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Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus.

The exact pathophysiological mechanisms of DN are unclear; however, communication

network dysfunction among axons, Schwann cells, and the microvascular endothelium

likely play an important role in the development of DN. Mounting evidence suggests

that microRNAs (miRNAs) act as messengers that facilitate intercellular communication

and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among

the initial molecular alterations observed in diabetics. As such, miRNAs hold promise

as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment

of DN has shown evidence of therapeutic potential. But this therapy has been

hampered by miRNA instability, targeting specificity, and potential toxicities. Recent

findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to

degradation, and their delivery efficiency and therapeutic potential is markedly enhanced.

Here, we review the latest research progress on the roles of miRNAs as biomarkers

and as potential clinical therapeutic targets in DN. We also discuss the promise of

exosomal miRNAs as therapeutics and provide recommendations for future research

on miRNA-based medicine.
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INTRODUCTION

Diabetic neuropathy (DN) is a prevalent complication associated with diabetes mellitus (1).
Approximately half of all diabetic patients, either pre-diabetes, type 1 or type 2 diabetes, will go
on to develop this condition (2, 3). The symptoms of DN vary according to different stages of the
disease. However, the commonality across all stages is the distal-to-proximal gradient of severity
(4, 5). DN involves more sensory than motor impairments (6, 7). At the early stage, DN patients
mainly experience pain and hyperalgesia. As the disease progresses, patients experience numbness,
muscle weakness, loss of balance, and foot ulcers (6, 8, 9). Besides the staggering healthcare costs,
DN patients experience poor quality of life and have high rates of ulcerations and amputations
(10, 11). Also, long-term physical discomfort may lead to the development of depression and
anxiety (12).

To date, the treatment options for DN patients include (1) intensive glycemic control,
which slows the progression of the disease, (2) pain relief drugs, anti-seizure medications, and
antidepressants, and (3) foot care (13, 14). However, a recent meta-analysis of DN studies has
indicated that glycemic control does not benefit the majority of DN patients (15). Additionally,
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rapid glucose lowering can trigger neuropathic pain, which is
known as treatment-induced neuropathy (15). Thus, available
treatments for DN are far from sufficient.

FUNCTION OF microRNAs

Increasing evidence indicates that microRNAs (miRNAs) are
involved in the pathogenesis of DN (16). miRNAs are non-coding
RNA sequences, and they are composed of 18–24 nucleotides
in length (17). miRNAs bind to target mRNAs and induce
translational repression and mRNA decay (18). Mature miRNAs
can be released into the circulation and body fluids. As they
are protected by RNA-binding proteins and lipid-containing
vesicles (microvesicles, exosomes, apoptotic bodies, and high-
density lipoprotein), miRNAs show good stability and facilitate
communication between cells or organs (19). In the context
of diabetes, hyperglycemia, hypoxia, and inflammation affect
miRNA biogenesis and release. Consequently, these alterations
in the miRNA profile are associated with multiple microvascular
complications (20–23). Of note, a significant portion of miRNAs
was found to be specifically packaged into extracellular vesicles
that express cell-type-specific proteins to mediate their different
functions (24). These findings support the potential applications
of miRNAs in the diagnosis and therapy for DN (25).

In this review, we summarize recent findings on the roles
of miRNAs in the progression of DN and their potential as
biomarkers and therapeutic targets of DN. In particular, we
emphasize the clinical potential of miRNA-based therapy in the
treatment of DN.

FIGURE 1 | miRNAs as regulators of cell function in the peripheral nervous system. Primary mouse DRG neurons were stained with anti-Neurofilament H.

Microvessels in mouse sciatic nerves were perfused with FITC-dextran (molecular mass 2,000 kDa, 500 mg/kg). Macrophages were stained with CD68, and nuclei

were stained with 4
′
,6-diamidino-2-phenylindole.

miRNAs AND THE PATHOPHYSIOLOGY OF
DIABETIC NEUROPATHY

DN is a multifunctional disorder which is characterized by
complex pathogenic mechanisms that have not been fully
elucidated. The pathogenic factors which contribute to DN
include metabolic dysfunction, inflammation, and oxidative
stress, the associated molecular underpinnings of which have
been proposed (26, 27). In this subsection, we discuss recent
findings regarding the roles that miRNAs play in the regulation of
peripheral nervous system (PNS) function and their therapeutic
potential in DN (Figure 1).

