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Background: Blood biomarkers may enhance outcome prediction performance of head

computed tomography scores in traumatic brain injury (TBI).

Objective: To investigate whether admission levels of eight different protein biomarkers

can improve the outcome prediction performance of the Helsinki computed tomography

score (HCTS) without clinical covariates in TBI.

Materials and methods: Eighty-two patients with computed tomography positive

TBIs were included in this study. Plasma levels of β-amyloid isoforms 1–40 (Aβ40) and

1–42 (Aβ42), glial fibrillary acidic protein, heart fatty acid-binding protein, interleukin 10

(IL-10), neurofilament light, S100 calcium-binding protein B, and total tau were measured

within 24 h from admission. The patients were divided into favorable (Glasgow Outcome

Scale—Extended 5–8, n = 49) and unfavorable (Glasgow Outcome Scale—Extended

1–4, n = 33) groups. The outcome was assessed 6–12 months after injury. An optimal

predictive panel was investigated with the sensitivity set at 90–100%.

Results: The HCTS alone yielded a sensitivity of 97.0% (95% CI: 90.9–100) and

specificity of 22.4% (95% CI: 10.2–32.7) and partial area under the curve of the

receiver operating characteristic of 2.5% (95%CI: 1.1–4.7), in discriminating patients with
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favorable and unfavorable outcomes. The threshold to detect a patient with unfavorable

outcome was an HCTS > 1. The three best individually performing biomarkers in

outcome prediction were Aβ40, Aβ42, and neurofilament light. The optimal panel

included IL-10, Aβ40, and the HCTS reaching a partial area under the curve of the receiver

operating characteristic of 3.4% (95% CI: 1.7–6.2) with a sensitivity of 90.9% (95% CI:

81.8–100) and specificity of 59.2% (95% CI: 40.8–69.4).

Conclusion: Admission plasma levels of IL-10 and Aβ40 significantly improve the

prognostication ability of the HCTS after TBI.

Keywords: traumatic brain injury, biomarkers, outcome prediction, Helsinki CT score, interleukin 10 (IL10), beta

amyloid 1–40, panel analysis

INTRODUCTION

Traumatic brain injury (TBI) is a highly heterogeneous disease
(1) and a leading cause of long-term disability globally (2). It is
clear that outcome after TBI solely does not depend only on the
given care in the acute and late phases, but also on the injury
type and severity, patient’s clinical characteristics, and eventual
brain tissue fate (3, 4). Improved outcomemodelsmay help better
stratify patients for different treatment and monitoring strategies
and provide information about expected gross outcomes to
clinicians, patients, and their families.

TBI is classically divided into mild, moderate, and severe
based on the initial assessment using the Glasgow Coma Scale
(GCS) score upon admission (5). The GCS score is one of
the strongest clinical outcome predictors (3) but does not
consider the complex pathophysiological characteristics of TBI.
Furthermore, GCS assessment may be confounded by subjective
interrater variability and patient’s intoxication or sedation (6, 7).

Early structural intracranial abnormalities detected on
head computed tomography (CT) have been suggested as
complementary or independent outcome predictors. The
Marshall CT classification (8) was not originally designed to be
an outcome measure tool, but its features have been successfully
incorporated into the International Mission for Prognosis
and Analysis of Clinical Trials in TBI (IMPACT) (9) and the
Corticosteroid Randomization After Significant Head injury
(10) prognostication models, which have been comprehensively
validated (11). After the Marshall CT classification, outcome
prediction-weighted CT classifications have emerged. Rotterdam
CT score (12), Helsinki CT Score (HCTS), (13) and Stockholm
CT score (14) have shown promise in prognostication of patients
with CT-positive findings. The latter two reportedly provide
more information on the structural pathology and more accurate
outcome prediction than earlier models (15).

Several brain-enriched protein biomarkers have been studied
in combination and isolation as tools for predicting TBIs of
different severities (16–18). Biomarkers may offer incremental
value in outcome prediction when used in combination with
neuroimaging scores. We recently studied eight biomarkers [β-
amyloid isoforms 1–40 [Aβ40] and 1–42 [Aβ42], glial fibrillary
acidic protein [GFAP], heart fatty acid-binding protein [H-
FABP], interleukin 10 [IL-10], neurofilament light chain [NF-L],

S100 calcium-binding protein B [S100B], and total tau [t-tau]]
and their ability to discriminate CT-negative and CT-positive
patients with TBIs of different severities. We found that panels
of biomarkers significantly outperformed individual biomarkers
in this setting (19).

The overall aim of this study was to see whether the
biomarkers listed earlier improved the prediction of outcome
using an admission head CT score. As these biomarkers are
of different cellular origins, we planned to investigate each
separately as well as combined. The HCTS was chosen due to
its ability to be reliably implemented, and it has an extensive
validation background (15, 20–23). We hypothesized that the
prognostic performance of theHCTSwould improve after adding
blood-based biomarkers.

METHODS

Study Population and Clinical
Characteristics
This prospective study was part of the European Union-
funded TBIcare (Evidence-Based Diagnostic and Treatment
Planning Solution for Traumatic Brain Injuries) project, where
we recruited patients with acute TBIs at the Turku University
Hospital, Finland, from November 2011 to October 2013. All
patients were treated according to the local protocols based on
existing international guidelines and recommendations at that
time (24).

The total available cohort of patients with head injury
consisted of 620 patients. Of these, 203 patients met the following
inclusion criteria: (i) age ≥ 18 years and (ii) clinical diagnosis of
TBI and indications for acute head CT according to the National
Institute for Health and Care Excellence criteria (25), and did
not meet the following exclusion criteria: (i) blast-induced or
penetrating injury, (ii) chronic subdural hematoma, (iii) inability
to live independently due to a preexisting brain disease, (iv) TBI
or suspected TBI not needing head CT, (v) more than 2 weeks
from the injury, (vi) not living in the hospital district thereby
preventing follow-up visits, (vii) not speaking the native language
(Finnish), or (viii) no consent received.

