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As the pandemic of COVID-19 is raging around the world, the mysteriousness of severe

acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) coronavirus is being revealed

by the concerted endeavors of scientists. Although fever and pneumonia are typical

symptoms, COVID-19 patients exhibit multiple neurological complications. In this interim

review, we will summarize the neurological manifestations and their potential causes

in COVID-19. Similar to the other two fatal respiratory coronaviruses, SARS-CoV and

Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 also shows

to be neuroinvasive that may spread from the periphery to brain, probably by the

retrograde axonal transport. The invaded viruses may directly disrupt the complex

neural circuits, and raise a chronic activation of immune responses. In another hand,

multiple organ failure in severe COVID-19 is caused by the systemic acute immune

responses, and unsurprisingly caused the brain inflammation and led to encephalitis.

However, in the central nervous system (CNS), the activation of resident immune cells

including microglia and astrocytes may lead to chronic immune imbalance, which

underlies the potential long-term effects in synaptic changes and neuropsychiatric

impairments. The neuroinvasive biology also provides a possible link with the Braak

staging of neurodegenerative diseases such as Parkinson’s disease (PD). Although with

considerable advances, the neurotropic potential and chronic neurological effects caused

by SARS-CoV-2 infections merit further investigations.

Keywords: COVID-19, SARS-CoV-2, neurological complications, neuroinvasion, cytokine storm, immune

imbalance

INTRODUCTION

The ongoing spread of COVID-19 disease, is the first pandemic ever caused by coronaviruses in
the human history, as announced by the World Health Organization (WHO) in March 2020. The
ferocious virus, isolated as a new strain of zoonotic coronavirus named as severe acute respiratory
syndrome-coronavirus 2 (SARS-CoV-2), has rapidly spread with over 23.2 million confirmed cases
and 0.8 million deaths globally as of Aug 23 2020 (Johns Hopkins University). The pandemic
has exhausted the entire worlds’ personal protective equipment and medical ventilators, and is
also strenuously hurting the global economy and raising considerable social issues. As we are in
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the midst of this ongoing pandemic, it has gathered the
concerted efforts of clinicians, public health experts, virologists,
immunologists, and other scientists to understand the virus’s
biology and blocking agents. So far, a myriad of urgent endeavors
has been maneuvered, aiming to reveal the multiple aspects of
this wily virus, ranging from the genomic structures, sensing
receptors to the development of specific medicines and vaccines.

Structurally, SARS-CoV-2 is a single-stranded RNA virus,
whose genome contains 29,891 nucleotides in size and 12
putative functional open reading frames (ORFs) (1). Of those
translated proteins, the spike proteins located on the virus surface
mediate the virus entry into host cells (2, 3). Mechanistically, the
spike of SARS-CoV-2 senses the angiotensin converting enzyme
2 (ACE2) receptor (2–5), the same as SARS-CoV, which normally
helps regulate blood pressure and anti-atherosclerosis (6). This
binding, in concert with host proteases, principally TMPRSS2,
facilitates the virus getting through the cell membrane by
endocytosis (4), followed by hijacking the host cell’s translation
machinery and producing massive virus copies and further
invading new cells. As ACE2 is typically enriched in type II alveoli
cells, the lung tissue becomes the major organ affected by the
virus (7). The typical symptoms of COVID-19, unsurprisingly,
are fever, cough, and pneumonia, which probably lead to acute
respiratory distress syndrome (ARDS) and acute lung injury, as
described in around 20% of COVID-19 patients (8).

Along with SARS-CoV broke out in 2003 and Middle East
respiratory syndrome coronavirus (MERS-CoV) since 2012,
SARS-CoV-2 is the third coronavirus that can cause severe
respiratory diseases. Genomic analysis shows that SARS-CoV-2 is
in the same β-coronavirus clade as SARS-CoV and MERS-CoV,
and shares a highly homologous sequence with SARS-CoV (9).
Scientists thus have put great efforts in clarifying how it resembles
and differs from SARS-CoV and MERS-CoV at multiple levels
that may shed light on the COVID-19 therapeutics and drug
repurposing. Specifically, the similarity goes to the systemic
organ injury and cytokine storm in severe situations.

