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Background: Persistent post-traumatic symptoms (PPS) after traumatic brain injury

(TBI) can lead to significant chronic functional impairment. Pseudocontinuous arterial spin

labeling (pCASL) has been used in multiple studies to explore changes in cerebral blood

flow (CBF) that may result in acute and chronic TBI, and is a promising neuroimaging

modality for assessing response to therapies.

Methods: Twenty-four subjects with chronic mild-moderate TBI (mmTBI) were enrolled

in a pilot study of 10 days of computerized executive function training combined with

active or sham anodal transcranial direct current stimulation (tDCS) for treatment of

cognitive PPS. Behavioral surveys, neuropsychological testing, and magnetic resonance

imaging (MRI) with pCASL sequences to assess global and regional CBF were obtained

before and after the training protocol.

Results: Robust improvements in depression, anxiety, complex attention, and executive

function were seen in both active and sham groups between the baseline and

post-treatment visits. Global CBF decreased over time, with differences in regional CBF

noted in the right inferior frontal gyrus (IFG). Active stimulation was associated with static

or increased CBF in the right IFG, whereas sham was associated with reduced CBF.

Neuropsychological performance and behavioral symptoms were not associated with

changes in CBF.

Discussion: The current study suggests a complex picture between mmTBI, cerebral

perfusion, and recovery. Changes in CBF may result from physiologic effect of the

intervention, compensatory neural mechanisms, or confounding factors. Limitations

include a small sample size and heterogenous injury sample, but these findings suggest

promising directions for future studies of cognitive training paradigms in mmTBI.
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BACKGROUND

A significant minority of patients with mild traumatic brain
injury (mTBI), up to 33%, go on to experience functional
impairment a year later (1, 2). These persistent post-traumatic
symptoms (PPS) can range from the somatic (dizziness,
headaches, light sensitivity) to the cognitive (difficulty focusing,
impairedmemory) and emotional realms (depression, irritability,
anxiety) (3). Historically these were thought to be due to
poor coping with stress, or malingering (4, 5). However,
advanced imaging has contributed significantly to our current
understanding of the acute and chronic sequelae of mTBI, and
expanded the possible etiologies of PPS to not only include
psychological phenomena but also neurological factors (6–10).

Candidate mechanisms of PPS include microscopic axonal
shearing and microhemorrhage (11); functional connectivity
abnormalities (7); and ongoing neuroinflammation (12). One of
the more promising hypotheses receiving significant scientific
attention is that of abnormal cerebral perfusion, in which
traumatic injury causes impaired neurovascular coupling and
mismatch between neuronal metabolic demand and cerebral
blood flow (CBF) (13–16). There is ample grounding for
this pathophysiology in animal models and in severe TBI
in humans (17–19), however, noninvasively detecting changes
in CBF in more mild injuries has proved more challenging
(20). Arterial spin-labeling (ASL) and pseudocontinuous ASL
(pCASL) magnetic resonance imaging sequences are techniques
for measuring cerebral perfusion that have gained traction
recently. It has permitted quantification of both global and
regional CBF without use of injected or inhaled agents (21, 22),
based on the premise of magnetically labeling arterial blood
protons prior to their flowing into a region of interest to act as
an endogenous “tracer.” (21)

Data frommultiple studies suggest that mTBI results in a state
of abnormal cerebral perfusion compared to healthy controls.
The most frequent finding in studies utilizing ASL/pCASL
across multiple age ranges (pediatric vs. adult), injury severities
(mild/moderate/severe), timeframes (acute vs. chronic), and
injury contexts is that of decreased perfusion. Wang et al. in 2016
demonstrated frontotemporal decreased CBF following subacute
sport-related concussion in 18 young adult football players
compared to 19 age-matched nonconcussed controls (23), as well
as in a pediatric sample in 2015 (24). Clark et al. determined
that reduced CBF was associated with decreased white matter
integrity in 37 Veterans with chronic mild-moderate TBI (25).
As severity of injury increases from mild to moderate and severe,
there is a greater likelihood of decreased perfusion being present
(26, 27). Newsome et al. found reduced CBF in right non-
prefrontal regions in seven adolescents with chronic moderate-
severe TBI, while Kim et al. in 2010 examined 27 chronic
moderate-severe TBI patients and 22 matched controls with ASL
and found globally decreased CBF in the TBI group, along with
regional CBF reductions in posterior cingulate, thalamic, and
frontal areas (26). This group also used resting and task-based
ASL sequences to detect occipital and temporal hypoperfusion in
2012 in a cohort of 21 moderate-severe TBI patients (27). CBF
remains abnormal into the chronic phase (28–32), and has been

associated cognitive performance (27), symptom severity (32)
and recovery (30).