miRNAs and Metabolic Alteration of
Diabetic Neuropathy
The metabolic changes in diabetes that contribute to DN include
hyperglycemia, dyslipidemia, and insulin resistance (28–33).
These metabolic imbalances promote the activation of protein
kinase C (PKC), polyol and hexosamine pathways, advanced
glycation end products (AGEs) production, the activity of poly
(ADP-ribose) polymerase (PARP), lipoxygenase, and elevated
Na+/H+ exchanger-1, as well as suppression of insulin signaling
(34–43). Oxidative stress and inflammation are considered as
critical common pathways of cellular injury in hyperglycemia
(44–46). An increase in oxidative and nitrosative stress in plasma
and tissues cause mitochondrial impairment, DNA damage and
apoptosis (47–49). Studies have reported the role of miRNAs in
oxidative response in diabetes but reports on DN individuals
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TABLE 1 | miRNAs and the regulation of inflammation in DN model.

miRNAs Chromosomal location Target genes/regulated pathways DN model References

miR-190a-5p chr9 (mouse) SLC17A6 Balb/c mice injected with STZ (200 mg/kg) (61)

miR-155 chr11 (rat) NF-κB SD rats* injected with STZ (50 mg/kg) (60)

chr16 (mouse) TRAF2, Notch2 db/db mice (62)

miR-9 chr2 (rat) CALHM1 SD rats injected with STZ (60 mg/kg) (59)

miR-25 chr5 (mouse) AGE–RAGE pathway db/db mice (50)

miR-146a chr11 (mouse) IRAK1, TRAF6 db/db mice (63, 64)

*SD rats, Sprague-Dawley rats.

are limited. In db/dbmice with DN, overexpression of themiR-25
precursor reduced PKC-α phosphorylation-mediated reactive
oxygen species production in diabetic peripheral nerves, leading
to improvement of neurological function (50). Wu et al. reported
that miR-106a targeted 12/15-Lipoxygenase of oxidative/nitrative
stress and hindered apoptosis of dorsal root ganglia (DRG) in DN
(51). However, the important role of miRNAs in the regulation of
metabolism associated with DN remains to be determined.

miRNAs and Inflammation of Diabetic
Neuropathy
DN is closely associated with chronic low-grade inflammation
and activation of the innate immune system (27). Inflammation
is strongly associated with neuropathic pain, which affects
approximately 10–40% of the general population (52). In
DN patients, elevated glucose levels increase fibronectin and
inflammatory mediators, such as IL-6, vascular endothelial
growth factor (VEGF), nuclear factor-kappa B (NF-κB), TNFα,
intercellular adhesion molecule-1 (ICAM-1), and transforming
growth factor-β (TGF-β). These effects cause an increased
sensitization of the central nervous system (53–57). Gong et al.
examined the miRNA profiles of the lumbar spinal dorsal horn of
mice with DN and found that miR-190a-5p andmiR-184-5p were
related to inflammation-associated genes that were involved in
the pathogenesis of neuropathic pain (58). MiR-9 interacted with
calcium homeostasis modulator 1 (CALHM1) and activated the
ATP-P2X7R signaling pathway in the spinal cord neurons of rats
with DN (59). MiR-155 mediated neuropathic pain by targeting
NF-κB activity (60).

Using rodent models, some miRNA-based treatments have
been shown to be effective in pain control (Table 1). MiR-190a
alleviated pain by targeting solute carrier family 17 member
6 (SLC17A6) and decreasing the IL-1β and IL-6 level in the
lumbar spinal dorsal horn (61). In a mouse model of DN,
miR-155 mimics suppressed pro-inflammatory cytokines and
attenuated DN by targeting tumor necrosis factor receptor-
associated factor 2 (TRAF2) and Notch2 (62). Zhang et al.,
reported that miR-25 decreased reactive oxygen species content
in diabetic peripheral nerves by activating NADPH oxidase
and upregulating Advanced glycation endproduct (AGE)–RAGE
interaction (50), In a diabetic state, reduced miR-146a expression
was observed in serum, leukocytes, retina, heart, and PNS
(65–67). MiR-146a was also reported to be involved in DN
progression (64, 68). Our recent experimental study adds

substantially to this body of evidence (63). The administration
of miR-146a mimics increased nerve conduction velocity and
ameliorated morphological damage in the sciatic nerve and
footpad of DN mice. In the circulation and the PNS, miR-146a
reduced levels of the inflammatory cytokines TNFα and IL-1β.
Further analysis revealed that miR-146a altered the macrophage
polarization by suppressing proinflammatory macrophage (M1)
activation and increasing anti-inflammatory macrophage (M2)
activation (63). These results are consistent with those of other
groups, which emphasize the regulatory effects of miR-146a on
inflammatory responses in DN (64, 68–70).