SYSTEMIC ORGAN INJURY

Although the symptoms in lungs are manifested at an early
stage, they can be extended to multiple organs including the
blood vessels, heart, gut, kidneys, testicles, and brain, which
are well-known to express ACE2 and are potential targets of
COVID-19 (10). Unlike the outbreak of SARS and MERS,
the emerging single-cell RNA-sequencing (scRNA-seq) during
recent years is rapidly advancing our ability to comprehensively
map the cell types with ACE2/TMPRSS2 expression (11–15). It
is shown that, besides pneumocytes, ACE2 receptors are present
in various cell types including the nasal epithelial cells, oral
mucosa epithelial cells, cholangiocytes, intestine enterocytes
and, importantly, immune cells such as B cells, Natural killer
T cells, monocytes, and macrophages (11, 13, 16–19). Notably,
ACE2 is also expressing in the brain, in which eight cell types
were identified including excitatory neurons, inhibitory neurons,
oligodendrocyte progenitors, oligodendrocytes, microglia,
astrocytes, pericytes, and endothelial cells (13). However, other

studies showed contradictory results that glial cells may not
express ACE2, but instead might express non-canonical docking
receptors such as Basigin (BSG) or Neuropilin-1 (NRP1) to
facilitate viral cell entry and replication (20, 21). Nevertheless,
the present of ACE2 receptors in multiple organs underlies the
systemic impairment by SARS-CoV-2 infection.

NEUROLOGICAL MANIFESTATIONS

Coronavirus infection has been associated with neurological
manifestations such as stroke, seizure, convulsions, mental
confusion, and encephalitis (22, 23). During the outbreak
in 2003, SARS-CoV could induce neurological diseases such
as polyneuropathy, encephalitis, and aortic ischemic stroke
(24). The virus itself has been detected in the cerebrospinal
fluid (CSF) samples, and even the brain of deceased patients
(25, 26). In 2012, nearly 20% of patients with MERS-
CoV infection developed neurological symptoms, including
ischemic stroke, paralysis, unconsciousness, Guillain-Barre
syndrome, and other infectious neuropathy (27). It is thus
not surprising to see neurological manifestations in COVID-
19 patients as well (28–30). In general, COVID-19 neurological
manifestations could be classified into two categories: central
nervous system (CNS) symptoms and peripheral nervous
system (PNS) symptoms. CNS symptoms included headache,
dizziness, acute cerebrovascular disease, ataxia, disturbance of
consciousness, and epilepsy. However, PNS symptoms are less
severe and manifested as neuralgia, hypoplasia, hyposmia, and
hypogeusia. Notably, respiratory illness in COVID-19 patients
may also result from the direct role of SARS-CoV-2 in respiratory
control nuclei in the brain (31). Interestingly, still many
patients who present with severe neurological complications
have hardly any respiratory symptoms, suggesting a rather
heterogenous neurological responds among individuals, and that
neurological manifestations did not appear concomitantly with
respiratory symptoms.

In a retrospective series of 214 COVID-19 patients at a
hospital located in the epicenter of Wuhan, China, neurologic
symptoms were recorded in 78 patients (36.4%) included
headache and disturbed consciousness, and 6 patients had strokes
(32). Half of the patients in Strasbourg, France by severe
SARS-CoV-2 infection was associated with encephalopathy,
prominent agitation and confusion, and some of them had
single acute ischemic strokes after brain imaging (33). In Japan,
a COVID-19 patient was brought in by the ambulance due
to a convulsion accompanied by unconsciousness, which was
diagnosed with aseptic meningitis/encephalitis (34). Notably for
this case, the specific SARS-CoV-2 RNA was detected from the
CSF sample. Similarly, a medical team at a hospital in Beijing,
China confirmed the presence of SARS-CoV-2 in the CSF of
a 56-year-old patient with COVID-19 by genome sequencing,
thereby clinically verifying viral encephalitis (35). Notably, unlike
encephalopathy, the acute stroke is most likely caused by
endothelial injury due to a pro-inflammatory hypercoagulable
state post SARS-CoV-2 infection (36, 37). Hence in China, the
neurological symptoms have been added into the Diagnosis and
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FIGURE 1 | Proposed neuroinvasion routes and immune responses in COVID-19. Upon infections by SARS-CoV-2 coronaviruses, COVID-19 patients exhibit multiple

