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Background: Several studies suggested cross talk among components of hemostasis,

inflammation, and immunity pathways in the pathogenesis, neurodegeneration, and

occurrence of cerebral microbleeds (CMBs) in multiple sclerosis (MS).

Objectives: This study aimed to evaluate the combined contribution of the hemostasis

inhibitor protein C (PC) and chemokine C-C motif ligand 18 (CCL18) levels to brain

atrophy in MS and to identify disease-relevant correlations among circulating levels

of hemostasis inhibitors, chemokines, and adhesion molecules, particularly in CMB

occurrence in MS.

Methods: Plasma levels of hemostasis inhibitors (ADAMTS13, PC, and PAI1), CCL18,

and soluble adhesionmolecules (sNCAM, sICAM1, sVCAM1, and sVAP1) were evaluated

by multiplex in 138MS patients [85 relapsing-remitting (RR-MS) and 53 progressive

(P-MS)] and 42 healthy individuals (HI) who underwent 3-T MRI exams. Association of

protein levels with MRI outcomes was performed by regression analysis. Correlations

among protein levels were assessed by partial correlation and Pearson’s correlation.

Results: In all patients, regression analysis showed that higher PC levels were

associated with lower brain volumes, including the brain parenchyma (p = 0.002), gray

matter (p < 0.001), cortex (p = 0.001), deep gray matter (p = 0.001), and thalamus

(p = 0.001). These associations were detectable in RR-MS but not in P-MS patients.

Higher CCL18 levels were associated with higher T2-lesion volumes in all MS patients

(p = 0.03) and in the P-MS (p = 0.003). In the P-MS, higher CCL18 levels were also

associated with lower volumes of the gray matter (p = 0.024), cortex (p = 0.043), deep

gray matter (p = 0.029), and thalamus (p = 0.022). PC-CCL18 and CCL18-PAI1 levels

were positively correlated in both MS and HI, PC–sVAP1 and PAI1–sVCAM1 only in

MS, and PC–sICAM1 and PC–sNCAM only in HI. In MS patients with CMBs (n = 12),
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CCL18–PAI1 and PAI1–sVCAM1 levels were better correlated than those in MS patients

without CMBs, and a novel ADAMTS13–sVAP1 level correlation (r = 0.78, p = 0.003)

was observed.

Conclusions: Differences between clinical phenotype groups in association of PC

and CCL18 circulating levels with MRI outcomes might be related to different aspects

of neurodegeneration. Disease-related pathway dysregulation is supported by several

protein level correlation differences between MS patients and HI. The integrated

analysis of plasma proteins and MRI measures provide evidence for new relationships

among hemostasis, inflammation, and immunity pathways, relevant for MS and for the

occurrence of CMBs.

Keywords: multiple sclerosis, neurodegeneration, cerebral microbleeds, hemostasis inhibitors, adhesion

molecules

INTRODUCTION

In multiple sclerosis (MS) pathogenesis, blood–brain barrier
(BBB) disruption and vascular changes interact in a vicious
cycle with altered immune trafficking and the inflammatory
processes, supported by adhesion molecules and chemokines (1–
3). Several studies also suggested the cross talk of immunity
and inflammation with hemostasis, potentially reflected in MS
pathogenesis and progression of neurodegeneration (4).

Plasma levels of protein C (PC) have been associated with
neurodegenerative magnetic resonance imaging (MRI) outcomes
in MS patients (5). Among hemostasis components, PC has
coagulation inhibitor activity and also anti-inflammatory
and cell protective properties (6). Activated PC might inhibit
leukocyte adhesion and transmigration, downregulating
endothelial expression of intercellular adhesion molecule-1
(ICAM1) and vascular cell adhesion molecule-1 (VCAM1)
(7, 8). In MS-related vascular changes, circulating soluble (s)
forms of cell adhesion molecules (CAMs) can result from
activated membranes shedding in response to endothelial
damage (9).

Neurodegenerative outcomes in MS patients have been also
associated with higher plasma levels of C-C motif ligand 18
(CCL18), a chemokine involved in immune cell chemotaxis
(10). To note, inflammatory cytokines favor the expression
of plasminogen activator inhibitors-1 (PAI1) (11), the key
fibrinolysis inhibitor, which counteracts the dissolution of the
fibrin clot and may contribute to perturbed fibrinolysis in MS
cerebral tissue (12, 13). Interestingly, significantly higher levels of
CCL18 and of PAI1 have been reported in MS patients (10, 14).