However, several studies have found increased CBF in acute
mTBI, especially in symptomatic cases. For instance, Doshi et al.
in 2015 using ASL after acute mTBI found that in 14 patients
with acute mTBI regional CBF was increased compared to 18
healthy controls (33). Similarly, Stephens et al. in 2018 found
CBF increased in the left dorsal cingulate gyrus and left insula
in 15 teenage athletes with subacute sport-related concussion
compared with 15 age-matched controls (34). Finally, Barlow
found that CBF was higher than controls in patients with
symptomatic pediatric concussion, but lower than controls in
asymptomatic pediatric concussion (30). It is apparent that a
consistent pattern of change in CBF due to injury or recovery as
measured by pCASL still needs to be established.

Cerebral perfusion and neurovascular coupling changes
related to treatment may also be evaluated using pCASL
sequences. Transcranial direct current stimulation (tDCS) (35),
a type of noninvasive neuromodulation, has been shown in
both animal and human studies to modulate CBF, depending
on the parameters of the stimulation (excitatory vs. inhibitory,
respectively) (36–40). Its promise as a treatment for cognitive
deficits in mmTBI has been observed in multiple studies (41–44),
and in a single small trial changes in perfusion tomography
were seen following tDCS in a moderate-severe TBI population
(45). However, no studies have measured cerebral perfusion
with pCASL as a correlate of improvement with training or
tDCS in mild or moderate injury (mmTBI). Therefore, this
study aims to identify whether anodal tDCS applied to the left
dorsolateral prefrontal cortex paired with a cognitive training
protocol in mmTBI patients results in changes in CBF on
pCASL sequences. It is hypothesized that anodal tDCS will result
in regional perfusion increases, as well as improvements
in cognitive performance and symptoms, compared to
sham tDCS.

MATERIALS AND METHODS

Subjects with either mild or moderate TBI within the past
15 years were recruited via local brain injury clinics, brain
injury advocacy centers, community flyers, and medical record
search. Forty subjects aged 18–59 who had experienced mild
or moderate TBI between 3 months and 15 years prior to
study entry with persistent cognitive symptoms were screened
and enrolled in the study. Subjects were randomized to receive
either active or sham tDCS paired with cognitive training to
improve executive functions and mood. Each patient underwent
pre- and post-intervention testing, which included demographic
assessment and medical history, TBI severity assessment,
screening for contraindications to tDCS, postconcussive and
behavioral symptom assessment, and neuropsychological testing.
Of the forty subjects enrolled, a subset of twenty-four
completed baseline and post-treatment magnetic resonance
imaging scans, including pCASL. The UNM Health Science
Center Institutional Review Board reviewed and approved
this study.
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Inclusion Criteria
Subjects qualified for enrollment in the study if they met the
following inclusion criteria: (1) age 18–59; (2) have suffered a
mild or moderate TBI [“mild” defined as having had loss of
consciousness (LOC) <30min, received a Glasgow coma scale
(GCS) score of between 13 and 15 upon ED evaluation (if
available), and experienced <24 h of post-traumatic amnesia
(PTA); moderate defined as LOC between 30min and 24 h, GCS
between 9 and 12, and PTA between 24 h and 7 days]; (3) were
injured between 3 months and 15 years ago; (4) report at least 1
out of 4 cognitive symptoms on the Neurobehavioral Symptom
Inventory (NSI). Potential participants were excluded from
participation in this study for: (1) a history of other neurological
disease, seizures, or psychosis; (2) history of recent (within 2
years) substance/alcohol dependence; (3) any discontinuity in
skull electrical conductivity; (4) any implanted electrical device
(e.g., pacemaker); (5) medical admission or hospital visit within
the last 3 weeks; (6) change in any psychotropic medications in
the previous 2 months; (7) inability to complete the protocol;
(8) appointment of a legal representative, as assessed via direct
inquiry of the subject or a designated trusted other; (10)
inability to provide informed consent; (11) pregnancy, current
incarceration, or limited English proficiency.

