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Background: Optic neuritis (ON) is a cardinal manifestation of multiple sclerosis

(MS), aquaporin-4 (AQP4)-IgG-, and myelin oligodendrocyte glycoprotein

(MOG)-IgG-associated disease. However, the prevalence of AQP4-IgG seropositivity

and MOG-IgG seropositivity in isolated ON is unclear, and studies comparing visual

outcomes and optical coherence tomography (OCT)-derived structural retinal measures

between MS-ON, AQP4-ON, and MOG-ON eyes are limited by small sample sizes.

Objectives: (1) To assess the prevalence of AQP4-IgG and MOG-IgG seropositivity

among patients presenting with isolated ON; (2) to compare visual outcomes and OCT

measures between AQP4-ON, MOG-ON, and MS-ON eyes.

Methods: In this systematic review and meta-analysis, a total of 65 eligible studies

were identified by PubMed search. Statistical analyses were performed with random

effects models.

Results: In adults with isolated ON, AQP4-IgG seroprevalence was 4% in non-Asian

and 27% in Asian populations, whereas MOG-IgG seroprevalence was 8 and 20%,

respectively. In children, AQP4-IgG seroprevalence was 0.4% in non-Asian and 15% in

Asian populations, whereas MOG-IgG seroprevalence was 47 and 31%, respectively.

AQP4-ON eyes had lower peri-papillary retinal nerve fiber layer (pRNFL; −11.7µm,

95% CI: −15.2 to −8.3µm) and macular ganglion cell + inner plexiform layer (GCIPL;

−9.0µm, 95% CI: −12.5 to −5.4µm) thicknesses compared with MS-ON eyes.

Similarly, pRNFL (−11.2µm, 95% CI: −21.5 to −0.9µm) and GCIPL (−6.1µm, 95% CI:

−10.8 to −1.3µm) thicknesses were lower in MOG-ON compared to MS-ON eyes, but

did not differ between AQP4-ON and MOG-ON eyes (pRNFL: −1.9µm, 95% CI: −9.1

to 5.4µm; GCIPL: −2.6µm, 95% CI: −8.9 to 3.8µm). Visual outcomes were worse in

AQP4-ON compared to both MOG-ON (mean logMAR difference: 0.60, 95% CI: 0.39 to

0.81) and MS-ON eyes (mean logMAR difference: 0.68, 95% CI: 0.40 to 0.96) but were

similar in MOG-ON and MS-ON eyes (mean logMAR difference: 0.04, 95% CI: −0.05

to 0.14).

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.540156
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.540156&domain=pdf&date_stamp=2020-10-08
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ess@jhmi.edu
https://doi.org/10.3389/fneur.2020.540156
https://www.frontiersin.org/articles/10.3389/fneur.2020.540156/full


Filippatou et al. AQP4-IgG/MOG-IgG Associated Optic Neuritis

Conclusions: AQP4-IgG- and MOG-IgG-associated disease are important diagnostic

considerations in adults presenting with isolated ON, especially in Asian populations.

Furthermore, MOG-IgG seroprevalence is especially high in pediatric isolated ON, in

both non-Asian and Asian populations. Despite a similar severity of GCIPL and pRNFL

thinning in AQP4-ON and MOG-ON, AQP4-ON is associated with markedly worse

visual outcomes.

Keywords: optic neuritis (ON), optical coherence tomography (OCT), neuromyelitis optica (NMO), neuromyelitis

optica spectrum disorder (NMOsd), visual acuity, retina, aquaporin-4 (AQP4) IgG, myelin oligodendrocyte

glycoprotein (MOG) IgG associated disease

INTRODUCTION

Optic neuritis (ON) is a cardinal manifestation of inflammatory
conditions of the central nervous system (CNS), including
multiple sclerosis (MS), aquaporin-4 (AQP4)-IgG-, and myelin
oligodendrocyte glycoprotein (MOG)-IgG-associated disease
(1–3). Early recognition of the underlying etiology of ON
has important therapeutic implications, given that treatment
approaches vary between these conditions, and therapies that
are efficacious in MS may exacerbate or be ineffective in AQP4-
IgG- or MOG-IgG-associated disease (4, 5). Furthermore, visual
prognosis appears to differ between these conditions, with
AQP4-IgG-associated ON (AQP4-ON) typically characterized
by worse visual outcomes in comparison to MS-associated
ON (MS-ON) and MOG-IgG-associated ON (MOG-ON) (6–
8). In patients presenting with classic neuromyelitis optica
(NMO) or acute disseminated encephalomyelitis (ADEM)-like
phenotypes, clinical suspicion for AQP4-IgG- or MOG-IgG-
associated disease is high, but diagnosis may be challenging and
delayed in limited forms, such as isolated ON. Notably, the
reported prevalence of AQP4-IgG and MOG-IgG seropositivity
among patients presenting with isolated ON varies significantly
between studies, and the available literature suggests that
seropositivity for these antibodies is more common in non-white
populations with ON (9, 10).

Optic nerve injury results in thinning of the retinal nerve fiber
layer (RNFL), which is mainly composed of the unmyelinated
axons of the retinal ganglion cells (RGCs), and the ganglion cell
layer, which contains the cell bodies of the RGCs (1). Optical
coherence tomography (OCT) is an imaging technique that
utilizes near-infrared light to obtain high-resolution images of
the retina in vivo and enables the quantitative evaluation of
individual retinal layers, allowing assessment of the integrity of
the RGC axons [peri-papillary RNFL thickness (pRNFL)] and
RGC cell bodies [composite thickness of the macular ganglion
cell + inner plexiform layer (GCIPL)] (11, 12). OCT studies
have generally demonstrated increased severity of pRNFL and
GCIPL thinning following AQP4-ON orMOG-ON, as compared
to MS-ON (8). However, given the rarity of AQP4-IgG-

Abbreviations: AQP4, aquaporin 4; MOG, myelin oligodendrocyte glycoprotein;
MS, multiple sclerosis; ON, optic neuritis; pRNFL, peripapillary nerve fiber
layer; GCIPL, ganglion cell/inner plexiform layer; VA, visual acuity; OCT, optical
coherence tomography; logMAR, logarithm of the minimum angle of resolution;
N, number of eyes; SD, standard deviation; CI, confidence interval.

and MOG-IgG-associated disease, OCT studies have examined
relatively small numbers of participants, not permitting an in-
depth characterization and comparison of the retinal neuro-
axonal injury that occurs in these conditions.

The primary objectives of this systematic review and meta-
analysis were as follows: (1) To determine the seroprevalence
of AQP4-IgG and MOG-IgG among patients presenting with
isolated ON, and to explore variation in prevalence by
geographical location/ethnicity. (2) To assess pRNFL and
GCIPL thicknesses in AQP4-ON and MOG-ON eyes (including
comparisons to MS-ON and healthy controls), and to investigate
whether distinct patterns of retinal injury are associated with
AQP4-ON or MOG-ON. (3) To compare visual outcomes
between AQP4-ON, MOG-ON, and MS-ON eyes.

METHODS

The present systematic review and meta-analysis is reported
according to the Preferred Reporting Items of Systematic Reviews
and Meta-Analyses (PRISMA) statement and the Meta-analysis
of Observational Studies in Epidemiology (MOOSE) guidelines
(13, 14).

Search Strategy and Study Selection
The PubMed electronic database was queried using search
algorithms (available in detail in Supplementary Table 1)
including the following keywords: “mog,” “myelin
oligodendrocyte glycoprotein,” “nmo,” “neuromyelitis optica,”
“aquaporin 4,” “aqp4,” “aquaporin-4,” “optic neuritis,” “optical
coherence tomography,” “retina,” “nerve fiber layer,” “ganglion
cell,” “vision,” “visual outcome,” and “disability.” Databases were
last accessed on October 29, 2019.