Among the main regulators of hemostasis, the disintegrin-
like and metalloprotease with thrombospondin type 1 motif 13
(ADAMTS13) has been suggested to support vascular integrity
(14–16), and ADAMTS13 function has been reported to be also
affected by inflammatory profiles (15, 17).

The progressive failure of BBB integrity might have the
pathological features of cerebral microbleeds (CMBs) (18),
revealed by MRI analysis and associated with worsening of
physical and cognitive disability in MS (19). Lower plasma levels

of ADAMTS13 in MS and particularly in those with CMBs (14)
together with higher levels of soluble vascular adhesion protein 1
(sVAP1) (20) have been reported.

Taking advantage of main findings reported in our previous
studies, focused on different biological pathways and performed
on the same MS cohort, we hypothesized that circulating
concentration of hemostasis inhibitors could participate in the
immunity and inflammation MS-related network. To assess this
hypothesis, in the current study, (i) we evaluated the combined
contribution of themain coagulation inhibitor PC and the CCL18
chemokine levels to MS brain atrophy, (ii) we compared PC
and CCL18 plasma concentrations for their ability to explain
the observed neurodegeneration, and (iii) we investigated the
correlations among circulating levels of hemostasis inhibitors
(PC, ADAMTS13, and PAI1), CCL18, and adhesion molecules
[sICAM, soluble neural CAM (sNCAM), sVAP1, and sVCAM1],
particularly in relation to CMBs.

METHODS

Study Population
The population used for this analysis included 138MS patients
and 42 healthy individuals (HI) derived from the CEG-MS
study. Details on the collection, diagnosis, and demographics
of this cohort have been previously described (14). The study
protocols were approved by the institutional review boards
of the University at Buffalo (USA) (ID:MODCR00000352)
and the University/Hospital of Ferrara (Italy) (ID:170585). All
participants provided informed consent.

Plasma Assay
Multiplex magnetic-bead technology (Luminex R&D Systems
Inc., Minneapolis, MN, USA; Merck Millipore, Darmstadt,
Germany) was used to measure the following panel of hemostasis
inhibitors, chemokines, and adhesion molecules: ADAMTS13,
PC, PAI1, CCL18, sICAM1, sNCAM, sVAP1, and sVCAM1
(10, 14, 20, 21).
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TABLE 1 | Demographic and clinical characteristics of the cohort.

N Female (%) Age, year Disease duration, year EDSS Annual relapse rate

All MS 138 100 (72.5) 54.3 ± 10.8 21.1 ± 10.6 3.5 (2.0–6.0) 0.2 ± 0.4

RR-MS 85 60 (70.6) 50.1 ± 10.7 17.0 ± 8.8 2.0 (1.5–3.5) 0.2 ± 0.4

P-MS 53 40 (75.5) 60.9 ± 7.2 27.6 ± 10.0 6.0 (4.0–6.5) 0.1 ± 0.3

MS with CMBs 12 6 (50) 60.8 ± 8.8 25 ± 11.3 4.0 (3.5–6) 0.1 ± 0.1

HI 42 31 (73.8) 51.0 ± 14.3 n.a. n.a. n.a.

MS vs. HI

p-value

0.99 0.11 – – –

RR-MS vs P-MS

p-value

0.56 <0.001 <0.001 <0.001 0.002

All continuous variables are shown as mean ± standard deviation. The ordinal EDSS is shown as median (interquartile range).

MS, multiple sclerosis; RR-MS, relapsing-remitting multiple sclerosis; P-MS, progressive multiple sclerosis; CMBs, cerebral microbleeds; HI, healthy individuals; N, number; EDSS,

Expanded Disability Status Scale; n.a, not applicable.

Magnetic Resonance Imaging Acquisition
and Image Analysis
Brain MRI was performed by 3-T GE Signa Excite HD 12.0
scanner (Milwaukee, WI, USA) with an eight-channel head and
neck coil. Details of the acquisition protocol and MRI analyses
were previously provided (5, 14) and here reported.

