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Background: Assessment of cerebral aneurysm rupture risk is an important task,

but it remains challenging. Recent works applying machine learning to rupture risk

evaluation presented positive results. Yet they were based on limited aspects of data,

and lack of interpretability may limit their use in clinical setting. We aimed to develop

interpretable machine learning models on multidimensional data for aneurysm rupture

risk assessment.

Methods: Three hundred seventy-four aneurysms were included in the study.

Demographic, medical history, lifestyle behaviors, lipid profile, and morphologies

were collected for each patient. Prediction models were derived using machine

learning methods (support vector machine, artificial neural network, and XGBoost) and

conventional logistic regression. The derived models were compared with the PHASES

score method. The Shapley Additive Explanations (SHAP) analysis was applied to

improve the interpretability of the best machine learning model and reveal the reasoning

behind the predictions made by the model.

Results: The best machine learning model (XGBoost) achieved an area under

the receiver operating characteristic curve of 0.882 [95% confidence interval

(CI) = 0.838–0.927], significantly better than the logistic regression model (0.779;

95% CI = 0.729–0.829; P = 0.002) and the PHASES score method (0.758; 95%

CI = 0.713–0.800; P = 0.001). Location, size ratio, and triglyceride level were the

three most important features in predicting rupture. Two typical cases were analyzed

to demonstrate the interpretability of the model.

Conclusions: This study demonstrated the potential of using machine learning for

aneurysm rupture risk assessment. Machine learning models performed better than

conventional statistical model and the PHASES score method. The SHAP analysis can

improve the interpretability of machine learning models and facilitate their use in a

clinical setting.
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INTRODUCTION

Intracranial aneurysms are present in 3–7% of the population
(1). Although the rupture rates of aneurysms are low, the
consequences can be dire (2, 3). Surgical or endovascular
treatments for aneurysms are effective but still carry the
risk of complications (3). Given the high prevalence and
catastrophic consequence of rupture, identification of rupture-
prone aneurysms is of vital importance.

Morphology and hemodynamics have been shown to be
associated with aneurysm rupture (4–9). There are other risk
factors such as hypertension (10), blood lipid level (11), alcohol
consumption, and smoking (12, 13). Based on these risk factors,
various risk evaluation methods have been proposed. The
PHASES score is among the most quoted, which is derived based
on several large cohort studies (14, 15). In both ISUIA and UCAS
studies, aneurysms smaller than 7mm have been associated with
very low risk profiles for rupture (3). However, it was also
reported that more than 47% of ruptured aneurysms were of size
<5mm (16). Because of the complex nature of aneurysm rupture
estimation, the rupture risk assessment of aneurysms remains a
challenging problem.

Machine learning is a group of algorithms that function to
train a computer to learn complex nonlinear relationships by
observing a large amount of data. There has been growing
interest in the use of machine learning to predict aneurysm
rupture. Some of these prediction models have been developed
based on morphological features (17–19), whereas others have
been based on hemodynamic features (20). As the rupture
of the aneurysm is clearly secondary to multifactorial causes,
the use of only morphological and hemodynamic features may
result in missing important information from other risk factors.
Moreover, machine learning models are usually more complex as
they operate as “black boxes” and therefore difficult to interpret,
thereby potentially limiting their use in a clinical setting.

In this study, to address the complex nature of aneurysm
rupture, we integrated multiple aspects of information from
patient demographics, lifestyle behaviors, clinical histories, lipid
profile results, and aneurysmmorphology to develop rupture risk
models. To conquer the black box problem of machine learning
output and improve its interpretability, we further applied the
Shapley Additive Explanations (SHAP) method to explain the
reasoning behind the predictionmade by themodel.We aimed to
provide a useful tool to aid decision making in the management
of cerebral aneurysms.