Demographic Data
Basic demographic data regarding the subject were recorded,
including age, sex, years of education, handedness, use of
common stimulants such as caffeine, and brain injury severity.
Subjects were asked to list any significant medical diagnoses, and
any current medications, including psychotropics.

Behavioral and Cognitive Battery
All neuropsychological testing was administered in the UNM
Center for Brain Recovery and Repair Clinical Core by
trained study personnel under direct supervision of clinical
neuropsychologists. The pre- and post-intervention assessments
consisted of the following tests: the Neurobehavioral Symptom
Inventory (NSI) (3); the Hamilton Depression Rating Scale
(HAM-D) (46); the Beck Depression Inventory-II (BDI) (47);
the Posttraumatic Stress Disorder Checklist-Civilian version
(PCL-C) (48); the Patient-Reported Outcomes Measurement
Information System-29 (PROMIS) (49); the Glasgow Outcome
Scale-Extended (GOS-E) (50); the Frontal Systems Behavior
Scale (FrSBe) (51); Wechsler Adult Intelligence Scale-Fourth
Edition (WAIS-IV): Digit Span and Coding subtests (52); the
Test of Premorbid Functioning (TOPF) (53); the Hopkins Verbal
Learning Test-Revised (HVLT-R) (54); and Test of Memory
Malingering (TOMM) (55). These tests were selected due to
their inclusion in the NINDS Common Data Elements for
TBI, as well as their history of validation in TBI populations.
The NIH Executive Abilities: Measures and Instruments for
Neurobehavioral Evaluation and Research (EXAMINER) battery
was utilized as a more specific assessment of executive functions
(56), with subscores of fluency, cognitive control, and working
memory, as well as an overall executive composite score. Testing
was performed at study entry (Baseline Visit), immediately after
completion of the intervention (Post-Treatment visit), and 1

month after study entry (Followup Visit). To mitigate fatigue,
testing was performed over 2 days, and regular breaks were
offered, with total time of testing∼5 h.

Intervention
Participants were randomly assigned to either active or sham
tDCS combined with executive function training tasks. A
NeuroConn tDCS device (neuroCare Group GmbH, Munich,
Germany) was used to administer tDCS. Sessions consisted of
30min stimulation for 10 consecutive weekdays. The anodal
electrode was placed on the left dorsolateral prefrontal cortex
(DLPFC; F3 position, International 10–20 system) utilizing the
Beam F3 targeting method (57) and the cathode was placed
on the right upper arm just below the deltoid muscle to
isolate anodal cerebral effects (58, 59). Neuroconn 5 cm2 rubber
electrodes covered in 0.9% saline-soaked sponges were applied
using elastic bandage. Current for the active condition was
applied at 2.0mA for a total delivered charge of 60 mA-min
and a current density of 0.08 mA/cm2, consistent with guidelines
describing acceptable safety and blinding at this current density
(60). Active stimulation current was ramped up over 1min at
initiation, maintained for 30min, and ramped down over 1min
at termination. Sham stimulation was delivered with an initial
ramping up of current to 2.0mA for 1min, then ramping down
and remaining at 0.02mA for the duration of the session, to
permit impedance monitoring. Double-blinding of subjects and
study staff was accomplished using pre-determined stimulation
codes entered into the stimulator. During tDCS application,
subjects were assessed in terms of tingling, itching, mood,
energy, pain, and wakefulness levels using visual analog 10-point
scales. Sensation checks were performed every 10min during the
stimulation session.

All participants were administered a set of executive functions
training tasks for 30min during stimulation sessions. Each
training session consisted of 10min of the AX Continuous
Performance Task (AX-CPT), a test of response inhibition,
proactive and reactive cognitive control (61), and 20min of a
modified multimodal (visual/auditory) N-back working memory
task (MMWM) (62), counterbalanced over the 10 sessions.
These tasks were selected based on their relevance to the
three executive functions comprising cognitive control (working
memory, response inhibition, set shifting) (63, 64) and prior
studies of cognitive control in TBI (65, 66).