neurological complications, which might be due to the effects through the direct pathway and the indirect pathway. (I) The neuroinvasive properties of SARS-CoV-2

underlies the retrograde axonal transport in the direct pathway. Specifically, SARS-CoV-2 viruses may go upward through the olfactory nerve across the cribiform plate

and to the brain, or alternatively, start from the gastrointestinal system to invade the enteric nervous system and finally the brain. Several other invasion routes for

SARS-CoV-2 may include blood-borne diffusion through the blood-brain barrier, blood-cerebrospinal fluid barrier and meningeal cerebrospinal fluid barrier. Those

invaded viruses may directly disrupt the complex neural circuits, and raise a chronic activation of immune responses. (II) Multiple organ failure in severe COVID-19 is

caused by the systemic acute immune responses, the cytokine storm, and unsurprisingly caused the brain inflammation and led to encephalitis. However, the

potential long-term effects in synaptic changes and neuropsychiatric impairments in key brain regions should not be neglected. This is probably caused by the

activation of CNS immune cells that renders chronic immune imbalance.

Treatment Protocol for 2019 Novel Coronavirus Pneumonia (The
7th Trial Edition), released by National Health Commission &
State Administration on March 3, 2020, which reminds us of
taking nucleic or genomic tests with CSF samples and carefully
handling with neurological complications to reduce the fatality
of critical care patients.

Those neurological manifestations observed in COVID-19
patients are reminiscent of neuroinvasive potential of SARS-
CoV-2 virus, like the other zoonotic coronaviruses SARS-CoV
and MERS-CoV (31). An increasing number of patients with
COVID-19 reported a sudden loss of smell (anosmia) or taste
(dysgeusia) (38, 39) that may serve as initial manifestations and

warning signs for possible subsequent CNS involvement. Given
that ACE2 is highly expressed in nasal epithelial cells (11), people
speculate that nose might be the first stop during the invasion
of viruses, which then go upward through the olfactory nerve
across the cribiform plate, and to the brain (29) (Figure 1).
One recent study showed that, based on bulk and single-cell
RNA sequencing, ACE2 expressed in supporting and stem cells
in the human/mouse olfactory epithelium, as well as vascular
pericytes in the mouse olfactory bulb, however, was not detected
in olfactory sensory or bulb neurons (40). Furthermore, autopsy
studies of COVID-19 patients found that olfactory epithelium
showed prominent leukocytic infiltrates in the lamina propria
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and focal atrophy of the mucosa, and olfactory nerve fibers in the
lamina propria were lack of myelin, suggestive of axonal damage
(41). However, the clear evidence is still lacking to confirm
whether the olfactory neuropathy is due to direct viral infection
or mediated by perturbing supporting non-neural cells.

The occurrence of diarrhea, as another COVID-19 symptom,
suggests that the gastrointestinal system is a possible alternative
pathway to invade the enteric nervous system and finally the
brain (42) (Figure 1). Several invasion routes for coronaviruses
have been postulated (28, 43), including retrograde axonal
transport, blood-borne diffusion through the blood-brain
barrier (BBB), blood-cerebrospinal fluid barrier, and meningeal
cerebrospinal fluid barrier (44). Once in the brain, those viruses
may directly destroy the complex organization of neural circuits
through neuronal damage, and raise a chronic activation of the
inflammatory responses.