In this study, we included those patients who had admission
levels of plasma Aβ40, Aβ42, GFAP, H-FABP, IL-10, NF-L, S100B,
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and t-tau obtained within 24 h after hospital admission available
(n = 160). From these patients, we included those who had
Glasgow Outcome Scale—Extended (GOSE) scores assessed 4–
16 months after injury [assessed by an experienced neurologist
[OT], n = 137, the average time between injury and GOSE was
7.82 months,±3.33]. Outcomes were defined as favorable (GOSE
5–8), and unfavorable (GOSE 1–4), complete recovery (GOSE 8),
and incomplete recovery (GOSE< 8) (17). Traditionally, the first
categorization is used in terms of moderate to severe TBI and the
latter in mild TBI. As the patients were not classified according to
their initial GCS scores but according to their HCTS scores in the
current study, we used both categorizations. The admission head
CT scans were blindly evaluated by three senior neurotrauma
researchers (neurosurgeons) as described later. The patients were
divided into the main study cohort (CT-positive, n = 82, 60%)
and comparison cohort (CT-negative, n = 55, 40%). Data on
TBI-related deaths were collected up to 12 months after injury.

The GCS scores were assessed by paramedics at the scene
of the accident or during transport and/or by an emergency
physician at the time of admission. The lowest recorded post-
resuscitation GCS was used in the demographic data (16,
26). Hypoxia was defined as any event of oxygen saturation
of <90% and hypotension as any period of systolic blood
pressure level of <100 mmHg in patients aged 50–69 years
and <110 mmHg in patients aged 18–49 years and ≥70 years
(24). Anemia was defined as a hemoglobin concentration of
<100 g/L. Hypoglycemia was defined as a glucose level of <4.4
mmol/L. These thresholds were based on the latest international
recommendation (24). Injury Severity Score (ISS) (27) was used
to evaluate the overall injury load.

The ethical review board of the Hospital District of Southwest
Finland approved the study protocol (decision 68/180/2011).
All patients or their next of kin were informed about the
study in both oral and written forms. Written informed consent
was obtained according to the World Medical Association’s
Declaration of Helsinki.

Biomarker Analyses
Blood samples for plasma Aβ40, Aβ42, GFAP, H-FABP, IL-10,
NF-L, S100B, and t-tau were drawn within 24 h from admission.
Plasma H-FABP and IL-10 were analyzed using the K151HTD
and K151QUD kits, respectively, from Meso Scale (Meso Scale
Diagnostics, Rockville, MD, USA), and S100B was measured
using EZHS100B-33K kit from Millipore (Millipore, Billerica,
MA, USA) according to the manufacturers’ recommendations
in a research laboratory in Geneva, Switzerland. The plasma
levels of GFAP, NF-L, and t-tau were assessed using the Human
Neurology 4-Plex A assay on an HD-1 Single molecule array
(Simoa) instrument according to the instructions from the
manufacturer (Quanterix, Billerica, MA, USA) in the Clinical
Neurochemistry Laboratory, Sahlgrenska University Hospital,
Mölndal, Sweden. Plasma Aβ40 and Aβ42 concentrations were
measured using a duplex Simoa immunoassay (Quanterix,
Billerica, MA, USA) in a research laboratory in Bethesda,
MD, USA.

The lower limits of detection, the lower limits of
quantification, and the calibration ranges for the blood-
based biomarkers are shown in Supplementary Table 1. One
patient had an S100B level below the lower limit of detection
range, and therefore, the concentration of 1 pg/ml was applied,
permitting statistical analysis. This applied concentration did
not affect the statistics results. All biomarker measurements were
performed by board-certified laboratory technicians who were
blinded to clinical data.

Computed Tomography Scan Grading
Three senior neurotrauma researchers (JP, RR, and TL) evaluated
137 head CT scans and classified them according to the HCTS
(13). First, two researchers (JP and RR) independently and
blindly analyzed the scans and coded the findings, and the third
(TL) evaluated the results. Next, the third evaluated all the scans,
emphasizing the cases with conflicting results provided by the
two independent researchers. Last, the cases with disagreement
were assessed in a joint meeting.

Statistical Analysis
The normality of distribution of the biomarker levels was
assessed with the Kolmogorov–Smirnov test and by visually
inspecting histograms. The demographic data on age, sex,
pupil reactivity, extracerebral injuries, events of hypoxia, events
of hypotension, events of hypoglycemia, anemia, hospital
admission/discharge, and outcome were normally distributed
and are presented as mean ± standard deviation. Differences
between groups were analyzed with t-tests. There were patients
with missing data on pupil reactivity, events of hypoxia,
hypotension, and hypoglycemia, and these were excluded from
the comparative analysis. Data on GCS, ISS, (27), and HCTS
sum are presented in medians and ranges. Differences between
groups are analyzed with theMann–WhitneyU-test. The levels of
the biomarkers were not normally distributed and are presented
as medians with interquartile ranges (IQRs). Differences in
biomarker levels between the two outcome groups were analyzed
with the Mann–Whitney U-test.

The partial area under the curve (pAUC) of the receiver
operating characteristic (ROC) was used to compare only a
portion of the biomarkers AUC curves, which here was set
to the clinically relevant range of 90–100% sensitivity. Panels
were developed by the iterative combination of biomarkers
and thresholds method using the Panelomix toolbox (28). For
each biomarker, several cutoffs were selected, and the best
combination of markers and thresholds was selected to give
the best panel performance. The size of the panels was set
to a maximum of (i) first two and then (ii) three covariates
(from the pool of the biomarkers and the HCTS) and was
evaluated when sensitivity was set at 90–100%. Hence, an optimal
predictive panel means combining covariates that yields a set
of the best specificity, sensitivity, and pAUC. P < 0.05 were
considered significant.

The first round of the head CT scan review included reviews
by RR and JP. The inter-rater reliability was assessed with
Cohen’s kappa statistic. The overall inter-rater reliability between
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the three reviewers was assessed with the intraclass correlation
coefficient (two-way mixed-effects).