All retrieved studies were imported into the Covidence
platform for study eligibility screening and inclusion. The
studies were screened independently by two reviewers (AGF
and LM), and in cases of disagreement, another reviewer (ESS)
was consulted.

For our first study objective (assessing the prevalence of
AQP4-IgG and MOG-IgG seropositivity in isolated ON), we
identified all studies that reported the frequency of AQP4-
IgG and/or MOG-IgG seropositivity in a cohort of patients
presenting with an initial episode of isolated (monosymptomatic)
unilateral or bilateral ON. Study exclusion criteria included
the following: (1) studies that did not report the number of
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patients with pre-existing diagnoses of MS or neuromyelitis
optica spectrum disorder (NMOSD) or with prior episodes of
neurological dysfunction, (2) n< 10 participants, and (3) unclear
criteria for participant inclusion or inclusion only of selected
high-risk patient subgroups (e.g., bilateral or recurrent ON,
normal brain MRI). As secondary analyses, we also identified
studies reporting the prevalence of AQP4-IgG and MOG-IgG
seropositivity in patients presenting with recurrent isolated
(unilateral or bilateral) ON or bilateral simultaneous/rapidly
sequential ON.

For our second study objective (comparison of OCTmeasures
between AQP4-ON, MOG-ON, and MS-ON eyes), we identified
studies that reported OCT measures from patients with AQP4-
ON and/or MOG-ON and included data permitting at least one
of the following comparisons: (1) AQP4-ON vs. healthy control
(HC) eyes, (2) MOG-ON vs. HC eyes, (3) AQP4-ON vs. MOG-
ON eyes, (4) AQP4-ON vs. MS-ON eyes, and (5) MOG-ON
vs. MS-ON eyes. Comparison of MS-ON vs HC eyes was not
performed as this was not the focus of our study and this has been
reported in a recent large meta-analysis (15).

Similarly, for our third study objective (comparison of visual
outcomes in AQP4-ON, MOG-ON, and MS-ON eyes), studies
were included that reported visual outcomes in AQP4-ON and/or
MOG-ON and included data permitting at least one of the
following comparisons: (1) AQP4-ON vs. MOG-ON, (2) AQP4-
ON vs. MS-ON, and (3) MOG-ON vs. MS-ON.

For our analyses of OCT and visual outcomes, we only
included articles with assessments of ON eyes performed at least
3 months after an episode of acute ON. For studies that collected
the data necessary for our analyses but did not report the results
in a manner appropriate for our purposes (e.g., not separating
eyes by ON history, reporting combined estimates for AQP4-IgG
seropositive and seronegative NMOSD patients), corresponding
authors were contacted and were asked to provide additional
information. If this information was not made available, these
studies were excluded. Additional unpublished data from the
cohorts included in the manuscripts was occasionally provided,
at the discretion of the corresponding authors. For the OCT
component, studies were also excluded if they did not utilize
spectral-domain OCT.

When two ormore similar studies (fulfilling inclusion criteria)
were reported from the same institution or author with unclear
participant overlap between studies, authors were contacted to
provide clarification.When unable to obtain this information, the
publication with the highest number of participants was included
in the analysis. Case reports, reviews, or studies published in a
non-English language were excluded. Reference lists of relevant
review articles were also examined to identify studies that may
have been missed during the initial database search.

Data Extraction and Outcomes
Two investigators (AGF and LM) independently conducted
the data extraction, and any discrepancies were resolved
by consensus.

For assessment of the prevalence of AQP4-IgG and MOG-
IgG in isolated ON, we recorded the total number of patients
presenting with an isolated ON in each study (excluding patients

with a prior neurological history), and the number of patients
that tested positive for AQP4-IgG or MOG-IgG.

The main outcome measures for OCT analyses were the
thicknesses (µm) of the pRNFL and the macular GCIPL [or
macular ganglion cell layer complex (GCC), which additionally
includes the macular RNFL] of eyes with a history of ON, and
this information was recorded for each group as the mean ±

SD. Additional data on quadrantal pRNFL thicknesses were
collected, if available. For studies that reported OCT measures as
median/interquartile range and the corresponding authors had
not provided the mean± SD, a normal distribution was assumed
to calculate the SD. If macular OCT measures were reported
as volumes, they were converted to thicknesses according to
the formula: Thickness = Volume/Surface Area. For macular
measures, the region of interest varied between studies (e.g.,
perifoveal area of 3 or 6mm in diameter, including or excluding
the foveal subfield); thus, the surface area was calculated
separately for each study, depending on the utilized protocol.
While not a primary focus of this study, we also recorded (when
available) the prevalence of microcystoid macular pathology
(MMP; also referred to as microcystic macular edema in the
literature) in AQP4-ON and MOG-ON eyes (16–18).

For visual outcomes, the main outcome measures were the
logarithm of the minimum angle of resolution (logMAR) in eyes
with a history of ON and the percentage of affected eyes with
high-contrast visual acuity (VA) worse than 20/200.

For MOG-IgG serostatus, only studies that reported using
cell-based assays (CBAs) for testing were included, whereas
for AQP4-IgG serostatus, studies utilized a variety of assays,
including CBAs, indirect tissue immunofluorescence, enzyme-
linked immunosorbent assay (ELISA) or fluorescence-based
immunoprecipitation assay (FIPA).

Data were extracted from cross-sectional cohorts and from
a single time point from longitudinal studies (typically the
baseline assessment).

Data Synthesis and Statistical Analysis
For all study objectives, studies of pediatric participants were
examined separately.

We estimated the pooled AQP4-IgG and MOG-IgG
prevalence in isolated ON separately for Asian and non-Asian
populations, given the divergence of prevalence between studies
in these populations, and evidence supporting higher prevalence
of NMOSD in Asian populations (10). Given the relatively low
prevalence of these disorders in some of the included studies
(estimates close to 0%), we utilized the variance-stabilizing
double arcsine transformation method (19).

OCT measures were handled as continuous variables. Results
are presented as mean differences between the groups of interest.
OCTmeasures from different spectral-domain OCT devices were
analyzed together, similar to a prior large meta-analysis in MS,
given that, at a group level, it appears that data are comparable
across devices and segmentation algorithms (15, 20). In terms
of macular OCT measures, the GCIPL and GCC were analyzed
together, given that the GCIPL accounts for the majority of the
thickness of the GCC. Additionally, we estimated the pooled
prevalence of MMP in AQP4-ON and MOG-ON eyes.
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TABLE 1 | Characteristics of studies included in the meta-analysis for our first study objective (assessing the prevalence of AQP4-IgG and MOG-IgG seropositivity in isolated ON).

Patients with monosymptomatic ON

Study Time period Study

setting

Adult/pediatric Age Female sex Race AQP4-IgG

assay

MOG-IgG

assay

Bilateral ON Important

considerations

Carnero

Contentti

et al. (39)

2009–2015 Argentina Adult Mean (±SD): 31.6

(±11.1) in AQP4-IgG

positive 38.4 (±12.9) in

AQP4-IgG negative

47% in AQP4-IgG

positive 80% in

AQP4-IgG

negative

– Tissue-based

indirect IF

– 32% –

Chen et al.

(40)

1988–1991 Multicenter–

USA

Adult (18–45) Mean (±SD): 32.8

(±6.9)

76% 85%

Caucasian

CBA CBA 0% Recruited only

patients with

unilateral ON

Chen et al.

(41)

2015–2016 China Pediatric Range: 5–18.