Acquisition of two-dimensional (2D) T2/PD-weighted
images (WI), fluid-attenuated inversion recovery (FLAIR),
spin-echo T1-WI with and without gadolinium contrast,
and a three-dimensional (3D) high-resolution T1-WI was
performed. 2D sequences were collected using a 256 ×

192 matrix and 256 × 192 mm2 field of view (FOV),
resulting in a nominal in-plane resolution of 1 × 1 mm2.
For the whole-brain coverage, 48 gap-less 3-mm-thick slices
were acquired. The sequence-specific parameters were as
follows: dual fast spin echo (FSE) proton density and T2-
WI (TE1/TE2/TR = 9/98/5,300ms; echo-train length = 14),
4:31min long; FLAIR (TE/TI/TR = 120/2,100/8,500ms; flip
angle = 90◦; echo-train length = 24), 4:16min long; and spin-
echo T1-WI (TE/TR = 16/600ms), 4:07min long. Last, a 3D
high-resolution T1-WI fast spoiled gradient echo sequence with
a magnetization-prepared inversion recovery pulse was obtained
(TE/TI/TR = 2.8/900/5.9ms, flip angle = 10◦), 4:39min long,
with 184 slices of 1 mm.

For the image analysis, a semi-automated edge detection
thresholding technique was used to assess T2- and T1-LV, as
previously reported (22). Prior to tissue segmentation, lesion
filling was utilized to minimize the impact of T1 hypointensities.
SIENAX software (version 2.6) was used to calculate normalized
volumes of whole brain (WBV), gray matter (GMV), white
matter (WMV), cortex (CV), and lateral ventricles (LVV). Deep
GMV (DGMV) and thalamic volume were calculated using
FIRST (23) and subsequently normalized using the SIENAX-
derived scaling factor (24).

The CMB analysis was performed on susceptibility-weighted
imaging (SWI) minimum-intensity projection images and
susceptibility maps. CMBs were classified as focal, small,
and round to ovoid punctuate areas of signal hypointensity
on SWI minimum-intensity projection images, as previously
reported (19). Signal voids caused by sulcal vessels, calcifications,

and signal averaging from bone were considered mimics of
microbleeds. The presence and number of definite CMBs
were determined on SWI minimum-intensity projection images
by using the Microbleed Anatomic Rating Scale (25). The
CMB volume was calculated on susceptibility maps by using
a semiautomated edge detection contouring and thresholding
technique (22).

Statistical Analyses
Analyses were performed using SPSS (version 24, IBM, Armonk,
NY, USA). Demographic and clinical variables were compared
using χ

2, Student’s t-test, or Mann–Whitney U-test.
To evaluate the contribution of PC and CCL18 to MS brain

atrophy, multiple regression analysis was conducted with each
MRI characteristic used as the dependent variable while age,
sex, body mass index (BMI), and the plasma protein levels were
predictor variables. The first block included the forced entry of
age, sex, and BMI; and the second block included the stepwise
entry of PC and CCL18 natural logarithmic values. To further
determine the findings’ validity, multivariate regression analysis
by enter method with 1000-sample bootstrapping procedure
was performed.

Association analysis of logarithmic values of protein levels
in MS patients and HI was performed by partial correlation
with 1000-sample bootstrapping procedure, using age and sex as
covariates. Due to the low number of MS patients with CMBs,
Pearson’s correlation with 1000-sample bootstrapping procedure
was used to assess associations among logarithmic values of
protein levels.

All reported p-values are based on two-tailed statistical tests,
with a significance level of 0.05.

RESULTS

Demographic, Clinical, and MRI
Characteristics
Table 1 summarizes the demographic and clinical characteristics
of the study population. There were no significant differences
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TABLE 2 | MRI characteristics of the study population.