Excluding the Panelomix toolbox analysis, the statistical
analysis was carried out using the IBM SPSS Statistics version 25
(IBM Corp, New York).

RESULTS

Demographics, Computed Tomography
Findings, Outcomes, and Blood Samples
The number of eligible patients was 137. Out of these, 82
patients (60%) were CT-positive, and 55 patients (40%)
were CT-negative (Figure 1). The CT-positive patients
constituted the main study group. Differences in baseline
characteristics between CT-positive (main study group) and
CT-negative patients (comparison study group) are shown in
Supplementary Material. Briefly, patients in the CT-positive
group were older (mean age 50 vs. 44 years), more often male
(78 vs. 62%), had lower GCS scores (median 14 vs. 15), more
often abnormal pupillary light reactions (15 vs. 4%), higher
ISSs (median 18 vs. 6), and less frequently had a favorable
outcome (60 vs. 93%) compared with patients in the CT-negative
group. The main study group differed from the total potential
head injury population (n = 620) only in terms of sex: in the
main study group, 78% were males and in the total available
cohort 71%.

In the CT-positive group, the mean age was 50.5 years (SD
±20.4), 78% were male, the median GCS score was 14 and
60% had a favorable outcome. The CT-positive patients with a
favorable outcome were younger, had higher GCS scores, lower
ISSs, and underwent less mass lesion evacuations compared with
the CT-positive patients with an unfavorable outcome (Tables 1,
2). In the CT-positive group, there were no differences in
time elapsed between injury date and outcome assessment date
when a patient had favorable and unfavorable outcomes (p =

0.584) and when complete and incomplete recovery (p = 0.320)
were compared.

Utilizing the HCTS classification, the first two head CT
scan reviewers reached a substantial agreement in terms of
subdural hematoma, intracerebral hematoma, mass lesions (size
> 25 cm3), and intraventricular hemorrhage, whereas the
agreement was moderate in terms of epidural hematoma and
suprasellar cistern features as assessed according to Cohen
(29) (Supplementary Table 2). The overall agreement reliability
between the reviewers RR, JP, and TL was excellent in terms
of subdural hematoma, intracerebral hematoma, mass lesions
(size > 25 cm3), and intraventricular hemorrhage, whereas the
agreement reliability was good in terms of epidural hematoma
and suprasellar cistern features as assessed according to Koo and
Li (30) (Supplementary Table 3).

The blood samples of all the patients were obtained within
24 h from admission. In those patients for whom the exact time
of injury was available, the time elapse from injury to blood
sampling was 13.1 ± 10.4 h (n = 62). Among those patients in
whom the exact injury time was unavailable, the time of injury
was estimated based on the best available information. Among

FIGURE 1 | Study recruitment flow chart.

these patients, 26 patients were sampled within 24 h, and 49
patients were sampled after 24 h from the injury.

The biomarker levels in different outcome groups are
presented in Supplementary Tables 4, 5.

Helsinki Computed Tomography Scale
Alone in Outcome Prediction
The HCTS alone yielded a pAUC of the ROC of 2.5% (1.1–4.7)
with a sensitivity of 97.0% (95% CI 90.9–100) and a specificity of
22.4% (95% CI 10.2–32.7) in detecting patients with unfavorable
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TABLE 1 | Demographics of the whole study cohort—all patients.

Variable type Variable Main study cohort,

CT-positive

(n = 82)

Comparison study

cohort, CT-negative

(n = 55)

p-value

Demographic Age (years, mean ± SD) 50.46 ± 20.35 43.67 ± 18.21 0.048

Sex (male/female) 64 (78%)/18 (22%) 34 (62%)/21 (38%) 0.039

GCS (median [range]) 14 (3–15) 15 (3–15) 0.043

Pupil reactivity Unreactive/sluggish/reactive 9 (11%)/3 (4%)/61 (74%)a 1 (2%)/1 (2%)/52 (95%)b 0.020

ISS (median [range]) 18 (1–50) 6 (1–57) 0.001

Isolated TBI 49 (60%) 32 (59%) 0.856

Evacuated mass lesion 24 (29%) 0 (0%) <0.001

Hypoxia 6 (7%)c 1 (2%)d 0.203

Hypotension 3 (4%)e 0 (0%)f 0.182

Hypoglycemia 0 (0%)g 0 (0%)f –

Anemia 3 (4%) 0 (0%) 0.175

Admitted to hospital 76 (93%) 33 (60%) <0.001

Outcome Favorable (GOSE 5–8) 49 (60%) 51 (93%) <0.001

Unfavorable (GOSE 1–4) 33 (40%) 4 (7%) <0.001

Complete (GOSE 8) 10 (12%) 23 (42%) <0.001

Incomplete (GOSE 1–7) 72 (88%) 32 (58%) <0.001

TBI-related deaths 11 (12%) 1 (2%) <0.001

HCTS Mass lesion types Subdural hematoma 53 (65%) – –

Intracerebral hematoma 53 (65%) – –

Epidural hematoma 11 (13%) – –

Mass lesion size >25 cm3 26 (32%) – –

Intraventricular hemorrhage 21 (26%) – –

Suprasellar cisterns Normal 47 (57) – –

Compressed 31 (38%) – –

Obliterated 4 (5%) – –

Sum (median [range]) 4 (−3 to 14) 0 <0.001

Statistically significant p-values are in bold. SD, standard deviation; GCS, Glasgow Coma Scale; ISS, Injury Severity Score; Isolated TBI, traumatic brain injury without concomitant

extracerebral injuries; Hypoxia, event of hypoxia after injury; Hypotension, event of hypotension after injury; Anemia, anemia after injury; TBI, traumatic brain injury; GOSE, Glasgow

Outcome Scale—Extended; HCTS, Helsinki Computed Tomography Score; CT-positive, Computed tomography-positive; CT-negative, Computed tomography-negative.
aData missing on nine patients.
bData missing on one patient.
cData missing on seven patients.
dData missing on 11 patients.
eData missing on two patients.
fData missing on eight patients.
gData missing on three patients.

outcome. The threshold to detect a patient with unfavorable
outcome was an HCTS sum of >1 (Table 3). In terms of
discriminating patients with complete recovery and incomplete
recovery, the HCTS did not reach clinically relevant sensitivity
and specificity (Table 4).