Mean (±SD):

11.8 (±3.3) in

MOG-ON; 16.9 (±0.8)

in AQP4-ON

70% – CBA CBA 63% –

Cobo-Calvo

et al. (22)

2014–2016 France Mixed adult

pediatric

Median (range): 16.8

(1.7–64.9) for MOG-ON

52% in MOG-IgG

positive

93%

Caucasian in

MOG-IgG

positive

CBA CBA 22% in

MOG-IgG

positive

–

Dale et al. (23) – Australia Pediatric Median (range): 8

(1.3–15.3)

51% – ELISA CBA 67% –

Deschamps

et al. (42)

2014–2016 France Mixed adult

pediatric

Range: 16–57 75% – CBA CBA 10% MOG AQP4 only

tested if patient

did not meet

diagnostic criteria

for MS

Ducloyer

et al. (24)

2017–2018 France Adult Mean (±SD): 35.6

(±13.8)

68% – – CBA 15% –

Hacohen

et al. (25)

2009–2011 UK France Pediatric Range: 1.3–15.8 57% – CBA – –

Jarius et al.

(26)

– Multicenter–

Europe

Mixed adult

pediatric

Median (range): 34

(14–72)

75% 96%

Caucasian

FIPA – 22% –

Kim et al. (28) 2013–2014 South Korea Adult Mean (±SD): 38.7

(±11.5) in AQP4-IgG

positive 42.3 (±14.7) in

AQP4-IgG negative

67% Asian CBA – 7% –

Kim et al. (27) 2007–2016 South Korea Adult Mean (±SD): 43 (±13) 63% – CBA – 21% –

Liu et al. (29) 2014–2016 China Adult Range: 18–72 80% · CBA CBA 20% –

Petzold et al.

(30)

1995–2007 UK Mixed adult

pediatric

Range: 15–71 67% – CBA CBA – –

Rostasy et al.

(31)

2004–2010 Germany

Austria

Pediatric Median (range): 13

(2–18)

73% – CBA CBA 8% –

(Continued)
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TABLE 1 | Continued

Patients with monosymptomatic ON

Study Time period Study

setting

Adult/pediatric Age Female sex Race AQP4-IgG

assay

MOG-IgG

assay

Bilateral ON Important

considerations

Soelberg et

al. (32)

2014–2016 Denmark Mixed adult

pediatric

Median (range): 38

(16–66)

69% 100%

Caucasian

CBA CBA 8% –

Song et al.

(33)

2016–2017 China Pediatric Mean (±SD): 10.6

(±4.4)

56% – CBA CBA 52% –

Storoni et al.

(34)

2009–2010 UK Adult – – 61%

Caucasian

14% African

15% Asian

10% Other

FIPA – – –

Waters et al.

(35)

2004–2017 Canada Pediatric Median (IQR): 10.8

(6.2–13.9)

51% – CBA CBA – –

Zhao et al.

(36)

2015–2016 China Adult Mean (±SD): 31.3

(±5.3) for MOG-ON

40.7 (±15.3) for

AQP4-ON 31.3 (±13.2)

for other

71% – CBA CBA 25% –

Zhou et al.

(38)

2013–2014 China Mixed adult

pediatric

Range: 13–73 66% – CBA – 26% –

Zhou et al.

(37)

2009–2010 China Adult Median (range): 36.8

(18–73)

66% – CBA – 24% –

Patients with recurrent isolated ON

Benoilid et al.

(43)

2010–2011 France Adult Mean (±SD): 33.1

(±14.8)

73% 97%

Caucasian

CBA – 33% –

de Seze et al.

(44)

2005–2007 France Adult Mean (±SD): 35.4

(±11.9)

92% – Tissue-based

indirect IF

– – –

Jarius et al.

(26)

– Multicenter -

Europe

Mixed adult

pediatric

Median (range): 34

(14–72)

75% 96%

Caucasian

FIPA – 22%

Jitprapaikulsan

et al. (45)

2010–2017 USA Mixed adult

pediatric

Range: 12–72 72% 83%

Caucasian

CBA CBA 22% –

Li et al. (46) 2008–2013 China Adult Mean (±SD): 39.0

(±15.4)

75% – CBA – 23% –

Martinez-

Hernandez et

al. (47)

2005–2014 Spain Mixed adult

pediatric

Median (range): 28

(5–65)

71% – CBA – 45% Only recruited

patients with

normal or

nonspecific MRI

findings

AQP4, aquaporin 4; MOG, myelin oligodendrocyte glycoprotein; MS, multiple sclerosis; ON, optic neuritis; CBA, cell-based assay; FIPA, Fluorescence based immunoprecipitation assay; IF, immunofluorescence; ELISA, enzyme-linked

immunosorbent assay; MRI, magnetic resonance imaging; IQR, interquartile range; SD, standard deviation.
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FIGURE 1 | Forest plot of the prevalence of AQP4-IgG seropositivity in adults with monosymptomatic isolated ON.

For studies reporting VA measurements in logMAR
format, logMAR was handled as a continuous variable
and results are presented as mean differences between
groups of interest. For studies reporting visual outcomes as
percentage of eyes with VA worse than 20/200, we calculated
the relative risk of this unfavorable visual outcome (i.e.,
VA < 20/200). Studies reporting visual outcomes in any
other formats were included in the qualitative, but not the
quantitative, synthesis.

All analyses were performed with random effects models,
since the heterogeneity was expected to be high due to varying
OCT devices, differing scan protocols and macular regions
of interest, and differences in the demographic and clinical
characteristics of the participants across studies. To minimize
the impact of the study heterogeneity, we did not compare
OCT measures or visual outcomes across studies; rather, we
estimated between-group differences in each study and then
performed a pooled analysis of these estimated differences.
We assessed for heterogeneity between the included studies
using the I2 estimate. I2 > 75% was considered to indicate
significant heterogeneity.

Statistical analyses were performed with Stata version 16
(StataCorp, College Station, TX). For the meta-analysis of
prevalence, the Stata package “metaprop” was used (21).

RESULTS

Prevalence of AQP4-IgG and MOG-IgG
Seropositivity in Monosymptomatic ON
Study Selection and Study Characteristics
A PubMed search identified 1,187 records. Of these, 197 articles
were selected and assessed for eligibility at the full-text level.
After careful evaluation, 21 studies, comprising 1,876 patients,
were included that met the inclusion criteria (22–42). The
detailed flow chart is presented in Supplementary Figure 1.
For our secondary analysis in patients with recurrent ON, six
studies, comprising 510 patients, were included that met our
inclusion criteria (26, 43–47). There was an insufficient number
of studies/participants to analyze the prevalence of AQP4-IgG or
MOG-IgG seropositivity among patients presenting with isolated
bilateral simultaneous or sequential ON. The included studies are
summarized in Table 1.
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AQP4-IgG Prevalence in Monosymptomatic ON
The pooled prevalence of AQP4-IgG seropositivity in adults with
isolated ON (Figure 1) was 4% in non-Asian cohorts (95% CI:
0 to 11%) and 27% in Asian cohorts (95% CI: 19 to 36%).
In pediatric cohorts (Figure 2), similar to adults, AQP4-IgG
seroprevalence was again higher in Asian cohorts (15%; 95% CI:
9 to 23%), whereas in the three available studies of non-Asian
populations, the prevalence of AQP4-IgG seropositivity was 0.4%
(95% CI: 0 to 3.2%).

MOG-IgG Prevalence in Monosymptomatic ON
The prevalence ofMOG-IgG seropositivity in adults with isolated
ON (Figure 3) was 8% in non-Asian cohorts (95% CI: 4 to
13%) and 20% in Asian cohorts (95% CI: 16 to 24%). In
pediatric cohorts (Figure 4), in contrast to adults, MOG-IgG
seroprevalence was higher in non-Asian populations (47%; 95%
CI: 36 to 58%) relative to Asian populations (31%; 95% CI: 22 to
40%), but both had higher prevalence compared to adults.