MATERIALS AND METHODS

Study Population
Approval for this study was obtained from the local institutional
review board. The data were anonymous, and the requirement
for informed consent was therefore waived. The data in the
current study were obtained from 2016 to 2019 from a
single center. The inclusion criteria included (1) a diagnosis
of aneurysm/s by digital subtraction angiography (DSA) or
computed tomography angiography (CTA). The exclusion
criteria included (1) fusiform aneurysm; (2) presence of other

intracranial vascular malformation; (3) traumatic, bacterial,
dissecting, or fusiform aneurysm; (4) cases with poor image
quality not adequate for morphology measurement; and (5) cases
with missing information in regard to morphology, medical
histories, lipid profile results, and lifestyle behaviors. The data
that support the findings of this study are available from the
corresponding author upon reasonable request.

Overall Research Plan
Morphological variables, lifestyle variables, laboratory test
results, and clinical variables were acquired for each patient.
All the variables were first examined by statistical test. Risk
models were developed using conventional statistical method
and three different machine learning methods, namely, support
vector machine (SVM), artificial neural network (ANN), and
gradient boosting tree. The four models and the PHASES score
method were compared in terms of their predicting performance.
Following that, SHAP analysis was applied to the best model to
determine the impact of each feature and reveal the reasoning
behind the output of the model.

Data Acquisition
Morphological parameters including aneurysm size, aneurysm
height, aneurysm width, neck width, parent artery diameter,
aspect ratio, and size ratio were measured and calculated from
three-dimensional (3D) DSA images according to their definition
in previous research (21). The measurement was performed
on 3D volume-rendering images. The operator first identified
the location of neck and rotated the view angle such that
the maximum length (size) of aneurysm was revealed. The
operator then measured morphological parameters mentioned
above. For detailed definition of the morphological parameters,
see Supplementary Figure 4. The measurements were done
by two independent neurosurgeons blinded to the rupture
status, and the average of their readings was used. Blood
tests were also performed for patients to measure lipid levels.
Patient demographic characteristics, medical history, and lifestyle
behaviors were also recorded. The list of collected variables is
shown in Supplementary Table 1.

Model Construction
To compare the efficacy of conventional statistical model and
machine learning models, logistic regression (LR) and three
typical machine learning algorithms were selected to construct
the prediction model, which were SVM, ANN, and extreme
gradient boosting (XGBoost). LR model has been extensively
used in clinical research and is well known for its simplicity
and straightforward interpretation. An SVM tries to find optimal
decision boundary—hyperplanes that best separate data of
different categories. An ANN is a collection of connected nodes
(neurons) that compute the output by some nonlinear functions
of the sum of its input. During training, the connections
(weights) between neurons are modified so that computers can
learn the pattern to classify data. XGBoost is an ensemble
learningmethod that constructs multiple decision trees to classify
data (22). During the training process, new trees are sequentially
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added to correct the errors made by existing trees. The final
prediction is a weighted sum of all tree predictions.

Model Training and Evaluation
The overall training procedures are shown in Figure 1. The
whole data samples were randomly split into training and
test sets according to a division of 7:3. Optimal features and
hyperparameters combinations for the model were determined
on the training set. Tenfold cross-validation (23) was used in
the process of feature selection and hyperparameters. Details of
the feature selection and hyperparameter tuning were described
in Supplementary Material. The model was subsequently tested
on the independent test set, which had not been seen by the
model during the training process so as to avoid overfitting.
To avoid bias due to random split of the training and test

sets, the above procedures were repeated for 10 times, and the
performance of different models was compared. The comparison
of different models’ performance in the 10 repeats was examined
by Wilcoxon signed ranks test as suggested by a previous study
(24). All continuous variables were normalized to the range of 0
to 1. Categorical variables were transformed into binary variables
using one-hot encoding. As unruptured aneurysms make up
the majority of cases, which may bias the model, we therefore
used the balanced accuracy as training metric that is a balanced
measure of the quality of a binary classifier for imbalanced
class problems (25). Besides commonly used metrics such as
area under the receiver operating characteristic (ROC) curve, we
also reported results of area under the precision recall curve,
which is more informative on imbalanced dataset. The four
machine learning models were also compared to the PHASES

FIGURE 1 | Training and evaluation procedures of machine learning model.
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score method, which was calculated based on aneurysm size,
location, and patient clinical information such as hypertension,
age, and previous subarachnoid hemorrhage history (14). Scores
from different aspects were added up together, and higher score
indicates higher risk. For example, a score of 4 corresponds to a
5-year rupture risk of 0.9%, whereas a score of 20 corresponds to
risk of 17.8%.