T2-LV T1-LV WBV WMV GMV CV LVV DGMV Thalamus volume

All MS 15.8 ± 19.0 2.9 ± 6.2 1,438 ± 92.1 710.4 ± 44.5 727.6 ± 61.1 591 ± 48.6 55.1 ± 27.0 53.6 ± 7.1 17.7 ± 2.5

RR-MS 11.8 ± 15.9 2.0 ± 4.6 1,469 ± 82.4 721.8 ± 41 747 ± 56.9 606 ± 44.8 50.7 ± 25.2 55.5 ± 6.5 18.4 ± 2.3

P-MS 22.2 ± 21.9 4.4 ± 8.1 1,387 ± 85.2 691.5 ± 44.1 695.8 ± 54.4 567 ± 44.8 62.3 ± 28.5 50.4 ± 6.9 16.5 ± 2.4

RR-MS vs. P-MS

p-value

0.016 0.075 0.001 0.001 0.018 0.028 0.23 0.007 0.008

Lesion and brain volumes are expressed inmilliliters and reported asmean values± standard deviation. ANCOVAwith age and sex as covariates was used for comparison of MRI volumes.

MS, multiple sclerosis; RR-MS, relapsing-remitting multiple sclerosis; P-MS, progressive multiple sclerosis; LV, lesion volume; WBV, whole brain volume; WMV, white matter volume;

GMV, gray matter volume; CV, cortical volume; LVV, lateral ventricular volume; DGMV, deep gray matter volume.

in any demographic characteristics between the MS and
HI groups.

The progressive (P)-MS group comprised 46 secondary-
progressive MS patients and seven primary-progressive MS
patients. As expected, P-MS patients were older than relapsing-
remitting (RR)-MS patients (p < 0.001), and the RR-MS and
P-MS groups differed in clinical characteristics and brain MRI
measures (Table 2).

Measures of Protein Levels and
Neurodegeneration: An Integrated Model
To evaluate the combined contribution on MRI characteristics
of PC and CCL18 levels, previously found to be associated
with neurodegeneration in two separate investigations on the
same MS patient cohort (5, 10), integrated regression analyses
were performed.

To normalize data, regression analyses were conducted using
natural logarithmic values of PC and CCL18. In the whole MS
population, higher PC levels were associated with lower GMV,
CV, DGMV, and thalamic volume (Table 3). PC alone was able
to predict 37, 36, 22, and 25% of total variation of GMV, CV,
DGMV, and thalamic volume, respectively. In this model, one
logarithmic unit (∼2.7 ng/ml) increase in PC was associated with
decrease in GMV (40.9ml), in CV (28.9ml), in DGMV (4.79ml),
and in thalamic volume (1.7ml). All associations were confirmed
by bootstrap analysis (Table 3).

In the whole MS population, higher CCL18 levels were
associated with higher T2-lesion volume (LV). CCL18 alone was
able to predict the 10% of total variation of T2-LV, and for one
logarithmic unit (∼2.7 ng/ml) increase in CCL18 was associated
with 8.16-ml increase in T2-LV. This result showed a trend for
significance in bootstrap analysis (p= 0.057).

Sub-analysis of clinical phenotype groups indicated that PC
and CCL18 levels were predictors of variation of GM-related
volumes in RR-MS and P-MS patients, respectively (Table 3).

In RR-MS patients, one logarithmic unit (∼2.7 ng/ml)
increase in PC was associated with decrease in GMV
(41.2ml), in CV (30ml), in DGMV (5.04ml), and in thalamic
volume (1.7 ml).

In P-MS patients, one logarithmic unit (∼2.7 ng/ml) increase
in CCL18 was associated with decrease in GMV (44.4ml), in CV
(32.4ml), in DGMV (5.8ml), and in thalamic volume (2.1ml)
and with increase in T2-LV (25 ml).

Protein Level Correlations of Protein C and
Chemokine C-C Motif Ligand 18 in Multiple
Sclerosis and Healthy Individuals
In MS patients and in HI, PC levels were positively associated
with CCL18 levels (Table 4).

A focused sub-analysis in clinical phenotype groups showed
that PC-CCL18 levels were correlated in RR-MS patients
(rho = 0.29, p = 0.008, CI 95% = 0.08, 0.48) but not in
progressive patients (rho= 0.23, p= 0.10, CI 95%=−0.04, 0.48).

In both MS patients and HI, CCL18 levels were also positively
associated with PAI-1.

PC was associated with sVAP1 only in MS patients, and with
sICAM1 and sNCAM only in HI.