AQP4-IgG and MOG-IgG Prevalence in Recurrent

Isolated ON
In non-Asian cohorts, the prevalence of AQP4-IgG seropositivity
in patients with recurrent isolated ON (Figure 5) was 16% (95%
CI: 12 to 21%). Only one study reported the frequency of AQP4-
IgG seropositivity in Asian patients with recurrent ON (41%; 95%
CI: 31 to 51%). For MOG-IgG, we were able to identify only
two studies fulfilling the inclusion criteria; based on these studies

(Figure 6), the prevalence of MOG-IgG seropositivity in non-
Asian cohorts with recurrent ON was 15% (95% CI: 11 to 19%).
No eligible pediatric studies were identified.

OCT Findings in AQP4-ON and MOG-ON
Study Selection and Study Characteristics
A PubMed search identified 351 records. Of these, 98 articles
were selected and assessed for eligibility at the full-text level.
After careful evaluation, 31 studies were included that met the
inclusion criteria (8, 29, 33, 36, 41, 48–73). The detailed flow
chart is presented in Supplementary Figure 2. The included
studies, comprising a total of 814 HC eyes, 611 AQP4-ON eyes,
237 MOG-ON eyes, and 361 MS-ON eyes, are summarized in
Table 2.

OCT Measures in Adult ON
As expected, pRNFL and GCIPL thicknesses were lower
in AQP4-ON and MOG-ON eyes, as compared with HC
eyes (Supplementary Figures 3, 4). The pooled mean pRNFL
difference for AQP4-ON eyes was −38.0µm (95% CI: −46.5
to −29.6µm) and −35.7µm (95% CI: −43.1 to −28.4µm)
for MOG-ON eyes. The pooled mean GCIPL difference was
−25.8µm (95% CI:−29.1 to−22.5µm) for AQP4-ON eyes and
−26.7µm (95% CI:−32.6 to−20.8µm) for MOG-ON eyes.

AQP4-ON eyes had lower pRNFL (−11.7µm; 95% CI: −15.2
to −8.3µm) and GCIPL (−9.0µm; 95% CI: −12.5 to −5.4µm)
thicknesses compared with MS-ON (Figure 7), but there were
no differences in these OCT measures between AQP4-ON and

FIGURE 2 | Forest plot of the prevalence of AQP4-IgG seropositivity in children with monosymptomatic isolated ON.
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FIGURE 3 | Forest plot of the prevalence of MOG-IgG seropositivity in adults with monosymptomatic isolated ON.

MOG-ON eyes (pRNFL: −1.9µm; 95% CI: −9.1 to 5.4µm;
GCIPL: −2.6µm; 95% CI: −8.9 to 3.8µm; Figure 8). Similar
to AQP4-ON, when comparing MOG-ON to MS-ON eyes
(Figure 9), we found that MOG-ON eyes had lower pRNFL
(−11.2µm; 95% CI: −21.5 to −0.9µm) and GCIPL thicknesses
(−6.1µm; 95% CI−10.8 to−1.3 µm).

When examining quadrantal pRNFL thicknesses, we
did not observe any differences between AQP4-ON and
MOG-ON (Supplementary Figure 5). However, AQP4-
ON was associated with lower nasal, inferior, and superior
quadrant pRNFL thicknesses compared with MS-ON
(Supplementary Figure 6), but no difference was observed
in temporal pRNFL thickness between AQP4-ON and MS-
ON eyes (−1.4µm, 95% CI: −5.9 to 3.1µm). All quadrantal
pRNFL thicknesses were lower in MOG-ON compared to
MS-ON eyes (Supplementary Figure 7), but these findings
did not achieve statistical significance, likely due to the small
sample size.

The prevalence of MMP in ON eyes was reported in a small
number of studies. The pooled prevalence of MMP was 15% in
AQP4-ON eyes (95% CI: 7 to 24%; n = 7 studies) and 21% in
MOG-ON eyes (95% CI: 11 to 32%; n = 6 studies), which is
higher compared to the reported prevalence of MMP in MS-ON
eyes (∼6%) (16, 17).

OCT Measures in Pediatric ON
We were able to identify four studies reporting OCT
findings in pediatric ON, and OCT measures could be
pooled for three studies (33, 41, 67). Similar to adults,
pRNFL thickness did not differ between pediatric AQP4-
ON and MOG-ON eyes (7.4µm, 95% CI: −17.1 to
32.0µm; Supplementary Figure 8). Further comparisons
between groups of interest were not possible based on the
available data.

Visual Outcomes in AQP4-ON and
MOG-ON
Study Selection and Study Characteristics
A PubMed search identified 624 records. Of these, 202 articles
were selected and assessed for eligibility at the full-text level.
After careful evaluation, 35 studies were included that met the
inclusion criteria (8, 29, 30, 33, 36, 39, 41, 45, 47, 48, 51–
54, 57, 59, 63, 65, 66, 68, 69, 71, 72, 74–85). The detailed flow
chart is presented in Supplementary Figure 9.

The included studies with their baseline characteristics are
summarized in Table 3. In our quantitative synthesis, we
included 26 studies comprising 747 AQP4-ON eyes, 426 MOG-
ON eyes, and 524 MS-ON eyes.
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FIGURE 4 | Forest plot of the prevalence of MOG-IgG seropositivity in children with monosymptomatic isolated ON.

Visual Outcomes in Adult ON
AQP4-ON eyes had worse high contrast VA when compared to
both MOG-ON (mean logMAR difference: 0.60, 95% CI: 0.39 to
0.81) and MS-ON (mean logMAR difference: 0.68, 95% CI: 0.40
to 0.96; Figures 10, 11). Visual outcomes did not differ between
MOG-ON and MS-ON (mean logMAR difference: 0.04, 95% CI:
−0.05 to 0.14; Figure 12). Moreover, the risk of a poor visual
outcome (VA ≤ 20/200) was higher for AQP4-ON compared
to MOG-ON [relative risk (RR): 5.39, 95% CI: 2.95 to 9.86;
Figure 10] and compared to MS-ON (RR: 3.76, 95% CI: 1.71 to
8.25; Figure 11).

Nine studies were excluded from our quantitative synthesis,
since the visual outcomes were not presented in a format that
was consistent with the other studies. The findings of the studies
are presented in Supplementary Table 2. Importantly, all these
studies reported that visual outcomes were markedly better in
MOG-ON eyes, as compared with AQP4-ON eyes, in line with
the results from the quantitative synthesis.

Visual Outcomes in Pediatric ON
We were able to identify three studies reporting visual outcomes
in pediatric ON associated with seropositivity for AQP4-IgG and
MOG-IgG (33, 41, 63). Similar to adults, the risk of a poor visual
outcome (VA ≤ 20/200) was higher for AQP4-ON compared to
MOG-ON (RR: 20.11, 95%CI: 4.79 to 84.34), but the sample sizes
of the studies were rather small (Supplementary Figure 10).

DISCUSSION

The present systematic review and meta-analysis revealed
variable patterns of seroprevalence of AQP4-IgG and MOG-IgG
among patients presenting with isolated ON, with overall higher
seroprevalence of both antibodies among Asian populations.
Moreover, MOG-IgG-associated ON accounted for a large
proportion of pediatric isolated ON (over a third of cases), and
high MOG-IgG seroprevalence was noted across the pediatric
populations included in our study. Furthermore, despite a similar
severity of GCIPL and pRNFL thinning in AQP4-ON and
MOG-ON, AQP4-ONwas associated with markedly worse visual
outcomes, compared to both MOG-ON and MS-ON.

Overall, our results support the idea that AQP4-IgG- and
MOG-IgG-associated disorders are not rare entities in Asian
populations and are important diagnostic considerations during
the initial evaluation of ON in these populations. Notably,
cohorts from China comprised the vast majority of the Asian
cohorts in our study. However, relatively high seroprevalence of
AQP4-IgG and/or MOG-IgG in ON has been reported in several
studies (that did not however fully fulfill our inclusion criteria)
from Japan, Thailand, Malaysia, and additional Chinese centers
(74, 77, 86–89). Importantly, while population-based studies
support the notion that Eastern Asian populations have a higher
prevalence of NMOSD compared to Caucasian populations,
MOG-IgG-associated disease does not appear to exhibit a
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FIGURE 5 | Forest plot of the prevalence of AQP4-IgG seropositivity in adults with recurrent isolated ON.