CYTOKINE STORM

Apart from the direct infection of the brain, SARS-CoV-2
may cause neurological disorders indirectly by triggering an
over-activated immune responses, characterized as cytokine
storm. Cytokines are chemical signaling molecules that summon
immune cells and mediate a balanced immune response,
however, in the cytokine storm, levels of certain cytokines soared
far beyond the required levels so that the recruited immune cells
began to attack healthy tissues and caused catastrophic organ
failures. Vital research suggests that for many patients who died
fromCOVID-19, the fatal blowmay be their own immune system
rather than the virus itself.

The initiation of cytokine storm is a common complication
caused by fatal respiratory coronaviruses, like SARS-CoV
and MERS-CoV, and is the major cause of morbidity (45).
Studies have shown that increased numbers of pro-inflammatory
cytokines (such as IL-1β, IL-6, IL-12, IFN-γ, IP10, and MCP1)
in the serum of severe SARS patients are associated with lung
inflammation and extensive lung injury (46). Similarly in 2012, it
was reported that MERS-CoV infection can induce substantially
elevated concentrations of pro-inflammatory cytokines such as
IL-6, IFN-γ, TNF-α, IL-15, and IL-17 (47, 48). Ongoing studies
have also been revealing the features of cytokine storms in
COVID-19 patients. For most severe patients with COVID-19,
the levels of pro-inflammatory cytokines soared in the serum,
similar to that in SARS and MERS, including IL-6, IL-1β, IL-2,
IL-8, IL-17, G-CSF, GM-CSF, IP10, MCP1, MIP1α, and TNF-α
(8, 49–53). In addition, patients admitted to the intensive care
unit (ICU) had higher G-CSF, IP10, MCP1, MIP1A, and TNF-α
concentrations than patients not admitted to the ICU, suggesting
that cytokine storm is associated with disease severity (8).

High levels of pro-inflammatory cytokines could cause shock
and tissue damage, leading to respiratory failure, or multiple
organ failure. They mediate extensive lung pathology, resulting
in massive infiltration of neutrophils and macrophages, diffuse
alveolar injury and the formation of clear membranes and
diffuse thickening of the alveolar wall (54). Thus, it is urgently
needed therapeutics based on suppressing cytokine storms.

In the clinical practice, anti-inflammatory agents have been
frequently used for the treatment of patients with severe illness
by virus infections. For instance, corticosteroids were ever used
in treating patients with SARS, which have actually saved many
lives and families. However, long-term use of this powerful
broad immunosuppressant can cause various complications such
as increased cholesterol, brittle bones, cataracts, as well as
depression that may greatly reduce the quality of life. More
unfortunately, the latest evidence from SARS and MERS patients
shows that receiving corticosteroids has no effect on mortality,
but delays viral clearance (8, 55, 56). Therefore, according to
the WHO’s interim guidelines, corticosteroids should not be
routinely given systemically.

It is noteworthy that, IL-6, one of the cytokines elevated in
response to SARS-CoV-2 was the most reported in multiple
clinical groups. For instance, in a series of 99 COVID-19
cases from hospitals in Wuhan and Shanghai, China, half of
the patients show elevated IL-6 levels (57). Another group
investigated the immune responses and cytokine release from
patients in Chongqing, China. They found that IL-6 was higher
in 76.19% of severe patients, whereas that was seen in only
30.39% of mild patients (58). It echoes that the elevated serum
IL-6 correlates with pneumonia, ARDS, and adverse clinical
outcomes (59–61). Elevated serum C-reactive protein, which is
regulated by IL-6, also serves as a biomarker of severe coronavirus
infection (62). Based on this fact, drugs such as Tocilizumab,
Satralizumab, and Sarilumab, as IL-6 receptor (IL-6R)-targeted
monoclonal antibodies (mAbs), might prove beneficial for the
treatment of COVID-19 (63). Indeed, controlled clinical trials are
underway around the world to test the treatment of IL-6 and IL-
6R antagonists for COVID-19 patients with severe respiratory
complications. Preliminary results from the study of 21 severe
COVID-19 patients receiving Tocilizumab in Anhui province,
China are encouraging (64). All patients have recovered from
fever within the first day of Tocilizumab treatment (64). Other
clinical trials are also underway in different countries. Although
the efficacy of Tocilizumab in COVID-19 patients with ARDS
requires further evaluation in a larger randomized controlled
trial, this encouraging clinical trial suggests that neutralizing
mAbs against other pro-inflammatory cytokines such as IL-1 and
IL-17 might also be useful (54). For urgently treating the soaring
number of severe patients, the Chinese Diagnosis and Treatment
Protocol for 2019 Novel Coronavirus Pneumonia (The 7th Trial
Edition) has updated a guideline for taking immunotherapy: for
patients with extensive lung lesions and severe cases who also
show an increased level of IL-6 in laboratory testing, Tocilizumab
can be used for treatment. Although with exciting benefits, the
inhibition of IL-6 pathway works mostly for severe cases, the
long-term treatment strategy against the SARS-CoV-2 infection
requires the rapid development of effective anti-viral drugs and,
more importantly, vaccines.