Biomarkers Alone in Outcome Prediction
In discriminating patients with favorable and unfavorable
outcomes, the three best individually performing biomarkers
in outcome prediction were Aβ40, Aβ42, and NF-L (Table 3).
Patients with unfavorable outcome had significantly higher levels
of Aβ42 (unfavorable outcome: median 21.9 pg/ml, IQR 40.6
pg/ml; favorable outcome: median 16.9 pg/mL, IQR 16.4 pg/ml;
p = 0.040) and NF-L (unfavorable outcome: median 99.9 pg/ml,

IQR 120.0 pg/ml; favorable outcome: median 36.9 pg/ml, IQR
57.6 pg/ml; p = 0.001) compared with those with favorable
outcome, whereas levels of Aβ40 were not different between the
groups (p= 0.490).

In terms of discriminating patients with complete and
incomplete recovery, the three best individually performing
biomarkers in outcome prediction were Aβ40, NF-L, and Aβ42
(Table 4).

Patients with incomplete recovery had significantly higher
levels of NF-L (incomplete recovery: median 66.9 pg/ml, IQR
87.0 pg/ml; complete recovery: median 9.2 pg/ml, IQR 13.5
pg/ml; p = 0.001) compared with those with complete recovery,
whereas levels of Aβ40 and Aβ42 were not different between the
groups (p= 0.436 and p= 0.257, respectively).
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TABLE 2 | Demographics of the main study cohort—Computed tomography-positive patients divided into patients with favorable outcome (Glasgow Outcome

Scale—Extended 5–8) and unfavorable outcome (Glasgow Outcome Scale—Extended 1–4).

Variable type Variable Favorable outcome

(n = 49)

Unfavorable outcome

(n = 33)

p-value

Demographic Age (years, mean ± SD) 44.69 ± 19.55 59.03 ± 18.67 0.001

Sex (male/female) 37 (76%)/12 (24%) 27 (82%)/6 (18%) 0.505

GCS (median [range]) 14 (3–15) 9 (3–15) 0.001

Pupil reactivity Unreactive/sluggish/reactive 3 (6%)/1 (2%)/38 (78%)a 6 (18%)/2 (6%)/52 (70%)b 0.075

ISS (median [range]) 17 (1–41) 24 (6–50) 0.001

Isolated TBI 29 (60%) 20 (61%) 0.889

Evacuated mass lesion 12 (25%) 12 (36%) <0.001

Hypoxia 3 (6%)c 3 (9%)d 0.608

Hypotension 2 (4%) 1 (3%) 0.813

Hypoglycemia 0 (0%)e 0 (0%)f –

Anemia 2 (4%) 1 (3%) 0.800

Admitted to hospital 44 (90%) 32 (98%) 0.226

Outcome Complete recovery (GOSE 8) 10 (20%) 0 (0%) 0.005

Incomplete recovery (GOSE

1–7)

39 (80%) 33 (100%) 0.005

TBI-related deaths 0 (0%) 11 (33%) 0.001

HCTS Mass lesion types Subdural hematoma 27 (55%) 26 (79%) 0.028

Intracerebral hematoma 27 (55%) 26 (79%) 0.028

Epidural hematoma 7 (14%) 4 (12%) 0.781

Mass lesion size >25 cm3 10 (20%) 16 (49%) 0.007

Intraventricular hemorrhage 9 (18%) 12 (36%) 0.069

Suprasellar cisterns Normal 33 (67%) 14 (42%) <0.001

Compressed 13 (27%) 18 (54%) 0.010

Obliterated 3 (6%) 1 (3%) 0.031

Sum (median [range]) 3 (−3 to 14) 5 (0–10) 0.004

Statistically significant p-values are in bold. SD, standard deviation; GCS, Glasgow Coma Scale; ISS, Injury Severity Score; Isolated TBI, traumatic brain injury without concomitant

extracerebral injuries; Hypoxia, event of hypoxia after injury; Hypotension, event of hypotension after injury; Anemia, anemia after injury; TBI, traumatic brain injury; GOSE, Glasgow

Outcome Scale—Extended; HCTS, Helsinki Computed Tomography Score.
aData missing on seven patients.
bData missing on two patients.
cData missing on four patients.
dData missing on three patients.
eData missing on two patients.
fData missing on one patient.

Biomarkers Improve the Outcome
Predictive Performance of the Helsinki
Computed Tomography Scale
We studied if combinations of biomarkers could improve the
predictive performance of the HCTS in distinguishing patients
with unfavorable outcome from patients with a favorable
outcome. The best panel consisting of HCTS and a single
biomarker included IL-10, and it yielded a pAUC of 3.0%
(95% CI 1.3–6.0) with a sensitivity of 90.9% (95% CI 78.8–
100) and a specificity of 55.1% (95% CI 40.8–69.4). In this
panel, the threshold for the HCTS was >4 and for IL-10
<0.48 mg/ml (Table 5A, Figure 2). A corresponding analysis was
conducted with HCTS and a combination of two biomarkers.
The optimal panel included IL-10 and Aβ40, and it reached
a pAUC of 3.4% (95% CI 1.7–6.2) with a sensitivity of 90.9%
(95% CI 81.8–100) and a specificity of 59.2% (95% CI 40.8–
69.4). In this panel, the threshold for the HCTS was >4,

for Aβ40 >7.38 pg/ml, and for IL-10 <0.48 pg/ml (Table 5B,
Figure 3).

Panel analysis for outcome prediction of incomplete recovery
was not conducted because the HCTS did not have a clinically
meaningful outcome prediction performance in this setting
(Table 4).