FIGURE 6 | Forest plot of the prevalence of MOG-IgG seropositivity in adults with recurrent isolated ON.

significant racial preponderance based on data from existing
hospital-based studies (90). This suggests that our findings of
high AQP4-IgG seroprevalence in ON in Asian populations are
likely accounted for by both a higher prevalence of NMOSD and
a lower prevalence of MS, whereas for MOG-IgG seroprevalence,
the latter may be a more important factor. A noteworthy
exception to our finding of overall lower seroprevalence of
AQP4-IgG seropositivity in non-Asian populations was the
study by Carnero-Contentti et al. (39), which enrolled patients
from Buenos Aires, Argentina, and reported an AQP4-IgG
seroprevalence of 30% among patients with ON (39). This
finding is unexpected, given evidence supporting that the
relative frequency of NMO vs. MS in Buenos Aires is low,
and similar to that observed in Caucasian populations (91).

Notably, this study did not report the ethnic/racial composition
of the cohort, and it is possible that referral bias or other
factors, which we were unable to detect on our review of the
manuscript, contributed to this observation. While the frequency
of AQP4-IgG and MOG-IgG seropositivity in ON appears to be
lower in non-Asian populations, it remains crucial to consider
these entities, especially in patients with atypical characteristics
including recurrent or bilateral ON, longitudinally extensive
optic nerve lesions, peri-neuritis (MOG-IgG), chiasmal/optic
tract involvement (AQP4-IgG >> MOG-IgG), and/or poor
visual recovery (AQP4-IgG) (6, 92). As expected, we found
markedly higher seroprevalence of AQP4-IgG and MOG-IgG in
recurrent isolated ON; however, the number of available studies
was small, and mainly limited to non-Asian adult populations.
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TABLE 2 | Characteristics of studies included in the meta-analysis for our second study objective (comparison of OCT measures between AQP4-ON, MOG-ON, and MS-ON eyes).

Study Time period Study

setting

Adult/

pediatric

Age Female sex Race Device Protocol/ROI MMP Macular

measure

Akaishi et al.

(48–50)

2005–2013 Japan Mixed adult

pediatric

Mean (±SD): 37.5

(±18.2) in MOG-ON 30

(±9.9) in MS-ON 44.2

(±14.5) in AQP4-ON

75% – Topcon (OCT-2000) – – GCC

Chen et al. (41) 2015–2016 China Pediatric Range: 5–18 58% – Zeiss (Cirrus) Optic disc cube

200x200 Macular

cube 512x128

– n/a

Deschamps et

al. (51)

2011–2016 France Mixed adult

pediatric

Range: 16–63 94% in AQP4-ON

56% in MOG-ON

– Heidelberg Engineering

(Spectralis)

– – n/a

Eyre et al. (63) – UK Ireland Pediatric Median: 8.5 in

AQP4-ON MOG-ON 13

in MS-ON

62% – Heidelberg Engineering

(Spectralis)

– – n/a

Havla et al. (52) 2013–2015 Germany

France

Adult Mean (±SD): 41.4

(±14.0) in MOG-ON

39.9± 12.5 in MS-ON

48.3± 8.9 in AQP4-ON

41.5± 13.8 in HC

46% in MOG-

ON/MS-ON/HC

79% in AQP4-ON

– Heidelberg Engineering

(Spectralis) Optic disc: 12◦ 3.4

mm 50ART

Macula: 25 vertical

scans ROI: 3mm

ETDRS

perifoveal rim

13% of AQP4-ON

eyes 46% of

MOG-ON eyes 0%

of MS-ON eyes

GCIPL

Hokari et al. (53) 2000–2013 Japan Adult Median (IQR): 47

(39–62) in AQP4-ON

38 (30–47) in MS-ON

97% – Optovue (RTVue-100) – – GCC

Hu et al. (64) 2013–2015 China Mixed adult

pediatric

Mean (±SD): 26.0

(±10.2) in AQP4-ON

28.3 (±3.2) in HC

– Zeiss (Cirrus) Optic disc cube

200 x 200 Macular

cube 512 x 128

– GCIPL

Lim et al. (65) 1993–2012 Korea Adult Mean (±SD): 30.9

(±11.2) in AQP4-ON

33.7 (±14.8) in MS-ON

73% – – – – n/a

Liu et al. (29) 2014–2016 China Adult Range: 18–72 80% – Zeiss (Cirrus) – – n/a

Martinez-

Lapiscina et al.

(66)

– Spain Adult Median (IQR): 34.9

[19.4–43.8] in

AQP4-ON 54.4

[53.4–58.1] in

MOG-ON

66% in AQP4-ON

50% in MOG-ON

- Heidelberg Engineering

(Spectralis)

Optic disc: 12◦

100 ART 1536A

scans per B scan).

Macula: 20 × 20

degree raster scan

25 horizontal

scans (ART?9;

512A scans per B

scan)

0% of AQP4-ON

0% of MOG-ON

GCC

Mekhasingharak

et al. (54)

2015–2016 Thailand Adult Range: 19–76 92% – Zeiss (Cirrus) Optic disc cube

200x200 Macular

cube 512x128

– GCIPL

Narayan et al.

(67)

2009–2018 USA Pediatric Mean (±SD): 14.1

(±4.6) in AQP4-ON 18

(±4.9) in MOG-ON

86% – Zeiss (Cirrus) Optic disc cube

200x200 Macular

cube 512x128

– n/a
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TABLE 2 | Continued

Study Time period Study

setting

Adult/

pediatric

Age Female sex Race Device Protocol/ROI MMP Macular

measure

Oertel et al.

(55)

– Germany

UK

Adult Mean (±SD): 47.3

(±14.4) in AQP4-ON

43.1 (±9.8) in HC

84% in AQP4-ON

79% in HC

76%

Caucasian

10% African-

Caribbean

8% Asian 2%

Middle

Eastern 2%

mixed 2%

unknown

Heidelberg Engineering

(Spectralis)

Multiple protocols

ROI: 3mm cylinder

– GCIPL

Oertel et al.

(56)

– Germany

France

Mixed adult

pediatric

Mean (±SD): 43.1

(±9.8) in HC 40.7

(±13.) in MOG-ON

79% in HC 62.5%

in MOG-ON

– Heidelberg Engineering

(Spectralis)

Multiple protocols

ROI: 3mm cylinder

30% of MOG-ON

eyes

GCIPL

Outteryck

et al. (68)

– France Adult Mean (±SD): 44.1

(±9.7) in AQP4-ON

39.7 (±11.3) in MS-ON

38.1 (±12.2) in HC

78% in AQP4-ON

69% in MS-ON

68% in HC

– Heidelberg Engineering

(Spectralis)

ROI: 3mm ETDRS

perifoveal rim

15% of AQP4-ON

eyes 3% of

MS-ON eyes

GCIPL

Pache et al.

(57)

– Germany

Denmark

Adult Mean (±SD): 44.0

(±15.2) in MOG-ON

43.2 (±13.9) in

AQP4-ON

97% 100%

Caucasian

Heidelberg Engineering

(Spectralis) Optic disc: 12◦

768 or 1536

A-scans

16≤ART≤100.

Macula: 25◦ × 30◦

61 vertical or

horizontal

B-scans 768

A-scans per

B-scan 9 ≤ ART

≤ 15

19% of AQP4-ON

eyes 22% of

MOG-ON eyes

GCIPL

Pandit et al.

(73)

– India Mixed adult

pediatric

Median (range): 21

(6–53)

43% South Asian Heidelberg Engineering

(Spectralis) Optic disc: 12◦ 1

536 A-scans ART

100). Macula: 15◦

x 15◦ 25 vertical:

B-scans ART 100

1024 A-scans

per B-scan

21% of MOG-ON

eyes

GCC

Peng et al.

