patients in
the NICU, such as brain tissue oxygen tension (PbtO2),
jugular venous oxygen saturation (SvjO2), cerebral microdialysis,
thermal diffusion measurement of cerebral blood flow, and
electroencephalogram (EEG) (22). As compared with PbtO2

and SvjO2, NIRS is non-invasive, continuous, more convenient
and safe. In the NICU, the cerebral oxygen metabolism can be
monitored by NIRS continuously, which shows not only the
dynamic changes of rScO2 in real-time but also the mean rScO2

(23, 24). In our NICU, NIRS is a routine method to monitor the
rScO2 of patients, which provides important information about
cerebral oxygenmetabolism to us in real-time. Proposed by Franz
Jobsis in 1977, NIRS is based on the permeability of biological
tissues to near-infrared spectrum (wavelength 700–1,000 nm)
and different absorbed light waves for chromophores, such as
hemoglobin and reduced hemoglobin, to achieve continuous
and non-invasive monitoring of human tissue oxygenation
saturation. It has been found that the optical properties of
brain tissue will change when cerebral hemorrhage and cerebral
ischemia occur. Zweifel et al. observed that the increase of rScO2

is consistent with the relief of vasospasm and the improvement
of clinical symptoms through arterial imaging, and the arterial
spasm is significantly related to the decrease of rScO2 on the
same side, which suggested that changes of rScO2 may reflect the
severity of TBI (25). In this study, we also found the level of GCS
and Marshall CT Class were the risk factors affecting rScO2 in
the early stage of TBI, indicating that rScO2 was related to the
severity of TBI.

APOE Gene Polymorphism and Cerebral
Oxygen Saturation
Previously, we have first shown that, in the cohort of mainland
Chinese patients, APOEε4 carriers were more prone to clinical
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TABLE 6 | Mean rScO2 of ε4 Non-carriers and ε4 Carriers in TBI group and normal group.

Group rScO2 (%)* P1 Hypoxia P2

ε4 non-carriers ε4 carriers ε4 non-carriers ε4 carriers

TBI 60.33 ± 7.12 52.23 ± 8.02 <0.001 18/95 (18.95%) 11/19 (57.89%) 0.001

Normal 68.37 ± 5.56 68.75 ± 5.49 0.851 2/45 (4.44%) 1/9 (11.11%) 0.428

*Mean ± standard division.

FIGURE 3 | The rScO2 of ε4 carriers in the TBI group was significantly lower than that of ε4 non-carriers, which was statistically significant (*P < 0.05). However, the

rScO2 of ε4 carriers in the normal control group did not show a significant decrease compared with ε4 non-carriers (#P > 0.05) in (A,B).

deterioration in the acute phase after TBI as compared with
APOEε4 non-carriers (16). To further explore the influence
of APOE on TBI outcomes, a series of studies were carried
out in both the clinic and laboratory. In the present clinical
study, we used NIRS to monitor rScO2 of TBI patients in the
NICU. Through single-factor and multifactor logistic analysis,
we found APOEε4 is an independent risk factor that caused
the early decline of rScO2 in TBI patients. To further verify
this speculation, the rScO2 of APOEε4 carriers and non-carriers
both in the TBI group and the normal group were analyzed.
The results showed that the mean rScO2 of APOEε4 carriers in
TBI patients was significantly lower than that of APOEε4 non-
carriers in the early stage of TBI. Furthermore, in TBI patients,
decreased rScO2 was found in 57.89% APOEε4 carriers, but
only in 18.95% APOEε4 non-carriers, indicating the rScO2 of
patients with APOEε4 were more likely to decrease as compared
to patients without APOEε4 in the early stage of TBI.

Meanwhile, by setting normal people as control, we found that
there was no significant difference of rScO2 between APOEε4
carriers and non-carriers in the normal group [(68.75 ± 5.49)%
vs. (68.37 ± 5.56)%, P = 0.851], indicating APOEε4 leads to a
decrease of rScO2 in TBI patient but not in normal people. In
another word, the negative effect of APOEε4 on rScO2 can be
induced by TBI, which was similar to our previous results.

By monitoring the EEG of TBI patients in the NICU, we have
found thatAPOEε4 is a risk factor for the worsening EEG activity
at the acute phase (26). Additionally, we also found APOEε4
induced cerebral hypoperfusion which may directly cause
impairment of cerebral oxygen metabolism in the early phase of

aSAH (26). Furthermore, in the metabolic/hemodynamic model
(MHM) coupling neuronal activity with EEG and hemodynamic
responses, Sotero et al. (27) also confirmed that inhibitory or
excitatory activity was accompanied by reductions or increase
of oxygen consumption, cerebral blood flow (CBF), and blood
oxygenation level-dependent (BOLD) responses, indicating EEG
is very sensitive to cerebral ischemia and hypoxia. Studies on
cerebral oxygen metabolism have also suggested the EEG had
a positive correlation with cerebral oxygen saturation (28, 29),
which was consistent with our studies.

In the laboratory researches, we found APOEε4 may affect
intracellular calcium concentration, inflammatory response,
excitatory amino acid release, and neuron apoptosis after
mechanical injury (30, 31). Furthermore, we also found that by
modulating NF-κB/MMP-9 pathway (17), APOEε4 may affect
blood-brain barrier permeability which plays an important role
in the brain edema and cerebral oxygen metabolism. Therefore,
we speculate that APOEε4 may affect the cerebral oxygen
saturation of TBI patients through the above process, and then
result in worse EEG and clinical outcome eventually. Besides,
some negative effects of APOEε4 will not be reflected under
normal physiological conditions but will be induced under
pathological conditions such as TBI, affecting the prognosis of
TBI patients. However, more studies on the mechanism through
whichAPOEε4 influences the rScO2 and outcome of TBI patients
are still needed in the future.

We have to acknowledge, as a method monitoring the
condition of cerebral oxygen saturation, NIRS has several
limitations including, (1) the result of NIRS reflects the
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corresponding changes in themonitoring process, so the absolute
value of rScO2 can’t be obtained through NIRS; (2) the result of
rScO2 monitored by NIRSmay be influenced by factors including
blood pressure, blood oxygen saturation, some narcotic drugs,
etc.; (3) the interpretation of NIRS result may be influenced by
the experience of the operators. Besides, this is a small sample
and single-center clinical study, which has its limitations and
requires large-scale and multiple centers for further verification.
We will continue to carry out additional researches to explore the
possible mechanism.

CONCLUSION

NIRS is a non-invasive and convenient method to evaluate rScO2

of TBI patients in the NICU. The rScO2 may be significantly
decreased after TBI. Furthermore, APOEε4 may be a risk factor
for decreased rScO2 in the early stage of TBI, which may be
a possible basis to develop more precise and individualized
treatments for different patients.
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