Protein Level Correlations in Patients With
Cerebral Microbleeds
In MS patients with CMBs, the correlation between CCL18 and
PAI1 (r= 0.85, p= 0.001, CI 95%= 0.74, 0.97) was even stronger
than in MS patients without CMBs (r = 0.26, p = 0.003, CI
95% = 0.10, 0.42). Similarly, in MS with CMBs, the correlation
between PAI1 and sVCAM1 (r = 0.64, p= 0.026, CI 95%= 0.29,
0.94) was better than in MS patients without CMBs (r = 0.21,
p= 0.022, CI 95%= 0.03, 0.36).

Levels of ADAMTS13 were correlated with those of sVAP1
(r = 0.78, p = 0.003, CI 95% = 0.42, 0.96). Correlation
between ADAMTS13 and sVAP1 was detectable neither/nor in
MS without CMBs (r = 0.16, p = 0.86, CI 95% = −0.16, 0.20)
nor in HI (r = 0.26, p= 0.12, CI 95%=−0.10, 0.50).

Scatter plots of protein concentrations inMS patients with and
without CMBs are shown in Figure 1.

DISCUSSION

Our study was aimed at providing an integrated analysis of
plasma levels of hemostasis inhibitors, chemokines, and adhesion
molecules, found associated with MRI findings in an MS cohort.

The main results of this study were (i) the differences between
PC and CCL18 levels in the ability to predict neurodegeneration
in MS patients and (ii) the positive correlation between PC and
CCL18 levels present in diseased and healthy conditions. Both
observations support the hypothesis of a relation between the
hemostasis and chemokine pathways, which might act in the
disease pathophysiology. Our findings in patients are coherent
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TABLE 3 | Association of PC and CCL18 concentrations with MRI characteristics in multiple sclerosis patients.

All MS (n = 138) RR-MS (n = 85) P-MS (n = 53)

PC CCL18 PC CCL18 PC CCL18

rp P rp p R2 β [CI 95%] p# rp p rp p R2 β [CI 95%] p# rp p rp p R2 β [CI 95%] p#

T2-LV / 0.241 0.19 0.030 0.106 [0.5, 17.0]

0.057

/ 0.088 / 0.952 / 0.802 0.43 0.003 0.209 [10.7, 39.4]

0.003

T1-LV / 0.421 / 0.214 / 0.313 / 0.357 / 0.522 0.34 0.021 0.182 [1.7, 1.6]

0.089

WBV −0.27 0.002 / 0.353 0.316 [−90.4, −15.2]

0.006

−0.31 0.006 / 0.803 0.293 [−94.6, −11.7]

0.013

/ 0.274 / 0.112

WMV / 0.166 / 0.436 / 0.224 / 0.845 / 0.645 / 0.747

GMV −0.32 <0.001 / 0.279 0.374 [−63.0, −14.8]

0.006

−0.36 0.001 / 0.760 0.367 [−66.8, −8.0]

0.005

/ 0.380 −0.33 0.024 0.200 [−78.0, −2.8]

0.021

CV −0.28 0.001 / 0.217 0.362 [−48.3, −10.8]

0.002

−0.34 0.003 / 0.922 0.380 [−49.7, −6]

0.009

/ 0.606 −0.30 0.043 0.179 [−60.3, −2.3]

0.027

LVV / 0.381 / 0.105 / 0.226 / 0.430 / 0.758 / 0.109 /

DGMV −0.26 0.001 / 0.052 0.219 [−7.6, −1.9]

0.003

−0.35 0.002 / 0.434 0.246 [−8.3, −1.1]

0.008

/ 0.452 −0.32 0.029 0.127 [−10.9, −0.03]

0.042

Thalamic volume −0.29 0.001 / 0.088 0.248 [−2.7, −0.6]

0.003

−0.36 0.002 / 0.724 0.269 [−2.9, −0.4]

0.006

/ 0.486 −0.34 0.022 0.152 [−4.0, −0.3]

0.039

Regression model: the first block included the forced entry of age, sex, and BMI; and the second block included the stepwise entry of PC and CCL18 natural logarithmic values.