(58)

– China
Mixed adult

pediatric

Excluded

patients with

AQP4-IgG

seropositive

NMO (only

isolated AQP4-

ON)

Range: 17–66 74% – Heidelberg Engineering

(Spectralis)

ROI: 6mm ETDRS

rim excluding

central 1mm

6% of AQP4-ON

eyes

GCIPL

(Continued)
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TABLE 2 | Continued

Study Time period Study

setting

Adult/

pediatric

Age Female sex Race Device Protocol/ROI MMP Macular

measure

Shen et al.

(69, 71)

2015–2017 Australia Adult Mean (±SD): 48.2

(±16.1) in

AQP4-ON/MOG-ON,

43.6 (±10.1) in

MS-ON, 39.6 (±14) in

HC

68% – Heidelberg Engineering

(Spectralis) Optic disc:

3.50mm

Macula: radial

star-like scan ROI:

Central macular

region (2mm

diameter), 6 slices

of the

star-like scan.

– GCIPL

Song et al.

(33)

2016–2017 China Pediatric Mean (±SD): 10.6

(±4.4)

56% – Zeiss (Cirrus) – – GCIPL

Sotirchos

et al. (8)

2008–2018 USA Adult Mean (±SD): 43.7

(±12.7) in AQP4-ON,

43.8 (±13.3) in

MOG-ON, 41.5 (±12.6)

in MS, 41.5 (±14.1) in

HC

78% 61%

Caucasian,

34% African

American, 5%

Other

Zeiss (Cirrus) Optic disc cube

200 x 200,

Macular cube 512

x 128

19% of AQP4-ON

eyes, 11% of

MOG-ON eyes,

6% of MS-ON

eyes

GCIPL

Srikajon et al.

(72)

2009–2015 Thailand Adult Mean (±SD): 36.7

(±14.0) in AQP4, 34.4

(±13.5) in MS

94% – Zeiss (Cirrus) – – n/a

Stiebel-Kalish

et al. (59)

2003–2015 Israel Mixed adult

and pediatric

Mean (±SD): 46.3

(±17.6) in AQP4-ON,

41.7 (±9.4) in

MOG-ON

69% – Zeiss (Cirrus) Optic disc cube

200x200

– n/a

Tian et al. (60) 2013–2014 China Adult

*Included only

1 eye

per patient

Mean (±SD): 30.5

(±16.7) in MS-ON,

40.5 (±13.6) in

AQP4-ON, 32.0

(±13.8) in HC

66% – Optovue (RTVue-100) Optic disc: 4

circular scans

(1,024

A-scans/scan),

3.45mm

– n/a

vonGlehn

et al. (70)

2011–2012 Brazil Mixed adult

and pediatric

Range: 14–76 85% – Heidelberg Engineering

(Spectralis)

- – n/a

Zhang et al.

(61)

2012–2017 China Mixed adult

and pediatric

Range: 15–74 74% - Zeiss (Cirrus) Optic disc:

3.45mm

- n/a

Zhao et al.

(36)

2015–2016 China Mixed adult

and pediatric

Mean (±SD):

31.3 (±15.3) in

MOG-ON,

40.7 (±15.3) in

AQP4-ON

78% - Optovue (RTVue-100) Optic disc:

3.45mm, 4 circular

scans (1024

A-scans/scan)

- GCIPL
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A similar finding was expected in bilateral ON; however, there
was an insufficient number of studies/participants eligible to
systematically study this. Finally, in children with isolated ON,
our results show that MOG-IgG is very commonly detected,
across both Asian and non-Asian populations. However, AQP4-
IgG seropositivity was exceedingly rare among non-Asian
pediatric populations, but relatively common (15%) in Asian
pediatric cohorts. The causes of these ethnic and age disparities
are poorly understood, but it is likely that there is a genetic
component, although environmental factors may also play a
role (93, 94).

An important consideration is the fact that the included
studies recruited very few patients of African ancestry. This is
a critical point since NMOSD occurs frequently in individuals
of African ancestry, and African-Americans/Europeans with
NMOSD are more likely to experience severe attacks with
poor recovery and appear to have higher mortality (95–
97). Nevertheless, the frequency of AQP4-IgG and MOG-IgG
seropositivity in isolated ON in these populations could not be
investigated in the present meta-analysis.

Furthermore, we have found that AQP4-ON and MOG-
ON eyes exhibited similarly severely decreased pRNFL and
macular GCIPL thicknesses after ON, which was greater than that
observed in MS-ON eyes. When examining quadrantal pRNFL
thicknesses, we were unable to identify any quadrantal patterns
of retinal injury that were specific to MOG-ON. However, when
comparing AQP4-ON and MS-ON, AQP4-ON was associated
with decreased inferior, superior, and nasal pRNFL thickness,
but the temporal pRNFL did not appear to differ between the
two groups. This finding suggests that the temporal pRNFL is
relatively preserved in AQP4-ON or disproportionally affected in
MS-ON. Temporal preponderance of pRNFL damage in MS-ON
compared to AQP4-ONwas also reported in a study by Schneider
et al. (98), which, however, did not fulfill inclusion criteria for
our meta-analysis. The pathophysiology underlying the observed
differences is not clear; however, the arcuate fibers (located in
the superior and inferior quadrants) are commonly injured in
vascular optic neuropathies (99). This pattern of quadrantal
thinning may suggest that vascular compromise is a mechanism
of tissue injury in AQP4-ON. Notably, retinal vascular alterations
have been reported in vivo in NMO and pathologic studies have
identified prominent vascular fibrosis and hyalinization in NMO
lesions (99, 100).

Interestingly, and in line with our prior observations (8),
we found that, despite a similar severity of pRNFL and GCIPL
thinning in AQP4-ON and MOG-ON, visual outcomes clearly
diverged between these two entities, with MOG-ON eyes
having relatively preserved visual acuity, whereas AQP4-ON
eyes experienced markedly worse visual outcomes compared to
both MOG-ON and MS-ON. The biological underpinnings of
this observation remain unclear. AQP4-IgG-associated disease
is recognized as an autoimmune astrocytopathy with secondary
demyelination (101). In pathologic studies, a spectrum of changes
in astrocytes has been described, including astrocyte necrosis and
dystrophic astrocytic profiles (101). AQP4 is highly expressed
in the retina, predominantly in retinal astrocytes and Müller
glial cells; it is therefore conceivable that AQP4-IgG may cause
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FIGURE 7 | Forest plot of the mean difference in global pRNFL and GCIPL thickness between AQP4-ON and MS-ON. The SD-OCT devices used are indicated as H

(Spectralis, Heidelberg Engineering; Heidelberg, Germany), O (RTVue, Optovue Inc; Fremont, CA, USA), and T (3D OCT-2000, Topcon Corporation; Tokyo, Japan), Z

(Cirrus, Carl Zeiss Meditec; Dublin, CA, USA).

direct retinal injury. Interestingly, foveal thinning and altered
foveal morphology have been reported in AQP4-IgG seropositive
eyes without a history of ON, suggesting that subclinical
direct retinal involvement may occur in AQP4-IgG-associated
disease (102–104). In a pathological study of human retinas,
AQP4-IgG seropositivity was associated with loss of AQP4
immunoreactivity on Müller cells, while intravitreal AQP4-
IgG injection in mice resulted in reduced AQP4 expression
by Müller cells, reactive retinal gliosis and loss of RGCs (53,
105). Notably, AQP4 deletion renders Müller cells incapable
of handling osmotic stress and may induce an inflammatory
response in the retina (106). These findings suggest that the
poor visual prognosis in AQP4-ONmay be partially mediated by
alterations in the dynamics of astrocyte and Müller cell function.