Roles of miRNAs in the Neurovascular
Dysfunction of Diabetic Neuropathy
miRNAs and Sensory Neurons
Approximately 80% of DN patients develop gradual damage
to the distal terminals of sensory neurons, leading to the
symptoms of pain or loss of sensation in their toes (4).
Diabetes preferentially targets sensory nerves, autonomic nerves
and then motor nerves (3). An explanation is that sensory
neurons located in the DRG lack the protection of the blood-
nerve barrier, while motor neurons located in the ventral horn
of spinal cord retain this protection (71). Furthermore, the
PNS contains more unmyelinated axons, known as C fibers
than myelinated axons. C fibers send afferent impulses in
response to thermal and mechanical stimuli (72). Loss of C
fibers is an early change that is witness to the development
of DN (73). The molecular mechanisms of how diabetes
targets peripheral neurons and their axons remain unclear.
The prevailing hypotheses include oxidative stress, AGEs
accumulation, inflammation, and mitochondrial dysfunction, all
of which contribute to the injury of DRG neurons and alteration
ofmRNA andmiRNA expression (74–76). Cheng et al. found that
Let-7i and miR-341 were dysregulated in diabetic DRG, while
administration of let-7i mimic and anti-miR-341 independently
improved structural abnormalities and neurological dysfunction
in a mouse model of DN (75). MiR-29b was found to be
down-regulated in DRG neurons of STZ-induced diabetic rats.
The decreased miR-29b was associated with axonal swelling,
apoptosis, and abnormal gene profiles in DRG (77).

In order to reverse the neuropathic deficits associated
with DN, another strategy involves the activation of axonal
regeneration, which has shown promising results in in vitro
and in vivo DN models (78–80). PNS neurons are capable
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of long-distance axonal regeneration (81). The administration
of miR-29b mimic promoted axonogeneration and inhibited
neurodegeneration via the TGF-β/Smad3 pathway (77). Previous
studies from our group showed that miRNAs mediate the
axonal growth of DRG neurons. Diabetic db/db mice showed
upregulation of miR-29c in peripheral nervous tissues. When
cultured under high glucose condition, DRG neurons showed a
substantial reduction in axonal growth. However, when the DRG
neurons were transfected with a miR-29c inhibitor, attenuation
of endogenous miR-29c increased axonal growth. This effect was
mediated by PRKCI, which codes for Protein kinase C iota.When
PRKCI was knocked down, the effects of miR-29c mimics or
inhibitors were abolished (80).

In another study, our group observed that miR-34a was
involved in axonal growth in db/db mice with DN. In cultured

DRG neurons, miR-34a targets a seed region in the 3
′
UTR

region of forkhead box protein P2 and vesicle amine transport
1, leading to a reduction in axonal growth (79). Hyperglycemia
down-regulates miR-146a, which is involved in the reduction
of axonal outgrowth and apoptosis of DRG neurons (78, 82).
Axonal miRNAs locally regulate energy metabolism. Using DRG
neurons cultured in a microfluidic chamber, high glucose locally
reduced miR-146a levels in distal axons. Gain- and loss-of-
function of miR-146a regulate axonal growth via its target genes
IL-1 receptor-associated kinase 1(IRAK1) and tumor necrosis
factor receptor-associated factor 6 (TRAF6) (78).

miRNAs and Schwann Cells
Schwann cells are the most abundant glial cells in the PNS, and
theymaintain neuronal structure and function, promote survival,
and growth after injury (83, 84). Sciatic nerves of DN patients
usually show Schwann cell injury. The ultrastructure of Schwann
cells shows reactive, degenerative, and proliferative changes with
the progression of DN (83).

In a diabetic state, hyperglycemia interrupts Schwann cell
function through different mechanisms (85). Redundant glucose
is converted to sorbitol by aldose reductase, which is expressed
in myelinating Schwann cells, and depletes NADPH, leading to
oxidative stress (86). In addition, sorbitol promotes Schwann
cell dedifferentiation into an immature phenotype via reducing
insulin-like growth factor 1 expression (87). Excess glucose and
modified lipoproteins trigger the production of inflammatory
cytokines in Schwann cells and thereby enhance immune cell
recruitment (88). Diabetes-induced mitochondria dysfunction
activate a maladaptive stress response in Schwann cells, which
induces lipid oxidation and inhibits lipid synthesis, resulting in
the depletion of the lipid myelin components, and thereby causes
axonal degeneration (89).