Biomarkers in Outcome Prediction in
Patients With Normal Head Computed
Tomography Findings
To further elucidate the outcome prediction performance of
the biomarkers, we also studied patients with CT-negative
TBIs (comparison study cohort). The three best individually
performing biomarkers in discriminating patients with a
favorable outcome and an unfavorable outcome were Aβ40,
GFAP, and NF-L (Table 6). The three best individually
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TABLE 3 | Individual abilities of the Helsinki Computed Tomography Score and

eight different biomarkers in discriminating patients with favorable and unfavorable

outcomes sorted by partial area under the curve of the receiver operating

characteristic (all, n = 82; favorable outcome, n = 49; unfavorable outcome,

n = 33).

Biomarker Threshold,

pg/ml

% pAUC

(95% CI)

%

Specificity

(95% CI)

%

Sensitivity

(95% CI)

HCTS 1 2.5 (1.1–4.7) 22.4

(10.2–32.7)

97.0

(90.9–100)

Aβ40 15.1 2.2 (0.9–4.1) 32.7

(18.4–46.9)

90.9

(81.8–100)

Aβ42 7.9 1.0 (0.1–2.7) 18.4

(8.2–30.6)

90.9

(78.8–100)

NF-L 179.6 0.6 (0.0–3.2) 22.4

(12.2–34.7)

90.9

(78.8–100)

H-FABP 56.3 0.6 (0.0–1.5) 6.1 (0.0–14.3) 100

(100–100)

t-tau 56.5 0.5 (0.0–3.0) 24.5

(12.2–36.7)

90.9

(78.8–100)

IL-10 13.9 0.3 (0.0–1.5) 8.2 (2.0–6.1) 93.9

(84.8–100)

S100B 2300.8 0.2 (0.0–1.5) 2.0 (0.0–6.1) 100

(100–100)

GFAP 94.7 0.1 (0.0–2.6) 12.2

(4.1–22.4)

90.9

(81.8–100)

Threshold indicates a value or level that needs to be exceeded to detect unfavorable

outcome. pAUC, partial area under the curve of the receiver operating characteristic;

HCTS, Helsinki Computed Tomography Score; Aβ40, β-Amyloid isoform 1–40; Aβ42, β-

Amyloid isoform 1–42; GFAP, glial fibrillary acidic protein; H-FABP, heart fatty acid-binding

protein; IL-10, interleukin 10; NF-L, neurofilament light; S100B, S100 calcium-binding

protein B; t-tau, total tau.

performing biomarkers in discriminating patients with complete
and incomplete recovery were NF-L, Aβ40, and IL-10 (Table 7).

DISCUSSION

This prospective, observational study of patients with acute
TBI investigated whether admission levels of eight different
plasma protein biomarkers obtained from CT-positive patients
can improve the outcome prediction ability of the HCTS without
clinical covariates in a well-characterized cohort. We also studied
the prognostic ability of the biomarkers without the HCTS in
discriminating complete recovery and incomplete recovery in
CT-positive patients and CT-negative patients. The main finding
of the study is that the admission levels of IL-10 and Aβ40
improve the ability of the HCTS in discriminating patients
with unfavorable and favorable outcomes with increasing the
specificity by 27% points (from 22 to 59%) while maintaining
a sensitivity above 90%. In other words, when using only
the HCTS, 11 patients out of the 49 with favorable outcomes
were correctly detected, and when using the HCTS together
with biomarkers, 29 patients with favorable outcomes were
correctly detected. When studied alone, the HCTS had the
highest pAUCs of the tested covariates, followed by Aβ40 and
Aβ42. The individual specificities of the HCTS and biomarkers

TABLE 4 | Individual abilities of the Helsinki Computerized Tomography Score and

eight different biomarkers in discriminating patients with complete and incomplete

recovery sorted by partial area under the curve of the receiver operating

characteristic (all, n = 82; complete recovery, n = 10; incomplete recovery,

n = 72).

Biomarker Threshold,

pg/ml

% pAUC

(95% CI)

%

Specificity

(95% CI)

%

Sensitivity

(95% CI)

Aβ40 35.0 2.3 (0.0–5.3) 40.0

(10.0–70.0)

90.3

(83.3–95.8)

NF-L 245.1 1.2 (0.0–4.1) 20.0

(0.0–50.0)

93.1

(86.1–98.6)

Aβ42 32.9 1.2 (0.0–4.1) 20.0

(0.0–50.0)

91.7

(84.7–97.2)

GFAP 113.9 1.0 (0.0–3.2) 22.4

(12.2–34.7)

94.4

(88.9–98.6)

H-FABP 56.4 0.7 (0.0–2.6) 10.0

(0.0–30.0)

97.2

(93.1–100)

HCTS – 0.4 (0.0–2.3) 0.0 (0.0–0.0) 100

(100–100)

t-tau – 0.3 (0.0–3.1) 20.0

(0.0–50.0)

90.3

(83.3–95.8)

IL-10 – 0.0 (0.0–0.0) 0.0 (0.0–0.0) 100

(100–100)

S100B – 0.0 (0.0–1.4) 0.0 (0.0–0.0) 100

(100–100)

Threshold indicates a level that needs to be exceeded to detect incomplete recovery.

pAUC, partial area under the curve of the receiver operating characteristic; HCTS, Helsinki

Computerized Tomography Score; Aβ40, β-Amyloid isoform 1–40; Aβ42, β-Amyloid

isoform 1–42; GFAP, glial fibrillary acidic protein; H-FABP, heart fatty acid-binding protein;

IL-10, interleukin 10; NF-L, neurofilament light; S100B, S100 calcium-binding protein B;

t-tau, total tau.

TABLE 5A | Ability of the Helsinki Computed Tomography Score alone and a

panel consisting of the Helsinki Computed Tomography and interleukin 10 in

distinguishing patients with unfavorable outcome from patients with favorable

outcome.