Cerebral Perfusion Imaging
MRI scans were performed during the baseline assessment visit,
and on the day following completion of the stimulation protocol.
MRI data was acquired on a 3T Siemens Trio scanner with
a 32-channel head coil (see Supplementary Methods). High
resolution T1-weighted (1 × 1 × 1mm), T2-weighted (1.1 ×

1.1 × 1.5mm), susceptibility weighted images (1.00 × 1.00 ×

1.50mm) and fluid attenuated inversion recovery images (0.80×
0.80× 3.00mm) were collected and reviewed by a blinded, board
certified radiologist. Pseudo-Continuous Arterial Spin Labeling
(pCASL; 45 tagged/untagged images) sequence was acquired
(TR = 4,250ms; TE = 11ms; label offset = 90mm; NEX =

1; slice thickness = 5mm with 20% gap; bandwidth = 2,790

Frontiers in Neurology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 545174

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Quinn et al. A Pilot Study

Hz/Px; labeling duration = 1,665ms) with 20 interleaved slices
for whole brain coverage (voxel size = 3.44 × 3.44 × 6.00mm).
A proton density (PD) sequence was also acquired to estimate
T1 magnetization and scale CBF on a voxel-wise basis, with
the post-labeling delay (PLD) and TR (5,200ms) being the only
parameters that varied across the pCASL (PLD = 1,800ms) and
PD scans (PLD= 3,400 ms).

To process pCASL for analysis, pCASL images were first
despiked and registered to the pseudo-PD image using 2- and
3-dimension motion correction algorithms within the AFNI
suite (67). Both images were then spatially blurred using a 6-
mm Gaussian kernel. Each pre-processed labeled image was
next subtracted from the paired control image, after which
cerebral blood flow (CBF) was quantified using in-house software
based on established parameters (blood/tissue water partition
coefficient = 0.9 mL/g; longitudinal relaxation time of blood =

1,664ms; labeling efficiency = 0.85; label duration = 1,665ms)
and algorithms (68). T1 magnetization correction and scaling
of CBF was accomplished on a voxel-wise basis with the PD
image. The quantified CBF data were then averaged and spatially
transformed to standard stereotaxic space (69) using a non-linear
transformation (AFNI 3dQwarp).

Data Analysis
All data were double entered and underwent quality assurance
checks prior to statistical analysis. Sample size was determined
based on previously reported Cohen’s d effect sizes of 1.2 for
tDCS to induce improvements in cognition using a similar
unicephalic electrodemontage (70). Sample size calculation given
this effect size indicated 13 subjects per group would achieve
80% power to detect a difference at the 0.05 level. A series
of mixed-models repeated measures ANOVAs were utilized to
analyze the pre- and post-intervention data, with between-
subjects factors of GROUP (2 levels) and SEVERITY (2 levels),
and a within-subjects factor of VISIT (3 levels). Main effects
F values were calculated for each within-group and between-
group factor as well as an interaction effect. Primary outcome
variables for imaging were: (1) Global CBF value; (2) Regional
CBF values in regions in the AAL Atlas (71) with interest
around the anode. False Discovery Rate (FDR) corrections for
multiple comparisons were performed within each hypothesis for
the primary outcome variables. Correlations between change in
regional CBF, cognitive, and symptom variables were calculated
and examined for trends. All statistical analyses were run on R
v3.5.3 (R Core Team, 2019) (72).

RESULTS

Demographic Data
There were 10 subjects in the active tDCS group, and 14 subjects
in the sham group, owing to the randomization protocol of
the parent study. Baseline demographic variables, behavioral
symptom scores, and neuropsychological test results are provided
inTable 1. There were no significant baseline differences between
the two groups.

TABLE 1 | Baseline average demographic, behavioral, and neuropsychological

performance characteristics of the active and sham groups.