Schwann cells can sense axonal loss and dedifferentiate to
a proliferative phase and support axonal regeneration (83).
The immature-like Schwann cells clear myelin debris and
release neurotrophic factors until new axons form. Then, they
redifferentiate to form myelin sheaths (84). Using in vitro and in
vivo DN models, miRNAs were demonstrated to participate in
the response of Schwann cells to injury and Schwann cell–axon
interactions (90). A recent study showed that Dicer, which is a
critical enzyme for miRNA biogenesis, is important for Schwann

cell myelination (91). Viader et al. found that miR-34a was able
to regulate dedifferentiation by Notch1 and cyclin D1 (92). MiR-
140 was found to regulate the expression of the transcription
factor for myelinogenesis, Krox20 (92). Furthermore, Let-7d
significantly reduced primary Schwann cell proliferation and
migration by directly targeting nerve growth factors (93). MiR-9,
miR-sc3, miR-30c were reported to be involved in Schwann cell
proliferation and migration (94–96). In cultured rat Schwann
cells (RSC96), the inhibition of miR-145-3p by circular RNA
ACR alleviated high glucose-induced cell apoptosis, autophagy,
and ROS generation by activating the phosphatidylinositol
3-kinase/protein kinase B/mammalian target of rapamycin
(PI3K/AKT/mTOR) pathway (97). Therefore, manipulation of
Schwann cell miRNAs has the potential to be used therapeutically
to reverse the effects of DN.

miRNAs and Microvascular Dysfunction
DN is considered to be a microvascular complication of diabetes
(98). Several mechanisms of hyperglycemia-induced cellular
injury were described to occur in the vascular endothelium
(99, 100). Nerve biopsies from DN patients show thickening
of capillary basement membrane and capillary pericyte
degeneration (98). Microvasculature dysfunction results in a
reduction of nutrition, oxygen, and waste transportation through
nerves, and either precedes or parallels nerve dysfunction and
demyelination (98, 101). Although the mechanism is not fully
understood, there is evidence that the chronic inflammatory state
of diabetes contributes to microvascular complications (102).

miRNAs are involved in diabetes-induced vascular
dysfunction (103). In a study of 60 patients with DN, miR-
199a-3p was significantly higher compared to control volunteers.
The authors proposed that miR-199a-3p promotes coagulation
of the skin peripheral circulation through down-regulating
serine protease inhibitor E2 (SerpinE2) and up-regulating
matrix metalloproteinase-13 (MMP-13) in endothelial cells
(104). Kamali et al. reported that miR-146a is upregulated in
human umbilical vein endothelial cells during the early phase of
hyperglycemic state, and possibly regulates the NF-κB activity
(105). Our previous data shows that db/db mice exhibited a
significant reduction of blood flow in peripheral nerve tissues,
which were measured using laser Doppler flowmetry. This
reduction in blood flow correlated with nerve dysfunction
and axonal demyelination in a sex-dependent manner (106).
However, the delivery of miR-146a mimics significantly
improved peripheral nerve tissue perfusion (63). These data
highlight the role of miRNAs in restoring blood flow which
eventually improves the nerve function in the treatment
of DN (Table 2).

miRNAs as Biomarkers in the Diagnosis of
Diabetic Neuropathy
The diagnosis of DN is not yet standardized but comprises
both qualitative and quantitative methods. In addition to
being evaluated for any signs of muscle weakness, numbness,
and impaired reflexes, patients are usually administered blood
tests (vitamin level, diabetes, and immune function), imaging
tests [computed tomography (CT) scans, magnetic resonance
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TABLE 2 | miRNAs and the neurovascular dysfunctions in DN.

miRNAs Chromosomal location Target genes/regulated pathway Function References

Let-7i chr10 (mouse) Unknown Promotes axonal growth of DRG neurons (75)

miR-29b (miR-29a/b1 cluster) chr6 (mouse) TGF-β/Smad3 pathway Protects DRG neurons against apoptosis;

promotes axonal growth of DRG neurons

(77)

miR-29c (miR-29b2/c cluster) chr1 (mouse) PRKCI Promotes axonal growth of DRG neurons (80)

miR-145-3p (miR-143/145 cluster) chr18 (rat) PI3K/AKT/mTOR pathway Protects SCs against apoptosis (97)

miR-199a (miR-199a/214 cluster) chr19 (human) SerpinE2, MMP-13 Promotes coagulation (104)

miR-146a chr11 (mouse) TRAF6, IRAK1 Reduces inflammatory response (63)