CNS IMMUNE RESPONSES

The systemic cytokine storm caused the multiple organ failure,
and unsurprisingly triggered the hyperinflammatory responses
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inside the CNS that further exacerbated the neurological
pathology. The spreading of infected leukocytes might across
the compromised BBB, caused by increased pro-inflammatory
cytokines, from the periphery to the brain. Previously, for
most cases of SARS, autopsy detections of affected brain
tissue samples have shown signs of extensive edema, microglial
hyperplasia, neuron necrosis, nerve demyelination, as well as
massive infiltration of monocytes and lymphocytes (65). Based
on recent autopsy results, brain hyperemia and edema, partial
neuron degeneration, as well as inflammatory cell infiltration in
perivascular regions were also detected in COVID-19 patients
from China (66). The persistence of coronavirus infection and
its ability to infect macrophages, microglia, and astrocytes
in the CNS are particularly critical in the pathogenesis of
encephalitis (30). Notably, a neurotropic virus could directly
activate glial cells and induce a pro-inflammatory phenotype
(67). Studies have confirmed that primary glial cells cultured
in vitro released a large number of pro-inflammatory factors,
such as IL-6, IL-12, IL-15, and TNF-α, upon coronavirus
infection (22).

Glial cells, as resident immune cells of the CNS, normally
take a role in maintaining the homeostasis, responding promptly
to CNS injuries such as trauma, ischemia, and infection,
and also providing support and protection for neurons.
Particularly, microglia are initially activated to clear the
invaded pathogens by secreting pro-inflammatory mediators,
followed by promoting tissue reconstitution and inflammation
resolution. Microglia have been demonstrated to protect
against lethal coronavirus encephalitis in mice (68). During
the early days after infection, microglia were required to
limit mouse hepatitis virus (MHV) replication and subsequent
morbidity and lethality. The chemical depletion of microglia
led to increased viral replication in the brain and caused
ineffective T cell responses, reminiscent of the critical role
of microglia in the early innate responses to virus infections
(68). However, in addition to protective effects, microglia
may also mediate hippocampal presynaptic membrane damage
through complement system, resulting in long-term memory
impairment and cognitive decline in patients with encephalitis,
caused by coronavirus or human immunodeficiency virus (HIV)
infection (69).

Thus, beyond the acute cytokine storm, the activation of
immune cells in the brain might cause chronic inflammation
and brain damages in COVID-19 patients. Taken together, in
the short-term, SARS-CoV-2 infections may cause the CNS
inflammation and lead to encephalitis. Potential long-term
effects, such as changes in mood and cognitive behavior,
and continuous changes in the expression of genes that
regulate synaptic activity in key brain regions should not be
neglected. Moreover, this speculation has drawing increasing
attentions of clinicians and neuroscientists (21, 70–73).
Hence, prognostic research on potential and longitudinal
potential COVID-19-related neuropsychiatric diseases is
crucial in disease surveillance and evidence-based treatment
strategies (74).