Active (10) Sham (14) Sig (p)

Male/female 6/4 9/5 0.84

Mild/moderate 8/2 10/4 0.64

Tobacco 9 13 0.82

Caffeine 5 9 0.51

Age 29.4 36.8 0.15

Education 14.7 14.7 0.99

Hand laterality 75 94.6 0.29

GOSE 6.5 6.2 0.51

TOMM 46.1 46.7 0.77

TOPF 107 105 0.82

BDI 15.2 17 0.64

HAM-D 15.3 16.5 0.73

NSI-somatic 9.3 9.1 0.96

NSI-cognitive 7.4 5.9 0.41

NSI-emotional 9.7 8.9 0.73

PCL-C 40.2 39.3 0.88

PROMIS-physical 18.1 16.1 0.21

PROMIS-anxiety 10.2 9.9 0.84

PROMIS-depression 9.2 8.6 0.72

PROMIS-fatigue 12.1 10.6 0.33

PROMIS-sleep 13.8 12.6 0.45

PROMIS-social satisfaction 11.1 12.1 0.56

PROMIS-pain interference 8.7 10.1 0.53

PROMIS-pain intensity 3.1 3.4 0.82

WAIS-DS 11 9.5 0.33

WAIS-CD 10 10.3 0.84

HVLT-recall 44.7 41.8 0.52

HVLT-delayed 38.4 45.1 0.27

HVLT-retention 38.3 48.7 0.11

HVLT-discrimination index 40.2 48.6 0.11

FRSBE-apathy 68.1 68.9 0.92

FRSBE-disinhibition 62.8 60 0.63

FRSBE-executive dysfunction 71.7 66.7 0.49

FRSBE-total 71.3 68.6 0.73

Examiner working memory 0.77 0.68 0.67

Examiner fluency 0.54 0.9 0.28

Examiner cognitive control 0.5 0.68 0.57

Examiner executive composite 0.65 0.95 0.28

Neuropsychological Performance
There was a significant main effect of VISIT observed in multiple
behavioral and neuropsychological variables after correction
for false discovery rate (FDR), including the BDI, HAM-D,
NSI somatic and emotional subscores, PCL-C, WAIS-CD, and
Examiner composite and executive scores (F = 7.0–18.9, all p
< 0.01) (see Supplementary Table 1). Depression, anxiety, and
postconcussive symptoms all decreased over time from Baseline
to Post-Treatment Visit, while complex attention and executive
functions improved. There were no main effects of GROUP
nor interaction effects of GROUP × VISIT for any variables
(see Figure 1).
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FIGURE 1 | Behavioral and cognitive performance for all subjects from baseline to post-treatment to 1 month followup visit. (A) Depression symptoms (HAM-D). (B)

Attention performance (WAIS-CD-S). (C,D) Executive function performance (EXAMINER Executive composite and working memory composite scores). Red, active;

blue, sham; gray regions, standard error.

Frontiers in Neurology | www.frontiersin.org 5 October 2020 | Volume 11 | Article 545174

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Quinn et al. A Pilot Study

Global Perfusion
Active and sham group mean values for global and regional
CBF at Baseline and Post-Treatment time points are reported in
Supplementary Table 1. A main effect of VISIT was observed,
with a reduction of global CBF observed from Baseline to Post-
Treatment Visit [F(1, 23) = 6.417, p = 0.02] (see Figure 2A).
While participants with moderate TBI had lower average
perfusion values at both time points, the difference between
subjects with mild vs. moderate TBI was not significant
[F(1, 21) =2.42, p = 0.14] and VISIT∗SEVERITY was not
significant [F(1, 22) = 0.02, p = 0.89]. Reduction in global CBF
was weakly correlated with improvement on the HVLT Retention
with r = −0.44, p = 0.03 (0.79) (FDR corrected p value in
parentheses) (see Figure 2B).

Regional Perfusion
In the regional analysis of cerebral perfusion, active and sham
groups demonstrated significantly different CBF changes in the
inferior frontal gyrus (IFG) from Baseline to Post-Treatment
Visits (see Figure 3). In the active group, perfusion remained
static in the left IFG, and increased in the right IFG, while in the
sham group, both left and right IFG demonstrated reductions in
perfusion. Only in the right IFGwas the difference between active
and sham significant [F(1, 22) = 6.12, p= 0.02(0.984)]. No regions
passed FDR correction, and the only uncorrected regions with p
< 0.05 were the cerebellum and the right IFG/pars triangularis.