TABLE 3 | miRNAs as biomarkers of diabetic neuropathy.

miRNAs Origin Expression References

miR-873-5p, miR-125a-5p, miR-145-3p, miR-99b-5p Blood mononuclear cells ↑ (22)

miR-518d-3p, miR-618 Serum ↑ (23)

miRNA-199a-3p Plasma ↑ (104)

miR-499a with rs3746444 SNP Peripheral blood ↑ (111)

miR-330-5p, miR-17-1-3p, miR-346 DRG ↑ (113)

miR-21, miR-29a/b/c, miR-192 Serum ↑ (114)

miR-146 Blood mononuclear cells, lower leg skin, white blood cells ↓ (112, 115)

miR-203, miR-181a-1, miR-541 Spinal dorsal horn ↓ (116)

miR-341 DRG ↑ (116)

miR-155 Sciatic nerve, blood, white blood cells, lower leg skin ↓ (60, 112)

Sural nerve ↑

miR-21 White blood cells, sural nerve ↑ (112)

imaging (MRI), muscle and nerve ultrasound], non-invasive
neurological tests (electromyography and nerve conduction
velocity test), and invasive tests (including nerve biopsy and skin
biopsy) (107–110).

miRNA profiles of diabetic patients have been reported in
various studies. Liu et al. measured miRNA profiles in the
mononuclear cells collected from 63 diabetic patients with or
without complications. The study confirmed that miR-125a-
5p, miR-145-3p, miR-99b-5p, and miR-873-5p were enriched
in peripheral blood mononuclear cells, and the targeted gene
families of these miRs were associated with DN (22). A
comprehensive study on the serum miRNA profile of type 1
diabetes patients with DN revealed that serum miR-518d-3p and
miR-618 were upregulated compared to diabetic patients without
DN (23). Another study of 60 diabetic patients demonstrated
a correlation between miR-199a-3p and reduced extracellular
serine content (104). Ciccacci et al. reported that patients
carrying the rs3746444 GG genotype of the miR-499a had
a higher risk of developing DN (111). In a study of DN
patients, the expression of miR-21-5p, miR-146a, and miR-155
were aberrant in white blood cells, peripheral nerves and skin
tissue (112) (Table 3).

Some groups have identified dysregulated miRNAs in the
tissue of animal models of DN. Guo et al. examined microRNA
andmRNA expression profiling in the dorsal root ganglia isolated
from diabetic rats and built a microRNA-gene network. They
found that miR-17-1-3p, miR-330-5p, and miR-346 are potent

promoters of DN (113). Xourgia et al. proposed that miR-146,
miR-499a, and miR-199a-3p are possible biomarkers of DN
(21). In addition, miR-181a-1, miR-541, miR-341, and miR-203
were reported to be dysregulated in an animal model of DN
(116). These data suggest that circulating miRNAs may serve as
potential biomarkers in the diagnosis of DN.

EXTRACELLULAR miRNAs AND DIABETIC
NEUROPATHY

miRNAs and Extracellular Vesicles
Since miRNAs have been detected in biological fluid, their
characteristic properties have been investigated in order to
identify their potential as biomarkers or therapeutic targets (117).
The stability of circulating miRNAs supports its potential as
biomarkers. There are two possible means by which miRNAs
can be protected from RNase degradation: complexing with
Argonaute-protein, and being packaged within extracellular
vesicles (EVs) or lipoprotein (118). Exosomes have low
immunogenicity, low toxicity, and high nucleic acid loading
capacity. Therefore, they hold great promise as vehicles for
therapeutic cargos (119). Exosomal miRNAs have been found to
regulate target gene expression and therebymediate physiological
responses in the recipient cells (120). Some studies employed
silencing of Dicer to generate miRNA-depleted EVs, and the
effects of the naïve exosomes were abolished (121, 122).
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These studies suggest that the miRNA cargo of exosomes
largely contribute to their molecular and biological effects.
According to www.Clinicaltrail.gov, there are several ongoing
clinical trials using exosomal miRNAs to diagnose or to
study the pathophysiology of myocardial infarction, diabetic
retinopathy, cancer, and sepsis (NCT04127591, NCT03264976,
NCT03738319, NCT03911999, NCT02957279).