Partial correlation (rp) and p-value from the regression analysis are shown. R2 of the regression model is reported. Predictor variable excluded from the model (/). The 95% confidence intervals (CIs) of β coefficient and the p-value# from

the 1000-sample bootstrapping are reported.

LV, lesion volume; WBV, whole brain volume; WMV, white matter volume; GMV, gray matter volume; CV, cortical volume; LVV, lateral ventricular volume; DGMV, deep gray matter volume; MS, Multiple Sclerosis; RR-MS, relapsing-remitting

multiple sclerosis; P-MS, progressive multiple sclerosis. Significant results are in bold. No significant results are in grey.
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TABLE 4 | Correlations among protein levels in multiple sclerosis patients and healthy individuals.

ADAMTS13 PC PAI1

All MS (n = 138)

CCL18 Rho, [CI 95%] −0.10, [−0.24, 0.06] 0.28, [0.12, 0.44] 0.30, [0.15, 0.44]

p-value 0.24 0.001 <0.001

sICAM Rho, [CI 95%] 0.09, [−0.12, 0.28] 0.03, [−0.13, 0.18] −0.14, [−0.32, 0.03]

p-value 0.286 0.77 0.11

sNCAM Rho, [CI 95%] 0.09, [−0.09, 0.25] 0.01, [−0.15, 0.18] −0.03, [−0.17, 0.09]

p-value 0.31 0.884 0.700

sVAP1 Rho, [CI 95%] 0.07, [−0.11, 0.25] 0.20, [0.05, 0.36] 0.06, [−0.11, 0.23]

p-value 0.39 0.018 0.45

sVCAM1 Rho, [CI 95%] 0.00, [−0.14, 0.17] 0.06, [−0.12, 0.22] 0.25, [0.08, 0.38]

p-value 0.98 0.51 0.004

HI (n = 42)

CCL18 Rho, [CI 95%] 0.25, [−0.09, 0.52] 0.42, [0.17, 0.64] 0.33, [−0.03, 0.66]

p-value 0.13 0.008 0.045

sICAM Rho, [CI 95%] 0.19, [−0.14, 0.41] 0.33, [−0.04, 0.66] 0.30, [0.00, 0.58]

p-value 0.26 0.040 0.066

sNCAM Rho, [CI 95%] 0.21, [−0.11, 0.48] 0.35, [0.02, 0.60] −0.04, [−0.30, 0.24]

p-value 0.22 0.031 0.83

sVAP1 Rho, [CI 95%] 0.26, [−0.10, 0.50] 0.23, [−0.11, 0.56] 0.27, [−0.09, 0.52]

p-value 0.12 0.161 0.11

sVCAM1 Rho, [CI 95%] 0.20, [−0.07, 0.45] 0.27, [0.03, 0.48] 0.21, [−0.17, 0.52]

p-value 0.22 0.097 0.21

Significant correlations are in bold. Correlations present only in MS patients are reported in dark gray cells. Correlations present only in healthy individuals are reported in light gray cells.

ADAMTS13, a disintegrin-like and metalloprotease with thrombospondin type 1 motif 13; MS, multiple sclerosis; HI, healthy individuals; PC, protein C; PAI1, plasminogen activator

inhibitor 1; CCL5, C-C motif ligand 5; CCL18, C-C motif ligand 18; sICAM1, soluble intercellular adhesion molecule; sNCAM, soluble neural cell adhesion molecule; sVAP1, soluble

vascular adhesion protein-1; sVCAM1, soluble vascular cell adhesion molecule 1.

with previous data: (i) PC and CCL18 levels have been positively
associated with neurodegeneration (5, 10), (ii) the proteomic
profiles within chronic active plaques have detected the presence
of the PC inhibitor (26), which binds activated PC, and (iii) high
CCL18 gene expression has been found in the rim of chronic
active MS lesions (27).