To understand potential contributors to the observed CBF
changes, an exploratory analysis was conducted of correlations
between changes in right IFG CBF, neuropsychological test
performance, TBI symptoms, and mood/anxiety/quality of
life symptoms for both the active and sham groups (see
Supplementary Figures 1a,b). In the sham group, mild to
moderate correlations were observed between right IFG CBF
and BDI/HAM-D (r = 0.19–0.45), NSI subscales (r = −0.31 to
0.52), PROMIS subscales (r = −0.04 to 0.48), WAIS-DS (r =

−0.37), HVLT Retention scores (r = −0.37) and EXAMINER
scores (r = −0.08 to −0.22). HAM-D was moderately correlated
with performance on the HVLT Retention (r = −0.42), WAIS
Digit Span (r = −0.43), and EXAMINER subscales (r = −0.25
to −0.55), while BDI tended to demonstrate correlations in the
opposite direction.

In the active group, moderate to strong correlations were
observed between right IFG CBF and NSI subscales (r = 0.46–
0.85), BDI/HAM-D (r = 0.56–0.67), PROMIS subscales (r =

−0.31 to 0.61), HVLT retention (r=−0.69), and FrSBe subscales
(r = 0.42–0.75). Only mild and highly variable correlations were
observed with the EXAMINER subscales (r = −0.45 to 0.3).
A single outlier appeared to be driving most correlations, and
excluding this data point reduced the strength of correlations to
mild. Mild to strong correlations were found between depression
scores (HAM-D, BDI) and NSI subscales (r = 0.27–0.78) and
with performance on the HVLT Recall (r = −0.43 to −0.8) and
Retention (r =−0.17 to−0.6).

DISCUSSION

In this small randomized sham study of patients with chronic
mmTBI and cognitive deficits, cerebral perfusion changes were

FIGURE 2 | (A) Changes in global cerebral perfusion (CP) between baseline

and post-treatment visits. (a) Mild TBI participants (circles). (b) Moderate TBI

participants (triangles). Difference in CP between mild and moderate TBI

participants was not significant. Red, active group; blue, sham group. (B)

Scatter plot of Hopkins Verbal Learning Test (HVLT) retention score with

cerebral perfusion (CP) for active (red) and sham (blue) groups. HVLT

correlated mildly (r = −0.44) with reductions in CP.

noted following a cognitive training paradigm and anodal tDCS
to the left dorsolateral prefrontal cortex. Global CBF was noted
to decrease over time, while increases in mood, attention, and
executive function were observed, consistent with a hypothesis
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FIGURE 3 | Cerebral perfusion (CP) in inferior frontal gyrus/pars triangularis (IFG) from baseline to post-treatment visit. (A) In left IFG, active group (red) demonstrated

no change in CP, while sham (blue) decreased. In right IFG, CP increased in active group but decreased in sham group. (B) 3-D visualization of change in CP over time

in active and sham groups. Blue, decreased CP; red, increased.

of increased cerebral efficiency. Baseline CBF values in our study
were similar to other studies reporting decreased global CBF
following injury. Our population of mild-moderate TBI patients
manifested, on average, a global initial CBF rate of ∼38–40
mL/100 g/min. This finding is consistent with that of previously

cited studies, which found post-TBI regional CBF rates of 32–
53 mL/100 g/min (26, 32, 33). However, changes in global
CBF did not associate with objective cognitive performance
or subjective mood measures, suggesting a more complicated
relationship between clinical condition and generalized perfusion
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than initially hypothesized. There was no additional effect of
tDCS seen, with both groups demonstrating decreases in global
CBF regardless of receiving active or sham stimulation. This is
not necessarily surprising, given that tDCS is applied in a targeted
manner to a specific cortical region, and prior studies indicate
that tDCS-induced changes in perfusion occur in specific regions
rather than across the entire brain (37, 40).