Markers

(threshold to

be classified

as positive)

% pAUC

(95% CI)

%

Specificity

(95% CI)

%

Sensitivity

(95% CI)

HCTS HCTS (>1) 2.5 (1.2–4.6) 22.4

(12.2–34.7)

97.0

(90.9–100)

Panel HCTS (>4) +

IL-10 (<0.48

pg/ml)

3.0 (1.3–6.0) 55.1

(40.8–69.4)

90.9

(78.8–100)

Marker thresholds to detect patients with unfavorable outcome are presented in the

second column. At least one marker needs to exceed the threshold in order for the panel

to be positive. In the figure, a value before the parenthesis indicates that at least one

marker needs to be positive (exceed the threshold) in the panel. Values in the parenthesis

are the specificity and sensitivity of the panel.

HCTS, Helsinki Computerized Tomography Score; IL-10, interleukin 10.

remained low (2–33%) in isolation, but the optimal combination
panel yielded a specificity of 59% when the sensitivity was set
above 90%.

Most modern TBI biomarker studies have investigated the
individual prediction abilities of different molecules. The studies
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FIGURE 2 | Please see Table 5A.

TABLE 5B | Abilities of the Helsinki Computed Tomography Score alone and a

panel consisting of the Helsinki Computed Tomography, interleukin 10, and

β-Amyloid isoform 1–40 in distinguishing patients with unfavorable outcome from

patients with favorable outcome.

Markers

(threshold to

be classified

as positive)

% pAUC

(95% CI)

%

Specificity

(95% CI)

%

Sensitivity

(95% CI)

HCTS HCTS (>1) 2.5 (1.2–4.6) 22.4

(12.2–34.7)

97.0

(90.9–100)

Panel HCTS (>4) +

IL-10 (<0.48

pg/ml) +

Aβ40 (>7.38

pg/ml)

3.4 (1.7–6.2) 59.2

(44.9–71.4)

90.9

(78.8–100)

Marker thresholds to detect patients with unfavorable outcome are presented in the

second column. At least two markers need to exceed the threshold in order for the panel

to be positive. In the figure, a value before the parenthesis indicates that at least two

markers need to be positive (exceed the threshold) in the panel. Values in the parenthesis

are the specificity and sensitivity of the panel.

HCTS, Helsinki Computerized Tomography Score; IL-10, interleukin 10; Aβ40, β-Amyloid

isoform 1–40.

show that single biomarkers tend to have low specificities when
sensitivity is set above 90%. Therefore, individual blood-based
biomarkers may not be applicable for clinical practice as stand-
alone tools (19, 28, 31), which is expected due to the complexity
of TBI. Combining several biomarkers or combining biomarkers
with clinical characteristics have been suggested to improve
diagnostic and predictive abilities (31, 32). Thus, biomarkers
may provide additional value in outcome prediction of TBI
when used in combination with predictive neuroimaging scores.

FIGURE 3 | Please see Table 5B.

TABLE 6 | Individual abilities of eight different biomarkers in discriminating patients

with favorable and unfavorable outcomes without head imaging abnormalities

sorted by partial area under the curve of the receiver operating characteristic (all, n

= 55; favorable outcome, n = 51; unfavorable outcome, n = 4).

Biomarker Threshold,

pg/ml

% pAUC

(95% CI)

%

Specificity

(95% CI)

%

Sensitivity

(95% CI)

Aβ40 16.7 5.1 (3.7–7.3) 51.0

(37.3–64.7)

100

(100–100)

GFAP 0.4 4.5 (3.3–8.0) 45.1

(31.4–58.8)

100

(100–100)

NF-L 8.3 4.1 (2.7–10.0) 41.2

(27.5–54.9)

100

(100–100)

t-tau 1.6 3.6 (2.4–7.5) 35.3

(21.6–49.0)

100

(100–100)

H-FABP 3.8 3.3 (2.2–8.0) 33.3

(19.6–47.1)

100

(100–100)

IL-10 0.2 2.4 (1.4–9.4) 23.5

(13.7–35.3)

100

(100–100)

S100B 45.3 1.4 (0.6–6.7) 13.7

(5.9–23.5)

100

(100–100)

Aβ42 – 0.0 (0.0–6.5) 0.0 (0.0–0.0) 100

(100–100)

Threshold indicates a level that needs to be exceeded to detect unfavorable recovery.

pAUC, partial area under the curve of the receiver operating characteristic; Aβ40, β-

Amyloid isoform 1–40; Aβ42, β-Amyloid isoform 1–42; GFAP, glial fibrillary acidic protein;

H-FABP, heart fatty acid-binding protein; IL-10, interleukin 10; NF-, neurofilament light;

S100B, S100 calcium-binding protein B; t-tau, total tau.

However, studies on blood-based biomarkers complementing
head imaging scores are scarce. The results presented here
suggest that protein biomarkers IL-10 and Aβ40 provide
incremental value in outcome prediction when used in
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TABLE 7 | Individual abilities of the eight different biomarkers in discriminating

patients with complete and incomplete recovery without head imaging

abnormalities sorted by partial area under the curve of the receiver operating

characteristic (all, n = 55; complete recovery, n = 32; incomplete recovery,

n = 23).

Biomarker Threshold,

pg/ml

% pAUC

(95% CI)

%

Specificity

(95% CI)

%

Sensitivity

(95% CI)

NF-L 4.9 0.9 (0.0–2.9) 17.4

(4.3–34.8)

93.8

(84.4–100)

Aβ40 4.3 0.5 (0.0–2.6) 4.3 (0.0–13.0) 100

(100–100)

IL-10 8.0 0.4 (0.0–1.7) 4.3 (0.0–13.0) 100

(100–100)

GFAP – 0.2 (0.0–1.3) 0.0 (0.0–0.0) 100

(100–100)

H-FABP – 0.2 (0.0–2.8) 0.0 (0.0–0.0) 100

(100–100)

Aβ42 – 0.0 (0.0–2.4) 0.0 (0.0–0.0) 100

(100–100)

S100B – 0.0 (0.0–1.1) 0.0 (0.0–0.0) 100

(100–100)

t-tau – 0.0 (0.0–3.9) 0.0 (0.0–0.0) 100

(100–100)

Threshold indicates a level that needs to be exceeded to detect incomplete recovery.