The different results of the regression analysis between
the clinical phenotype groups suggest that the circulating
levels of PC and CCL18 might be related to different aspects
of neurodegeneration. The relation of PC levels with GM-
related volumes in whole MS population and RR-MS could
be interpreted as an increase of PC expression-associated with
inflammation. This might represent the response to diffuse
neuronal loss associated with inflammatory and oxidative
injuries, which might occur independently of focal lesions
(28). Our data suggest that in patients with slightly higher
PC concentration, which did not differ from that in HI, the
well-known protective effects of this protein (29, 30) are not
sufficient to counterbalance the ongoing neurodegeneration.
Differently, the association of CCL18with T2-LV in the wholeMS
population, and in particular in P-MS, would be mainly involved
in the neurodegeneration mediated by focal lesions. Moreover,
the association of this cytokine with GM volume loss in P-MS
might be explained by both secondary antegrade (Wallerian) and
retrograde neurodegeneration (31).

These hypotheses are strengthened by the analysis of level
correlation among proteins related to MRI findings in MS
patients, which pointed out the noticeable correlation between
levels of PC and CCL18, both associated with neurodegeneration.
This correlation would suggest factors able to upregulate
expression of both PC and CCL18 by mechanisms that are
only partially known (32–35). On the other hand, it has
been shown that age, sex, BMI, low-density lipoprotein, high-
density lipoprotein, and triglycerides can differentially influence
concentration and activity of PC (36–38). A limitation of our
study is that the plasma sampling conditions prevented the
evaluation of PC activity. However, we expect that higher
total PC levels measured in our study are proportional
to higher PC activity levels. We can only speculate that
mechanism underlying neurodegeneration can affect both
PC and CCL18 levels with partially different pathological
consequences. This novel hemostasis inhibitors–immunity link
is further supported by the positive correlation between PAI1
and CCL18 levels, previously found higher in MS patients
than HI (10, 14). As a matter of fact, increased CCL18
gene expression has been found in the rim of chronic active
MS lesions (27), and increased PAI1 protein in MS lesions
has been associated with impaired fibrin clearance (12, 13),
which would contribute to the chronic inflammation [reviewed
in (4)].
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FIGURE 1 | Correlation of protein concentrations in multiple sclerosis patients with and without cerebral microbleeds. (A) Correlation of protein concentrations in MS

patients with CMBs. Rho, 95% confidence intervals, and p-values from Pearson’s correlation with 1000-sample bootstrapping procedure, using logarithmic values of

protein levels, are reported. (B) Correlation of protein concentrations in MS patients without CMBs. Rho, 95% confidence intervals, and p-values from partial

correlation with 1000-sample bootstrapping procedure with age and sex as covariates, using logarithmic values of protein levels, are reported. ADAMTS13, a

disintegrin-like and metalloprotease with thrombospondin type 1 motif 13; sVAP1, soluble vascular adhesion protein-1; PAI1, plasminogen activator inhibitor 1;

CCL18, C-C motif ligand 18; sVCAM1, soluble vascular cell adhesion molecule 1.

The hemostasis inhibitors–immunity link was even stronger
in the low number of patients with CMBs, who displayed high
correlation between CCL18 and PAI1 levels. The high association
of PAI1 with sVCAM1 extends this molecular relationship to
adhesion molecules. Several differences between MS patients
and HI in PC correlation with sICAM1, sNCAM, and sVAP1
concentrations support dysregulation, associated with the MS
disease, of the adhesionmolecules and PC pathways. The absence
of correlation between PC and sICAM and sNCAM in MS
patients could be reflected in a decreased inhibition of leukocyte
adhesion and transmigration (7, 8).

Based on the high correlation between ADAMTS13 with
sVAP1 detected only in MS patients with CMBs, and on
low ADAMTS13 (14) and high sVAP1 plasma levels (20),
previously observed in the same patients, it is intriguing to
speculate that the ADAMTS13 function could be correlated
to reactive oxygen species (39) produced by VAP1, an
inflammatory adhesion molecule endowed with enzymatic
properties (40). The contribution of ADAMTS13 to cerebral
vascular integrity is supported by finding low ADAMTS13
activity associated with increased risk of dementia (41), ischemic
stroke (42), and subarachnoid hemorrhage (43). On the

other hand, intracranial hemorrhages and adverse neurological
outcome in stroke have been associated with higher activity of
VAP1 (44, 45).

In conclusion, with the limitations of a cross-sectional study
and the low number of MS patients with CMBs, the integrated
analysis of plasma proteins and MRI measures, here reported,
provides evidence for new MS disease-relevant relationships
among hemostasis, inflammation, and immunity pathways.
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