LINKING WITH NEURODEGENERATIVE
DISEASES

The multiple organ failure in COVID-19 is associated with
the acute immune imbalance, whereas the chronic immune
imbalance in the CNS, either by invaded virus or by infiltrated
immunemediators, might be happening (Figure 1). An emerging
hypothesis states that the inflammation caused by viral infection
may trigger and propagate chronic neuronal dysfunction, which
is an event before the clinical onset of multiple neurodegenerative
diseases such as Parkinson’s disease (PD) and Alzheimer’s disease
(AD) (75). Notably, the chronic immune imbalance is the
shared hallmark for neuropsychiatric and neurodegenerative
diseases, due to the uncontrolled skewing of glial phenotypes
into detrimental states (76). Experimental vaccination of mice
with H5N1 influenza virus can mimic many aspects of PD-like
initiation and pathogenesis (77, 78). The continued inflammation
that follows in the viral trajectory leads to dysfunction or
degeneration of dopaminergic neurons in the midbrain, just
as seen in PD patients (77, 78). Therefore, it would be
interesting to probe the relationship between the immune
responses upon coronavirus infections and neurodegeneration/
neuropsychiatric impairments.

The similar set of sustained elevated pro-inflammatory
cytokines or chemokines, typically ILs, CXCLs, and TNF, that
trigger the cytokine storm of COVID-19 are also frequently
detected in the CSF and autopsy brain samples (79–81),
which is critical in the development and progression of
numerous neurodegenerative disorders. Since the role of
neuroinflammation and specific inflammatory mediators have
been recently extensively reviewed in respective diseases
including PD, AD, amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD), and multiple sclerosis (MS)
(82–86), we will not discuss in much details but give some
examples. For AD, pro-inflammatory factors are responsible for
the increased amyloid precursor protein (APP) production and
amyloid-β (Aβ) load, as well as tau hyperphosphorylation, the
hallmarks of AD. Specifically, TNF-α can increase Aβ burden
by promoting β-secretase production and increased γ-secretase
activity (87). Elevated IL-6 levels have been shown to activate
CDK5, a kinase that phosphorylate tau proteins (88). Such
extensive neuroinflammation thus would cause neuronal death
that leads to cognitive impairment and dementia.

Alpha-synuclein (α-synuclein), a major component of Lewy
bodies in the pathogenesis of PD, plays an important role in
mediating innate and adaptive immunity (89). Particularly, the
mutant forms of α-synuclein in PD could induce microglial
activation, releasing various pro-inflammatory cytokines (IL-6,
IL-1β, and TNF-α etc.) and CXCL12, by recognizing toll-like
receptors (TLRs) (90, 91). Similarly, for ALS, the aggregated
proteins as mutated superoxide dismutase (mSOD1), caused
motoneuron injury and triggered microgliosis in spinal cord
cultures by releasing pro-inflammatory cytokines and free
radicals (92). Overall, the aggregated proteins among multiple
neurodegenerative diseases including α-synuclein, Aβ, and
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mSOD1, can initiate a pro-inflammatory responses that lead to
a sustained imbalance of neuroinflammation and neuronal loss
due to the persistent protein aggregations (76).

In addition, the nerve demyelination was also observed in
both SARS-CoV and SARS-CoV-2 infected patients, resembling
the pathology of MS, which is also tightly associated with
neuroinflammation (85). A similar pattern of elevated pro-
inflammatory factors (IL-6, IL-8, TNF etc.) was recorded in the
CSF samples of MS patients with severe gray matter damage
(93). Interestingly, other neuropsychiatric diseases such as
schizophrenia, bipolar disorders, depression, and among others,
are also tightly linked with the neuroinflammatory responses
(94). For instance, the levels of pro-inflammatory mediators
including IL-6, IL-8, IL-1β, and TNF-α in the CSF or peripheral
blood are obviously higher in schizophrenia patients (95, 96).
Microglia that release pro-inflammatory factors such as TNF-α
can promote the release of glutamate to induce oligodendrocyte
dysfunction, resulting in abnormal neural networks in the brain
of schizophrenic patients (97). Notably, the altered mental status
and neuropsychiatric presentations were recorded in COVID-19
patients and other coronavirus infected diseases (98, 99).