Model Interpretation
Machine learning models are often seen as black boxes. However,
for clinical decision making, the reasoning behind the diagnosis
is very important. Therefore, it is important to understand
what features lead to algorithm output. To conquer the black
box nature of machine learning method, we applied the SHAP
(26) method to the best model obtained above to interpret
the predictions made by the model. The SHAP method has
been developed from cooperative game theory, and it serves
to calculate the contributions of each feature value toward
the final prediction. The above machine learning models and
SHAP analysis were implemented using Scikit-Learn library (27)
(https://scikit-learn.org/stable/) and SHAP (https://github.com/
slundberg/shap) in Python.

Statistical Analysis
All features between ruptured and unruptured cases were
compared using univariate analyses. For binary or categorical
features, Fisher exact test or χ

2 test was performed. For
continuous features, they were first examined with the Shapiro-
Wilk test to determine normality, followed by the Student
t-test (for normally distributed variables) or Mann-Whitney
U test (for non–normally distributed variables). P < 0.05 was
considered to be statistically significant. After that, variables
with P < 0.05 were further selected into further analysis. These
variables were also tested for collinearity using the Pearson test.
Only linearly independent variables (P > 0.05, correlation < 0.8)
were input into multivariate analysis. Backward conditional
stepwise method was used to derive the LR model. Statistical
analyses were performed using SPSS (IBM Corporation, USA).
The comparison of ROC curves was based on the method
of DeLong et al. (28) using MedCalc (MedCalc Software,
Belgium). Comparisons between multiple groups were corrected
by Bonferroni correction.

RESULTS

A total of 390 patients and 452 aneurysms were recruited,
374 of which were included in the current study. The baseline
statistics of both ruptured and unruptured groups are presented
in Table 1. For demographic variables, gender and hypertension
were significantly different between the two groups. For
lifestyle behaviors variables, smoking, alcohol consumption, and
intensive physical activity were significant variables. In terms of
aneurysm morphology, aneurysm size, vessel angle, size ratio,
aspect ratio, location, shape, andmultiplicity were all significantly
different between the two groups. For blood test variables,
triglyceride level and homocysteine were significant variables.

TABLE 1 | Results of univariate analysis for all feature variables.

Parameters Unruptured

(n = 306)

Ruptured

(n = 68)

P

Age, y 56.16 ± 11.17 52.85 ± 11.62 0.154

Female 208 (68.3%) 31 (45.6%) 0.001*

BMI, kg/m2 22.69 ± 3.16 22.55 ± 3.18 0.160

Hypertension 0.001*

No 223 (59.0%) 36 (42.4%)

Grade I 67 (18.8%) 21 (21.2%)

Grade II 13 (3.3%) 6 (6.1%)

Grade III 3 (0.3%) 5 (6.1%)

Smoking 0.020*

Yes 39 (12.7%) 17 (25.0%)

Alcohol 0.032*

Yes 32 (10.4%) 14 (20.6%)

Physical activity 0.023*

Moderate–heavy 83 (27.1%) 29 (42.6%)

Sleep 0.608

Lack of sleep 155 (50.6%) 46 (67.6%)

Hyperlipidemia 0.952

Yes 13 (4.2%) 3 (4.4%)

Previous SAH 0.186

Yes 80 (26.1%) 23 (33.8%)

Diabetes 0.266

Yes 21 (6.9%) 7 (10.3%)