Extracellular miRNAs in Peripheral
Neurovascular Function
In a preclinical study, Lopez-Verrilli et al. reported that Schwann
cell-derived exosomes were internalized by DRG axons to
promote axonal regeneration (123). Our group showed that
exosomes derived from Schwann cells (SC-exos) increased
intraepidermal nerve fiber density in the footpad and reduced
axonal and myelin damage of the sciatic nerve, leading to
a reduction of neuropathic symptoms in DN mice (124). In
contrast, exosomes derived from Schwann cells cultured in high-
glucose medium facilitated the development of DN by reducing
epidermal nerve fibers (125). Naïve SC-exos were enriched in
miR-21, miR-27a, and miR-146a. However, the ablation of miR-
27a in exosomes abolished their effects on promoting axonal
growth of diabetic DRG neurons and migration of Schwann
cells compared with naïve SC-exos. Bioinformatics analysis
revealed that miR-21, miR-27a, and miR-146a target Semaphorin
6A (SEMA6A), Ras homolog gene family, member A (RhoA),
phosphatase and tensin homolog (PTEN), and nuclear factor-
κB (NF-κB) genes, respectively, thereby protecting axons and
improving axonal growth. Exosomes isolated from Schwann
cells stimulated by high glucose were enriched for miR-28,
miR-31a, and miR-130, which target DNA methyltransferase-3a
(NDNMT3A), NUMB (endocytic adaptor protein), synaptosome
associated protein 25 (SNAP25), and growth-associated protein-
43 (GAP43), separately and participate in axonal growth (125).

Extracellular miRNA as Therapy Target for
Diabetic Neuropathy
Mesenchymal stromal cell (MSC)-derived exosomes have been
employed in the study of cancer, stroke and cardiovascular
diseases. These studies showed that MSC-exosomes function via
their miRNA cargoes (126). In a recent study, we administered
MSC-derived exosomes to db/db mice with DN and observed a
significant improvement in neurological outcomes (127). Further
analysis confirmed that MSC-exosomes inhibit the inflammatory
response and promote neurovascular remodeling. Data from
miRNA sequence and bioinformatics analysis revealed thatMSC-
exosomes are enriched in miRNAs that are highly involved
in inflammation, cell cycle progression, and apoptosis. Let-7a,
miR-23a, and miR-125b, among others, synergistically target the
TLR4/NF-κB signaling pathway, thereby regulating macrophage
polarization (127).

The use of exosomes as therapy represents an innovative and
very promising delivery system. It provides an opportunity to
address a compelling clinical need. To mimic the property of

exosomes, chemically synthesized nanoparticles have been used
to package small RNAs in disease treatment (128). In a study
on DN, Luo et al. employed imine backbone-based polymer to
construct a cationic nanocarrier for miR-146a and demonstrated
that nanoparticle–miR-146a-5p alleviated the morphological
changes of sciatic nerve in a rat model of DN by regulating the
inflammatory response (70).

CONCLUSION AND FUTURE
PERSPECTIVE

The field of miRNAs as a potential therapy for DN is growing. In
this review, we summarized recent findings on miRNAs that are
involved in the pathophysiology and treatment of DN. Several
challenges remain to enable the translation of miRNA-based
therapy to the clinic. The biological function of the majority
of miRNAs has yet to be investigated. Previous studies have
targeted specific dysregulated miRNAs. However, given that DN
is caused by multiple factors, the regulation of a single miRNA
may not be sufficient to reverse the impairments. A network of
miRNAs and mRNAs will likely provide more comprehensive
and accurate characterization of DN. There is a paucity of
literature interrogating the mechanisms by which miRNAs
regulate the development of DN. Most of the miRNA-related
studies were performed in different rodent strains utilizing
different methods to induce DN. More work is needed to unlock
the potential of miRNA therapy for clinical use.

Recent preclinical studies using exogenous double-stranded
miRNAs mimic or single-stranded antisense RNAs (antimiRs)
have shown promising results in rodent models of DN (50, 59, 63,
77, 79). However, the use of miRNAs as translational agents or
pharmaco-targets in DN patients requires future investigations.
The mechanisms underlying these beneficial therapies are being
elucidated. Additionally, safety considerations need to be fully
explored. Exosomes enhance the stability of miRNA delivery with
high transduction efficiency. Largely, exosome-based therapy
appears to be safe without adverse effects. Standard quality
control needs to be established to ensure the consistency of
exosomal products and the content of their miRNA cargo.
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