MMP has also been proposed as a factor that is associated with
poor outcomes following ON, since MMP eyes have worse visual
outcomes and more severe GCIPL and pRNFL thinning (16–
18). However, when accounting for GCIPL thickness and ON
etiology, MMP does not appear to be independently associated
with visual acuity, suggesting that MMP may represent a marker
of optic neuropathy severity, rather than a direct contributor to
visual dysfunction following ON (8). The prevalence of MMP
was reported by a small number of studies included in our
meta-analysis but appeared to be overall similar in AQP4-ON
(15%) and MOG-ON (21%) and higher in both compared to the
reported prevalence inMS-ON (∼6%). Further work is needed to
clarify the pathoetiology of MMP and whether MMP is causally
associated with poor visual outcomes after ON.
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FIGURE 8 | Forest plot of the mean difference in global pRNFL and GCIPL thickness between AQP4-ON and MOG-ON. The SD-OCT devices used are indicated as

H (Spectralis, Heidelberg Engineering; Heidelberg, Germany), O (RTVue, Optovue Inc; Fremont, CA, USA), and T (3D OCT-2000, Topcon Corporation; Tokyo, Japan),

Z (Cirrus, Carl Zeiss Meditec; Dublin, CA, USA).

Furthermore, we observed an impressive discordance between
structural and functional outcomes in MOG-ON; even though
MOG-ON was associated with severe pRNFL and GCIPL
thinning, high-contrast visual acuity was remarkably preserved
and did not differ from MS-ON. Contrary to AQP4, MOG is
not expressed in the human retina; therefore, the observed inner
retinal thinning is expected to be due to secondary change due
to retrograde degeneration and not primary retinal pathology.
The pathophysiology underlying the observed structure-function
mismatch in MOG-ON is unclear; however, an important
consideration is that, with OCT, we are not able to visualize
the histological composition of each retinal layer. Therefore, it
is conceivable that the relative contributions of the RGCs and
their axons to GCIPL and RNFL thicknesses differ between

AQP4-ON and MOG-ON, despite a similar severity of retinal
layer thinning. In fact, the glial content of the RNFL is
considerable and microglia constitute a significant component
of the inner plexiform layer, whose thickness is measured as
a composite with the ganglion cell layer as GCIPL (107, 108).
Given the markedly different pathogenic mechanisms in these
disorders, it is conceivable that the observed discrepanciesmay be
related to differences in glial activation and migration, resulting
in differing compositions of the pRNFL and the GCIPL and,
consequently, different functional capacity of the retina. Another
important consideration is that there is a floor effect present for
OCT measures, and a single AQP4-ON or MOG-ON attack can
lead to marked pRNFL and GCIPL atrophy, while subsequent
attacks may not lead to appreciable changes in inner retinal layer
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FIGURE 9 | Forest plot of the mean difference in global pRNFL and GCIPL thickness between MOG-ON and MS-ON. The SD-OCT devices used are indicated as H

(Spectralis, Heidelberg Engineering; Heidelberg, Germany), O (RTVue, Optovue Inc; Fremont, CA, USA), and T (3D OCT-2000, Topcon Corporation; Tokyo, Japan), Z

(Cirrus, Carl Zeiss Meditec; Dublin, CA, USA).

thicknesses, despite worsening visual function (109). Analyses
comparing visual and structural measures between groups after a
single attack of ONwould be useful to address this issue; however,
the vast majority of studies included in our meta-analysis did
not report OCT or visual acuity separately for patients with
single and recurrent ON. However, since both AQP4-ON and
MOG-ON frequently relapse, we do not expect that this may have
significantly affected our findings when comparing outcomes in
AQP4-ON vs. MOG-ON, although this may have influenced
comparisons with MS-ON (6).

In this meta-analysis, we also attempted to examine OCT
findings and visual outcomes in pediatric ON associated
with AQP4-IgG and MOG-IgG seropositivity. However, this
population has not been studied extensively and a systematic
review of the literature revealed only four studies, with small
numbers of participants (33, 41, 63, 67). OCT measures
could be pooled for three of these, two of which included
Asian children (33, 41). Therefore, our meta-analysis is clearly
underpowered to study characteristics of pediatric AQP4-
ON and MOG-ON. Nevertheless, the OCT findings and
visual outcomes appear to be similar to those observed
in adults. The inclusion of pediatric cases should be an

important consideration for future studies, especially since
MOG-IgG antibodies are commonly detected in children
with ON.

Despite the strengths of the present report, several limitations
must be acknowledged. Firstly, the majority of the included
prevalence studies were performed at tertiary academic referral
centers, with clinical expertise in neuro-ophthalmology.
Therefore, it is conceivable that the patients who were recruited
in these studies are not a representative sample of patients
presenting with isolated ON and are likely enriched for cases
with increased severity or atypical characteristics. Thus, it is
possible that our results may overestimate the true prevalence
rate of these disorders in the general population due to referral
bias. This issue should also be considered when interpreting
the OCT and visual outcomes, since patients with more severe
attacks of ON and poor recovery are potentially more likely to
be referred to a tertiary center for further management, and mild
cases with favorable outcomes may be underrepresented in the
existing literature. Furthermore, between-study heterogeneity
was considerable in almost all pooled analyses of OCT measures
or visual outcomes. A potential source of heterogeneity in
analyses of OCT measures is the fact that the included studies
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TABLE 3 | Characteristics of studies included in the meta-analysis for our third study objective (comparison of visual outcomes in AQP4-ON, MOG-ON and MS-ON eyes).

References Time period Study

setting

Adult/pediatric Age Female sex Race Visual

outcome–considerations

Akaishi et al.

(48, 74, 75)

2005–2013 Japan Mixed adult and

pediatric

Mean (±SD): 37.5 (±18.2) in

MOG-ON, 30 (±9.9) in

MS-ON, 44.2 (±14.5) in

AQP4-ON

75% - Outcome at eye level

Chen et al. (41) 2015–2016 China Pediatric Range: 5–18 58% - Outcome at eye level

Cobo-Calvo et al. (76) 2014–2017 France Adult Median (range): 36.5

(19–76.8) in MOG-ON, 39.3

(18.2–85) in AQP4-ON

69% 86%

Caucasian

Outcome at patient level

Contentti et al. (39) 2009–2015 Argentina Adult Mean (±SD): 31.6 (±11.1) in

AQP4-ON, 38.4 (±12.9) in

other

70% - Outcome at patient level

Deschamps et al. (51) 2011–2016 France Mixed adult and

pediatric

Range: 16–63 94% in AQP4-ON,

56% in MOG-ON

- Outcome at eye level

Eyre et al. (63) - UK, Ireland Pediatric Median: 8.5 in AQP4-ON

and MOG-ON, 13 in MS-ON

62% - Outcome at eye level

Falcão-Gonçalves et al.

(83)

2004–2016 Brazil Adult Median (IQR): 31.6

(22.6–37.4) in AQP4-ON,

27.2 (23.3–37.45) in MS-ON

80% - Outcome at eye level

Havla et al. (52) 2013–2015 Germany,

France

Adult Mean (±SD): 41.4 (±14.0) in

MOG-ON, 39.9 (±12.5) in

MS-ON, 48.3 (±8.9) in

AQP4-ON, 41.5 (±13.8) in

HC

46% in MOG-ON/

MS-ON/ HC, 79%

in AQP4-ON

- Outcome at eye level

Hokari et al. (53) 2000–2013 Japan Adult Median (IQR): 47 (39–62) in

AQP4-ON, 38 (30–47) in

MS-ON

97% - Outcome for number of attacks,

not eyes

Ishikawa et al. (77) 2015–2018 Japan Mixed adult and

pediatric

Range: 3–87 84% in AQP4-ON,

51% in MOG-ON

- Outcome at patient level

Jitprapaikulsan et al.