TG 1.48 ± 1.47 1.16 ± 0.61 0.001*

Cholesterol 4.50 ± 0.93 4.57 ± 1.23 0.677

LDL 2.69 ± 0.87 2.75 ± 0.99 0.545

HDL 1.30 ± 0.32 1.26 ± 0.51 0.942

Hcy 10.65 ± 4.19 12.09 ± 4.83 0.005*

Aneurysm size 3.63 ± 1.51 4.33 ± 1.56 0.005*

Aneurysm width 3.62 ± 1.60 4.03 ± 1.85 0.152

Aneurysm height 3.28 ± 1.38 3.52 ± 1.43 0.139

Aneurysm neck 3.53 ± 1.28 3.25 ± 1.51 0.070

Vessel angle 99.72 ± 28.24 110.08 ± 30.05 0.006*

Size ratio 1.33 ± 0.76 2.12 ± 1.14 <0.001*

Aspect ratio 1.00 ± 0.50 1.20 ± 0.50 0.002*

Multiplicity <0.001*

Yes 120 (39.2%) 10 (14.7%)

Location <0.001*

ICA 196 (64.1%) 12 (17.6%)

MCA 39 (12.7%) 16 (23.5%)

ACA 13 (4.2%) 4 (5.9%)

PCA 5 (1.6%) 1 (1.5%)

BA 11 (3.6%) 3 (4.4%)

VA 6 (1.9%) 2 (2.9%)

AComA 15 (4.9%) 8 (11.8%)

PComA 21 (6.9%) 22 (32.3%)

Aneurysm shape <0.001*

Regular 271 (88.5%) 42 (61.7%)

Daughter sac 5 (1.6%) 13 (19.1%)

Multilobulated 9 (2.9%) 4 (5.9%)

Others 21 (6.9%) 9 (13.2%)
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FIGURE 2 | Receiver operating characteristic curves of the four derived models and the PHASES score method. XG, XGBoost; ANN, artificial neural network; SVM,

support vector machine; LR, logistic regression.

TABLE 2 | Performance comparison of machine learning models, logistic

regression model, and the PHASES score method.

XGBoost ANN SVM LR PHASES

Area under the ROC curve 0.881 0.837 0.838 0.801 0.758

Sensitivity 90.9% 74.0% 72.6% 72.0% 79.7%

Specificity 77.0% 78.0% 81.0% 83.0% 64.0%

Balanced accuracy 0.839 0.760 0.765 0.775 0.718

The ROC curves of the four derived models and the
PHASES score method are plotted in Figure 2. The XGBoost
model achieved the highest area under the ROC curve of
0.882 [95% confidence interval (CI), 0.838–0.927], followed
by the SVM model of 0.838 (95% CI = 0.790–0.886),
ANN model of 0.837 (95% CI = 0.794–0.881), and LR
model of 0.779 (95% CI = 0.729–0.829). The PHASES score
method achieved an area under the ROC curve of 0.757
(95% CI = 0.713–0.800). SVM and ANN models performed
better than LR, but the difference did not reach statistical
significance. The XGBoost model performed significantly better
than LR model (P = 0.002) and PHASES score method
(P = 0.001). Table 2 summarizes the performances of all
the models.

SHAP analysis revealed the relative importance of each feature
in the XGBoost model. Location at internal carotid artery
(ICA), size ratio, and triglyceride level were the three most
important features, as shown in Figure 3. The model tended to
associate large size ratio, lower triglyceride level, larger vessel
angle, larger aspect ratio, and intensive occupational physical
activity with positive SHAP values, which means increased risk.
On the contrary, location at ICA, regular shape, and multiple
aneurysms were associated with negative SHAP values, which
means decreased risk.