Statistically significant p-values are in bold. Mann U, Mann–Whitney U-test; pAUC, partial

area under the curve of the receiver operating characteristic; Aβ40, β-Amyloid isoform

1–40; Aβ42, β-Amyloid isoform 1–42; GFAP, glial fibrillary acidic protein; H-FABP, heart

fatty acid-binding protein; IL-10, interleukin 10; NF-L, neurofilament light; S100B, S100

calcium-binding protein B; t-tau, total tau.

combination with the HCTS. Intriguingly, in both panels in
the panel analysis, the thresholds for IL-10 (many patients with
lower GCS scores—indicating a more severe TBI—have relatively
low levels of IL-10) and Aβ40 are considerably lower and for
the HCTS higher compared to analyses where the parameters
are studied in isolation. In line with this finding, it has been
previously reported that most of the clinical studies have not
identified a correlation between blood IL-10 levels and GCS
scores (33). These results suggest that the best diagnostic value
in discriminating patient outcomes after TBI is achieved by
utilizing biomarkers in combination, which echoes our other
recent findings in the acute diagnostics of TBI (19) and outcome
prediction (34). A possible explanation for the higher HCTS
threshold in the panel analysis is that biomarkers provide
additional accuracy to the predictive power of the HCTS
permitting patients with a favorable outcome to have some
traumatic intracranial findings. We have recently reported IL-10
thresholds of 0.38 and 0.44 pg/ml depending on other markers
included in the panels for predicting unfavorable outcomes.
Correspondingly, when the HCTS is included in the panels, IL-
10 thresholds need to be lower to capture patients with low IL-10
levels, low GCS scores, and unfavorable outcomes.

To better illuminate the predictive power of biomarkers in
patients with CT-positive findings, we also investigated their
abilities in distinguishing between patients with complete and
incomplete recovery. The best-performing biomarkers were

the same as in discrimination of patients with favorable and
unfavorable outcomes, but the predictive performance of the
HCTS was low. The HCTS was designed to predict functional
outcome according to the GOS (13). Thus, unsurprisingly,
the HCTS does not provide enough information to clinically
meaningfully discriminate between patients with complete and
incomplete recovery.

We also conducted a comparative analysis of CT-negative
patients. In discriminating CT-negative patients with favorable
and unfavorable outcomes, the best performing biomarkers
were Aβ40, GFAP, and NF-L. However, these results should be
interpreted with caution due to the small number of patients with
unfavorable outcomes among CT-negative patients. In predicting
a full recovery in CT-negative patients, only NF-L, Aβ40, and IL-
10 showed a modest predictive power, whereas the other proteins
did not have any prognostic value.

We utilized the pAUC instead of the conventional AUC
test. The AUC indexes diagnostic performance summarizing
the entire ROC curve, including regions that might not be
relevant to a certain clinical application (e.g., regions with
low levels of sensitivity or specificity). To overcome this
disadvantage, we used the pAUC that summarizes a portion of
the ROC curve over the prespecified range of interest (35)—
in the context of the current study, sensitivity >90%. Thus,
the pAUC yields more information regarding the predictive
information provided by the HCTS and biomarkers than,
for example, overall median value comparison using the
Mann–Whitney U-test. This explains the finding that median
levels of Aβ40 were not different between the favorable and
unfavorable outcome groups, but the biomarkers still yield a
good pAUC and specificity when studied in panels within a fixed
sensitivity area. This also applies to the finding why Aβ40 and
Aβ42 are not different between the complete and incomplete
recovery groups.

Clinical features are known to contribute to explaining
outcome variance (3). However, given the primary purpose of
the current analysis was to explore the prognostic and diagnostic
performance of the biomarker studied as an adjunct to CT
imaging, they were not integrated into the overall prognostic
models. In the main study cohort, there were no differences
in sex distribution, pupil reactivity, events of hypoxia, events
of hypotension, hypoglycemia, anemia, and the proportion of
hospital admissions. Extracranial injuries may affect the levels
of GFAP, H-FABP, IL-10, NF-L, S100B, and t-tau (18, 19, 26),
but in terms of patient group comparisons in the main study
cohort, this effect can be considered negligible because the
proportion of patients with concomitant extracranial injuries
was similar. Moreover, we have previously demonstrated that
the levels of IL-10 and Aβ40—the proteins included in the
outcome prediction panels in the current study—are not affected
by the presence of extracranial injuries in patients with TBIs of
all severities and CT-positive findings (19). The differences in
the HCTS features reflect more serious lesion load in patients
with unfavorable outcomes. The patients were also older in the
unfavorable outcome group.

We studied several biomarkers that are known to be correlated
with TBI prognosis, but we also selected biomarkers less
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investigated in the literature due to their recent promising
results in acute TBI diagnostics (19, 36, 37). Astroglial marker
S100B is the most studied TBI biomarker to date (38–40).
Acutely (12–36 h) measured blood S100B levels are associated
with outcome (41). An earlier study reported that levels of
S100B and GFAP in combination are correlated with unfavorable
outcome in patients with severe TBI (42). S100B is expressed
in many bodily tissues outside the central nervous system,
and its levels increase, e.g., after extracranial injuries (43) and
physical exercise (44), which may complicate interpretation of
the results if the patient has significant extracranial injuries and
if the levels are assessed in polytrauma patients immediately
after injury (45, 46). After S100B, the astroglial marker GFAP,
which is expressed in the cytoskeleton of glial cells (47), is
probably the most studied TBI biomarker. Many studies have
shown a significant association between increased GFAP levels
and unfavorable outcome (16, 17, 42, 48). NF-L and tau have
beenmostly studied in the subacute after TBI. NF-L is abundantly
expressed in the long myelinated subcortical axons (49). NF-L
has been reported to be significantly correlated with late outcome
after TBI by three studies (17, 50, 51). Tau is a microtubule-
associated protein expressed in the axonal cytoskeleton (52, 53).
Significant increases in tau levels have been reported in concussed
professional ice hockey players (54), and tau levels have been
correlated with outcome after severe TBI (55). Aβ40 and Aβ42
(52, 56) are associated with amyloidogenic amyloid precursor
protein metabolism and have been suggested as potential
biomarkers of axonal damage in TBI (57). However, it has been
reported that especially in the case of mild TBI, Aβ40 and Aβ42
do not exhibit prognostic value (58–60). Cytosolic trafficking
protein H-FABP and anti-inflammatory mediator protein IL-
10 are related to traumatic intracranial findings (19, 36, 37).
The outcome prediction ability of IL-10 after TBI has been
controversial, although it has shown some potential in predicting
mortality (33). However, a recent study utilizing partially same
cohort as in this study demonstrated that both IL-10 and H-
FABP improved outcome prediction abilities of panels consisting
of more studied biomarkers and clinical covariates in both mild
TBI and TBIs of all severities (34).