In the regional analysis of cerebral perfusion, an effect of
tDCS was observed, with reductions of CBF occurring in the
right IFG in the sham group, and increases of CBF in the right
IFG of the active group. Although FDR correction resulted in
nonsignificance, this finding is still of some interest, as there is
theoretical and empirical basis for altered right prefrontal and
right fronto-parietal perfusion after mTBI (32, 73–75). The right
frontoparietal network is implicated in lateralization of cognitive
and emotional functions, including inhibition (76), visual
attention, and emotional sham. Right frontal dysfunction has
also been associated with several symptoms such as depression
(77), anxiety (78), somatization (79), impulsivity (80), and
distractibility (81), all of which may be seen in chronic mmTBI.

The effect of anodal tDCS on regional CBF in this study
was consistent with other studies of excitatory tDCS and
cerebral blood flow, in that an increase in perfusion was
observed in the prefrontal cortices where current density is
predicted to be highest (82). The larger CBF effect being
observed in the right IFG as opposed to under the electrode
on the left is somewhat paradoxical but may be explained by
the strong functional connectivity typically observed between
cortical regions and their homolog in the opposite hemisphere
(e.g., interhemispheric transfer) (83, 84). While this regional
finding is encouraging for tDCS having a potentially beneficial
effect on perfusion and chronic symptoms of mmTBI, it did not
correlate significantly with neuropsychological performance nor
with subjective symptom report following treatment. There is a
theoretical concern that if beneficial effects of cognitive training
relate to reduced regional CBF, anodal tDCS may actually be
counterproductive or deleterious to this process. However, the
exploratory correlation analysis did not support this possibility,
as correlation strengths between CBF and symptom/performance
improvements in the sham and active group were approximately
the same. Also of note in the exploratory analysis was that of
the strongest correlations found were between emotion measures
and executive function performance in both groups, pointing
to a potential nonspecific mood benefit of the training or
study protocol that may have obscured any contribution from
the tDCS.

We consider our finding of decreased global and regional
perfusion following the cognitive intervention somewhat
paradoxical, considering that our study sample was already
manifesting reduced CBF values at baseline. This raises the
theoretical question of how decreased CBF can be both a marker
of injury, as well as a marker of rehabilitation response. While
it is possible that global CBF may have decreased over time
independent of injury status or the intervention, CBF measured
by pCASL has been shown to be relatively stable over time
(85). Another possibility is that lower CBF is an adaptation
to the injured state, and that with training, the adaptation is
strengthened or amplified. Barlow et al. found that recovered

patients after concussion manifested lower CBF values than
controls, suggesting that recovery does not necessarily involve a
return to original baseline CBF values (30). A second possibility
is that while global CBFmay be an accurate reflection of an injury
condition, the recovery process may be occurring at a more
regional level. This is suggested by our asymmetric CBF findings
following tDCS and training: right frontal decreased perfusion,
accompanied by left frontal increased perfusion, may be a
recovery pattern for mood, cognition, and behavior, such as is
seen in transcranial magnetic stimulation for depression (86, 87).
A final consideration is that resting CBF measured by pCASL
may fail to fully account for changes to dynamic cerebrovascular
regulation and its relation tometabolic demand. Static reductions
in cerebral perfusion after TBI may be accompanied by increases
in CBF with effort on functional sequences such as task-based
fMRI or cerebrovascular reactivity challenges (88, 89). It might
be necessary to obtain measurements of both CBF and metabolic
activity (i.e., positron emission tomography) in order to better
understand how the brain is adapting to injury and responding
to training (90). In summary, our findings suggest that the role
of cerebral perfusion in the pathogenesis of and recovery from
PPS continues to be complex.

This study was limited by its small sample size, uneven
group numbers, heterogeneity of the clinical sample, and the
lack of a non-treatment control group, limiting any conclusions
that can be drawn. However, many patients with TBI fail to
demonstrate any cognitive gains in rehabilitation, whereas this
sample demonstrated robust improvements in multiple cognitive
domains. Therefore, the prospect of a simple 10-day program
of cognitive training on executive functions leading to objective
improvements is cause for further study. Cerebral perfusion
measured with pCASL represents a potential pathophysiologic
target for rehabilitation paradigms in mmTBI such as cognitive
training and tDCS.
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