Figure 4 shows two typical predictions made by the XGBoost
model. SHAP analysis revealed the contribution from each input
feature toward the model output, thus revealing the underlying
reasoning for the prediction. Features that increase the risk of
rupture are colored in red and appear on the left-hand side. In
contrast, features that decrease the risk of rupture are colored
in blue and appear on the right-hand side. The length of the
stripe for each feature denotes the importance (weight) of that
feature in making the prediction. A longer stripe indicates that
the feature contributes more toward or opposes the prediction. If
the total length of red stripes is longer than that of blue stripes,
which means rupture-prone factors outweigh rupture-protected
factors, the model will favor the prediction of rupture and vice
versa. For example, the first case is an ICA aneurysm correctly
classified as unruptured. Being located on ICA, having regular
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FIGURE 3 | Summary of SHAP analysis on the dataset. This shows the 10 most important features and their impact on the model output. Each dot represents a case

in the dataset. The color of a dot indicates the value of the feature, with blue meaning the lowest range and red meaning the highest range. The horizontal axis shows

the corresponding SHAP value of the feature. A positive SHAP value contributes to the prediction of rupture and vice versa.

shape and absence of hypertension are the main reasons for
unruptured prediction, outweighing other rupture-prone factors
such as slightly high size ratio and aspect ratio. The second
case is an middle cerebral artery (MCA) aneurysm correctly
classified as a ruptured aneurysm. Large size ratio, being located
on non-ICA, presence of hypertension, and smoking are themain
reasons behind for this case. Therefore, despite some rupture-
protected factors such as having regular shape and normal level
of triglyceride, it is predicted to be a rupture-prone aneurysm.

DISCUSSION

We have demonstrated the feasibility of using machine learning
to develop aneurysm rupture risk models using multi-aspects
data obtained from patient demographics, clinical characteristics,
lifestyle behaviors, lipid profiles, and angiographic images.
The best model (XGBoost) showed good performance with
area under the ROC curve of 0.882, better than the model
derived using LR and the PHASES score method. We further
demonstrated that by using the SHAP method the reasoning
behind the model prediction can be revealed.

Size is an important risk factor in rupture as confirmed by
the ISUIA study and UCAS study (2, 3). Location is also an
important factor to consider. Aneurysms located on the anterior
and posterior communicating arteries are known to bear an
increased risk of rupture, while aneurysms located on the internal
carotid arteries seldom rupture. Morphological parameters such
as size ratio, aspect ratio, and daughter sac have also been

associated with rupture (4, 5, 17, 21). Our model has learned
similar patterns. The SHAP analysis showed that ICA, size ratio,
aspect ratio, and vessel angle had significant impact on the model
risk output. It should be noted that all non-ICA aneurysms were
associated with positive SHAP values (increased risk), meaning
increased risk for aneurysms at other locations, consistent with
previous studies (29).

Our study also included four lifestyle behaviors variables.
In statistical analysis, smoking and alcohol consumption
were associated with increased risk, which is consistent with
previous findings (12, 13). We further discovered that intensive
occupational physical activity was associated with increased
risk, which correlates with the findings from two studies (30).
However, as the sample size of current study is relatively small,
studies with more cases and multicenter design should be
performed to further investigate the association.

Hyperlipidemia and lipid accumulation have been suggested
to be related to aneurysm rupture (18, 31–33). Triglyceride is
commonly recognized as a risk factor for cardiovascular disease.
However, it is interesting to note that in our study triglyceride
levels exhibited the opposite trend. We observed that triglyceride
level was significantly lower in the ruptured group (P = 0.001).
This pattern was also recognized by the algorithm; therefore

in the model, a low level of triglyceride was conceived as a
risk factor. The association between triglyceride and cerebral
aneurysm rupture has been seldom discussed in the literature.
There are some studies reporting increased risk of hemorrhagic
stroke associated with a low triglyceride level (34–38). Although
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FIGURE 4 | SHAP model explanation of two typical predictions. This shows the main contributing features behind the model prediction. Features linked to red color

bar contribute to rupture prediction, whereas features linked to blue color bar contribute to unruptured prediction. The length of the color bar represents the amount of

contribution, measured by SHAP value shown in parenthesis, from the corresponding feature. TG, triglyceride; SR, size ratio; RS, regular shape; AR, aspect ratio; NW,

neck width; HTN, hypertension; PA, physical activity; VA, vessel angle; N-ICA, aneurysms not on internal carotid artery; N-AComA, aneurysms not on anterior

communicating artery.

the mechanism is not fully understood, it has been suggested that
low cholesterol may lead to necrosis of smooth muscle cells in
arterial medial layer (39), therefore making the arterial wall more
susceptible to rupture.