Previous studies suggest that biomarkers may perform
in the outcome prediction of TBI better in combination
than in isolation (50, 61, 62). Czeiter et al. (63) have
reported that GFAP has an added value when combined
with a modified IMPACT model consisting of age, GCS
motor score, and pupil status. Both Gradisek and Vos have
reported that GFAP and S100B improve the performance of
clinical parameters in outcome prediction (61, 62). These
findings are consistent with a recent study by Thelin et al.
(18), where they reported that GFAP and NF-L enhanced
the predictive ability of the IMPACT model combined with
the Stockholm CT findings. With regard to current results,
there was no benefit to combining HCTS, GFAP, and S100B
with HCTS.

Currently, the most widely used CT scores are the Marshall
CT classification and Rotterdam CT score. The Marshall
CT classification grades injuries—in non-ordinal fashion—as

different levels of diffuse injuries or mass lesions in case
hematoma volume exceeds 25 cm3 (8). Although the Marshall
CT classification was not designed to be used as an outcome
prediction tool, the Rotterdam CT score was developed based
on the Marshall CT classification features adding traumatic
subarachnoid and intraventricular hemorrhage (12). The most
recent additions to the outcome prediction-weighted CT
classifications are the HCTS and Stockholm CT score. The
Stockholm CT score includes a separate traumatic subarachnoid
hemorrhage score and a tally comprising midline shift as a
continuous variable, epidural hematoma, dual-sided subdural
hematoma, diffuse axonal injury, and the traumatic subarachnoid
hemorrhage score (14). The HCTS focuses on the types of
intracranial gross pathologies (13). It has been reported that
the Stockholm CT score and HCTS outperform the older
scores in outcome prediction (15). We chose the HCTS
because its implementation is reliable, it is widely validated,
and it takes into account different types of intracranial
injuries that may be associated with differently elevated
biomarker levels.

The strengths of this study are the use of several biomarkers
of different cellular origins in the same cohort, the use of
sensitive advanced analytics, and a prospectively recruited well-
characterized study population. Although a minority of the
screened patients were included in the current analyses, the
patient selection did not introduce a significant bias, as the only
difference was sex distribution.

The main limitation of the study is the variable delays between
injuries and blood sampling. This may have affected biomarkers
with a short half-life in blood, such as H-FABP, IL-10, and
S100B. Furthermore, for NF-L, the sampling time-points might
have been too close to the injury (64). Earlier mean sampling
time would probably have resulted in different sensitivities and
specificities for the panels. In addition, we could not use the
levels of UCH-L1 from the Human Neurology 4-Plex assay in
the current analyses because the coefficients of variation were
at a level where the results are not reliable. We also used
the National Institute for Health and Care Excellence criteria
for head CT imaging, and the results might not be applicable
for other head CT rules due to differences in case selection.
The fairly small study cohort also increases the risk of over-
fitting bias, and therefore, the results should be verified and
validated in a larger cohort. Moreover, the assays utilized in
this study are developed for research purposes, limiting the
generalizability of the results. However, this limitation also
concerns most of the current TBI biomarker studies because
there is a paucity of commercialized assays for clinical TBI
diagnostics. The possibility of some degree of selection bias
should be noted, as only a third of the patients treated at
the recruiting hospital were eventually enrolled in the study.
The current cohort is somewhat less severely injured than
those in which the HCTS has been earlier validated. The
HCTS was originally designed using a neurocritical care cohort.
Finally, these results specifically speak to the additional ability
of the biomarkers studied to improve on the ability of the
Helsinki CT Score to explain outcome variance. Integration
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into well-established TBI outcome prediction schemes such as
IMPACT (9) and Corticosteroid Randomization After Significant
Head injury (10) will require further study. The authors
acknowledge the limitations of the GOSE in detecting subtle
functional and cognitive deficits, especially in patients with
higher GOSE scores. However, the main aim of the study
was slightly grosser in terms of prognostication, as we studied
whether different protein biomarkers can improve the outcome
prediction performance of the HCTS in discriminating patients
with favorable and unfavorable outcomes. The variability in the
time interval between injury and GOSE assessment may have
affected the results.

CONCLUSION

Admission levels of IL-10 and Aβ40 improve the prognostic
performance of the HCTS in discriminating patients with
unfavorable and favorable outcomes. When studied alone,
HCTS had the highest pAUCs of the tested covariates,
followed by Aβ40 and Aβ42. Although the individual
specificities of the HCTS and biomarkers remained low (2–
33%) in isolation, the optimal combination panel yielded
a specificity of 59% when the sensitivity was set above
90%. The current results suggest that outcome prediction
ability of the HCTS could be significantly enhanced with
rapid point-of-care measurement of plasma levels of IL-
10 and Aβ40. This may allow the identification of initially
neurologically stable patients who, however, are developing
severe secondary brain injury that significantly impairs
their recovery.
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