(45)

2000–2017 USA Mixed adult and

pediatric

Range: 5–72 72% 83%

Caucasian

Outcome at patient level

Kim et al. (78) - South Korea Adult Mean (±SD): 39.4 (±12.0) in

AQP4-ON, 35.2 (±10.0) in

MS-ON

78% - Outcome at eye level

Kitley et al. (79) 2010–2013 UK Adult Mean (±SD): 32.3 (±17.1) in

MOG-ON, 44.9 (±14.8) in

AQP4

44% in MOG-ON,

90% in AQP4-ON

66%

Caucasian

Outcome at patient level

Lim et al. (65) 1993–2012 Korea Adult Mean (±SD): 30.9 (±11.2) in

AQP4-ON, 33.7 (±14.8) in

MS-ON

73% - Outcome at eye level

Liu et al. (29) 2014–2016 China Adult Range: 18–72 80% - Outcome at eye level

Martinez-Lapiscina

et al. (66)

- Spain Adult Median (IQR): 34.9

[19.4–43.8] in AQP4-ON,

54.4 [53.4–58.1] in

MOG-ON

66% in AQP4-ON,

50% in MOG-ON

- Outcome at eye level
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TABLE 3 | Continued

References Time period Study

setting

Adult/pediatric Age Female sex Race Visual

outcome–considerations

Martinez-Hernandez

et al. (47)

2005–2014 Spain Mixed adult and

pediatric

Range: 5–65 71% - Outcome at patient level

Mekhasingharak et al.

(54)

2015–2016 Thailand Adult Range: 19–76 92% - Outcome at eye level

Merle et al. (84) - Martinique Adult Mean (±SD): 47.5 (±10.5) in

AQP4-ON, 44.5 (±10.1) in

MS-ON

87% - Outcome at eye level

Outteryck et al. (68) - France Adult Mean (±SD): 44.1 (±9.7) in

AQP4-ON, 39.7 (±11.3) in

MS-ON, 38.1 (±12.2) in HC

78% in AQP4-ON,

69% in MS-ON,

68% in HC

- Outcome at eye level

Pache et al. (57) - Germany,

Denmark

Adult Mean (±SD): 44.0 (±15.2) in

MOG-ON, 43.2 (±13.9) in

AQP4-ON

97% 100%

Caucasian

Outcome at eye level

Peng et al. (85) 2014–2015 China Adult Mean (±SD): 33 (±12),

Range: 30–51

74% - Outcome at eye level

Petzold et al. (30) 1995–2007 UK Mixed adult and

pediatric

Range: 15–71 67% - Outcome at eye level

Piccolo et al. (80) 2008–2014 UK Mixed adult and

pediatric

Range: 3–59 78% 67%

Caucasian

Outcome at patient level

Ramanathan et al. (81) 2001–2014 USA,

Australia

Mixed adult and

pediatric

Median (range): 15 (3–58) 82% - Outcome at patient level

Sepulveda et al. (82) 2013–2015 Spain Mixed adult and

pediatric

Median (range): 39 (10–77) 87% 86%

Caucasian

Outcome at patient level

Shen et al. (69) and

You et al. (71)

2015–2017 Australia Adult Mean (±SD): 48.2 (±16.1) in

AQP4-ON/MOG-ON, 43.6

(±10.1) in MS-ON

68% - Outcome at eye level

Song et al. (33) 2016–2017 China Pediatric Mean (±SD): 10.6 (±4.4) 56% - Outcome at eye level

Sotirchos et al. (8) 2008–2018 USA Adult Mean (±SD): 43.7 (±12.7) in

AQP4-ON, 43.8 (±13.3) in

MOG-ON, 41.5 (±12.6) in

MS-ON, 41.5 ±14.1 in HC

78% 61%

Caucasian,

34%

African

American,

5% Other

Outcome at eye level

Srikajon et al. (72) 2009–2015 Thailand Adult Mean (±SD): 36.7 (±14.0) in

AQP4-ON, 34.4 (±13.5) in

MS-ON

94% - Outcome at eye level

Stiebel-Kalish et al. (59) 2003–2015 Israel Mixed adult and

pediatric

Mean (±SD): 46.3 (±17.6) in

AQP4-ON, 41.7 (±9.4) in

MOG-ON

69% - Outcome at eye level

Zhao et al. (36) 2015–2016 China Mixed adult and

pediatric

Mean (±SD): 31.3 (±15.3) in

MOG-ON, 40.7 (±15.3) in

AQP4-ON

78% - Outcome at eye level
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FIGURE 10 | Forest plot of the mean difference in logMAR (high-contrast visual acuity) between AQP4-ON and MOG-ON; forest plot of the relative risk of a poor

visual outcome (VA worse than 20/200) in AQP4-ON vs MOG-ON.

utilized a variety of spectral-domain OCT devices, as well as
scanning and segmentation protocols. Moreover, participants’
demographics and clinical characteristics varied considerably
between studies and it is likely that there is variability in the
phenotype, disease course, and outcomes among different racial
or age groups. To minimize the impact of these differences
on our results, we did not compare OCT measures or visual
outcomes across studies; rather, we estimated the differences in
retinal layer thicknesses or logMAR between groups that were
included in the same study and performed a pooled analysis
of these estimated differences. In analyses of OCT measures

and visual outcomes, we were also notably unable to account
for the number of ON attacks, since some studies included
patients with a single event, while others recruited patients
with multiple ON episodes. It is expected that the number of
ON episodes has an impact on OCT findings and final visual
acuity, especially since recurrent ON in common in cases of
AQP4-ON and MOG-ON; this should be a consideration in
future studies. Additionally, even though we attempted to
analyze findings in adult ON separately from pediatric ON,
some studies (noted in Tables 1–3) recruited mixed adult
and pediatric or adolescent populations; this is an important
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FIGURE 11 | Forest plot of the mean difference in logMAR (high-contrast visual acuity) between AQP4-ON and MS-ON; forest plot of the relative risk of a poor visual

outcome (VA worse than 20/200) in AQP4-ON vs MS-ON.

consideration when attempting to draw conclusions regarding
potential differences in the characteristics of these disease entities
between these age groups. Finally, AQP4-IgG serostatus was
determined using a variety of assays, including ELISA in some
studies, which is known to have an inferior performance in
terms of sensitivity and specificity compared to CBAs (110, 111).
This is a relevant point, since the use of an assay with sub-
optimal diagnostic accuracy may have led to misclassification
of patients. Nevertheless, the majority of studies included
in our meta-analysis (including 79% of studies assessing the
prevalence of AQP4-IgG in ON) utilized CBA to determine
the AQP4-IgG serostatus of their participants. MOG-IgG
serostatus was determined exclusively using CBAs with full-
length human MOG, given that MOG-IgG detected by ELISA
or Western blot lacks disease specificity. Notably, commonly

used MOG-IgG CBAs demonstrate overall good agreement
for high-positive and negative samples, although agreement
is lower for borderline results, and this is another factor that
could potentially influence diagnostic accuracy in the included
studies (112).

CONCLUSIONS

Our systematic review and meta-analysis provides a
comprehensive overview of the epidemiology and structural
and functional outcomes in ON associated with AQP4-IgG and
MOG-IgG seropositivity. Our findings support the idea that
AQP4-IgG- and MOG-IgG-related disease are more common
causes of ON in Asian vs. non-Asian populations and that
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FIGURE 12 | Forest plot of the mean difference in logMAR (high-contrast visual acuity) between MOG-ON and MS-ON.

MOG-IgG seroprevalence is especially high in pediatric ON, and
we provide estimates of seroprevalence in these groups. We have
also shown that MOG-ON and AQP4-ON are associated with
similar severity of retinal thinning; however, visual outcomes
appear to be markedly worse in AQP4-ON. Future studies
should seek to investigate the pathoetiology of these findings, as
well as to provide insights regarding optimal acute and chronic
treatment strategies for these disorders.
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