In the current study, machine learning models performed
better than conventional statistical model such as LR. Although
machine learning models are powerful, they are often more
complex, which makes them difficult to understand like a “black
box.” This is a significant drawback if machine learning models
were to be used in clinical setting. Clear reasoning is very
important in medical decision making, especially for deadly
disease such as cerebral aneurysms. We demonstrated that by
using the SHAP method, machine learning models can be
made more interpretable, and the underneath reasoning behind
each prediction can be revealed, which can facilitate its use in
clinical setting.

Extensive efforts have been made to stratify the risk of
aneurysm rupture. Most of the previous research surrounding
evaluation of aneurysm rupture risk has developed their models
on conventional regression methods (4, 5, 8, 14). Although
such models are simple and robust, they are limited to the
use of a relatively small number of features and assume linear

relationships between each feature and the risk of rupture.

Machine learning allows for the development of a more flexible
relationship between feature and risk, with more features

involved in the final calculation. Liu et al. developed an ANN for
the rupture prediction of AComA aneurysms (17). Their model
was developed mainly based on morphological parameters and
achieved an area under the ROC curve of 0.928. Moreover, Liu
et al. developed a prediction model using Lasso regression based
on radiomics features derived from angiographic images (18) and
achieved area under the ROC curve of 0.853. Kim et al. applied
deep convolutional neural network to classify the rupture risk
of small aneurysms based on angiographic images and achieved
an area under the ROC curve of 0.755 (19). Silva et al. also
developed a random forest model and achieved an area under
the ROC curve of 0.81 (40). The rupture of cerebral aneurysm is
inherently amultifactorial consequence. Therefore, in the current
study, we applied a more holistic approach by taking account of
information from morphologies, demographics, medical history,
lifestyle behaviors, and lipid profile. Furthermore, to make our
model more interpretable, we applied the SHAP method to
reveal the underlying reasoning behind predictions made by the
machine learning model.

Clinical Application
Our model has demonstrated good performance and improved
interpretability. Although in the current study, the measurement
of morphological parameters was done on DSA images, it can
be generalized to CTA and magnetic resonance angiography

Frontiers in Neurology | www.frontiersin.org 7 December 2020 | Volume 11 | Article 570181

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ou et al. Interpretable Machine Learning for Aneurysm Rupture

images. The morphology measurement can be done on site
and does not require upload of full set of images, which
minimizes the risk of sensitive information leakage. The input
variables required by the model can be easily obtained, and the
calculation time was only of seconds, thus making the prediction
model easily applicable to real-world clinical environment.
The improved interpretability revealed the reasoning behind
the algorithm output, which could give more confidence to
users. In the future, we plan to make it as a cloud-based
service, on which users can input required variables and receive
feedback of risk analysis in real time, thus more accessible to
the public.

There are several limitations in our study. The major
limitation is the retrospective nature of the study. Unruptured
aneurysms at diagnosis did not guarantee no rupture in
the long term. The follow-up period in our study is short
(mean follow-up time: 59 days), but our model can still
help to identify high-risk aneurysms that need immediate
treatment. We considered only a limited number of morphology
parameters. Although we have considered more than a dozen
of factors in our study, some risk factors, such as sophisticated
morphological parameters and computational hemodynamics
and use of statin, were not included in the current study.
Further study incorporating these factors is needed. The
number of ruptured and unruptured cases in our study is
not well balanced, which may affect the generalization of
the developed machine learning model. The number of cases
from a single center is relatively small, and the model has
not been validated externally. Multicenter prospective study
with long-term follow-up will be needed to further validate
the model.

CONCLUSION

We have demonstrated the feasibility of evaluating aneurysm
rupture risk using model derived from machine learning
algorithm based on multidimensional data of morphologies,
demographics, clinical characteristics, lifestyle behaviors,
and lipid profiles. The developed model showed promising

performance with good interpretability, with potential to further
optimize the management of unruptured aneurysms.
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