Above all, the neuroinflammation imbalance toward pro-
inflammatory states shows to be a shared hallmark of various
neurological diseases, hence, the CNS infiltrated immune
mediators in COVID-19 patients would probably take part in the
chronic pathogenesis process and bring about certain irreversible
neuronal impairments.

In another hand, given that SARS-CoV-2 viruses have
invaded the CNS and can be detected in the CSF, their
direct effects in the chronic modifications of neural circuits
worth further investigations. Also, it is intriguing to address
whether the infection increases the risk of developing chronic
neurodegenerative diseases. The Braak hypothesis regarding
the etiology of sporadic PD proposes that neurotropic viruses
entering the nasal cavity and gastrointestinal tract may trigger
Lewy pathology, which then spreads to the CNS through
transneuronal transport, resulting in neurodegeneration in
critical brain nuclei (100). Recent studies have confirmed the
nasal-brain and gut-brain deliveries in the pathogenesis of PD
(101, 102). Interestingly, the symptoms of anosmia and diarrhea
of COVID-19 patients indicate the nasal and digestive system
as the routes of viral infection, which may echo the Braak
staging evidence that the prodromal or preclinical stage of PD is
characterized by olfactory and gastrointestinal symptoms (103).

PERSPECTIVE

Even though COVID-19 respiratory tract infections and
cardiovascular events are the main causes of death, the clinical
awareness of neurological impairments can reduce the mortality
of infected patients. To reduce the risk of those neurological
complications, further investigations are needed to determine
specific risk factors or protective determinants of neurological
events. Although recovery from the acute phase of infection can
of course be relieved from a public health perspective and help
stop the spread of infection, the long-term neurological effects

of the disease must also be considered. So far, mounting studies
have reported various neurological manifestations, however, the
neurotropic potential and chronic neurological effects of the
SARS-CoV-2 virus remains to be fully addressed.

Currently, the urgent need for treating COVID-19 severe
patients is still suppressing cytokine storms and balancing the
immune system, particularly also in the CNS. Unfortunately,
no specific medicine against COVID-19 has been developed till
now. Apart from using mAbs such as Tocilizumab, Satralizumab,
and Sarilumab, a recent study reported that dexamethasone,
a corticosteroid used widely for its anti-inflammatory and
immunosuppressant effects, showed to reduce the mortality by
1/3 among patients receiving invasive mechanical ventilation
and by 1/5 among patients receiving oxygen by other means,
but had no effects for patients without receiving respiratory
support (104). However, this drug, as mentioned earlier as other
corticosteroid drugs, was also under critical concerns of side
effects. Different drugs work depending on the severity of disease
and the timepoint for delivery. Adding the need of treating
neurological complications, the therapeutic strategy becomes
more complicated. It is possible that the anti-neuroinflammatory
drugs that used for treating neurodegenerative diseases might be
repurposed, due to their capability of crossing the BBB. However,
the candidate drugs and doses would be really dependent on each
individual, since neurological complications were heterogenous
among populations, and importantly, their safety for normal
people infected with SARS-CoV-2 will also await clinical trials to
be proven.

Additionally, another method to alleviate the fierce immune
responses is employing the anti-inflammatory and anti-
apoptotic effects of mesenchymal stem cells (MSCs), which
can repair lung epithelial cell damage and facilitate alveolar
fluid clearance (54). So far, they are still in clinical trials and
are waiting for evaluation. In the other way, fortunately, the
development of vaccines for the public has been right on the
track (105–108), some of which have been under Phase III
Clinical Trials.

Lastly, while we are talking about the acute or chronic
immune imbalance, it is better to appreciate that keeping
the immune system in balance is pivotal for maintaining
health from infections and other pathogenic agents. To achieve
this goal, people should lead a healthy lifestyle, with diets
rich in whole grains, vegetables, and fruits, but low in red
meat and high-fat foods. Regular exercise and stress relief are
also incorporated, so as to strengthen our immunity against
viral infections.
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