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Background: Somatic single nucleotide variant (SNV) mutations occur in neurons but

their role in synucleinopathies is unknown.

Aim: We aimed to identify disease-relevant low-level somatic SNVs in brains from

sporadic patients with synucleinopathies and a monozygotic twin carrying LRRK2

G2019S, whose penetrance could be explained by somatic variation.

Methods and Results: We included different brain regions from 26 Parkinson’s

disease (PD), one Incidental Lewy body, three multiple system atrophy cases, and

12 controls. The whole SNCA locus and exons of other genes associated with PD

and neurodegeneration were deeply sequenced using molecular barcodes to improve

accuracy. We selected 21 variants at 0.33–5% allele frequencies for validation using

accurate methods for somatic variant detection.

Conclusions: We could not detect disease-relevant somatic SNVs, however we cannot

exclude their presence at earlier stages of degeneration. Our results support that coding

somatic SNVs in neurodegeneration are rare, but other types of somatic variants may

hold pathological consequences in synucleinopathies.

Keywords: SNCA, synuclein, Parkinson’s disease, somatic mutation, targeted sequencing, synucleinopathies,

molecular barcodes

INTRODUCTION

Synucleinopathies are disorders characterized by the pathological aggregation of α-synuclein (1).
Among synucleinopathies, Parkinson’s disease (PD) is the commonest disorder and is characterized
predominantly by neurodegeneration of dopaminergic neurons in substantia nigra (SN) (2, 3).
Somatic variation occurs in human brain and its role in neurodegeneration has started to be
explored (4). Current estimations of the occurrence of somatic variants in human brains suggest
that single nucleotide variants (SNVs, or “point mutations”) could be the most prevalent form
(5, 6). Somatic SNVs are reported to increase with age, where large genes or transcriptionally
active genomic regions appear to be susceptible (7). Somatic SNVs in coding regions of genes
associated with synucleinopathies could contribute directly to these disorders, depending on the
amount of affected cells and mechanisms of spread of the aetiological agent [see review (8)]. The
study of somatic SNVs has been facilitated by the latest technological improvements. Compared to
single-cell studies, bulk-sequencing offers a cost-effective strategy to study somatic variation across
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tissues and brain regions of multiple individuals. The error rate
of bulk-sequencing at low allele frequencies (AF) can be reduced
by using molecular barcodes (9). In this study, we used targeted
sequencing in PD-associated genes from post-mortem human
brains aimed for the detection of pathogenic somatic SNVs.

METHODS

Samples were obtained from the Parkinson’s UK and Queen
Square brain banks. Patients gave informed consent and
the study was approved by the local ethics committee. We
evaluated 66 samples from multiple brain regions and three
matched-blood samples, derived from 42 individuals with
the following conditions: 26 PD, 12 control, three Multiple
system atrophy (MSA), and one Incidental Lewy Body case
(Supplementary Table 1). PD cases were sporadic, except for
case 18, a manifesting LRRK2 G2019S carrier, whose identical
twin was non-penetrant (10) and somatic variation was suggested
as an explanation for the discordance in the development of
PD (11). We did not include other monogenic cases, as we did
not have access to their brain tissue. The mean and standard
deviation for onset age was 62.0 ± 11.1 years, and for disease
duration 10.1 ± 7.0 years. This calculation excludes case 18,
whereas these were not available.

We used a previously reported protocol for genomic
DNA extraction (12) and the HaloplexHS method to prepare
sequencing libraries. Details about the generation of artificial
mosaics, the sequencing panel design, the customization of
library preparation and bioinformatic analysis are provided in
Supplementary Table 2 and Supplementary Figure 1.

For amplicon sequencing, primers were designed with
Primer3Plus (13) to generate amplicons larger than 300 bp,
targeting the variants of interest at >50 bp away from the primer
annealing sites. Amplicons belonging to the same sample were
pooled together before Nextera XT library preparation, following
manufacturer instructions. Samples were pooled equimolarly
before sequencing using a MiSeq v3 kit (600 cycles). The
bioinformatic analysis is described in Supplementary Figure 2.
Droplet digital PCR (ddPCR) assays were designed using
Primer3plus, according to manufacturer. Bulk DNA from
putamen, occipital, frontal cortex, and cingulate gyrus was
used for this analysis. The ddPCR conditions are described
in Supplementary Table 3. Data analysis was performed in
QuantaSoft Pro v1.0 following Bio-Rad guidelines.

RESULTS

Validation of the Methodology
“Artificial mosaics” were used to estimate the variant detection
limit, sensitivity and false positive and negative rates. We were
expecting 37 variants to be present within regions covered in
artificial mosaics. We detected 95% of these variants at 1% AF
and 87% at 0.5% AF (supplementary results).

We aimed to reduce to a minimum false positives at lower
AF levels. We firstly counted ‘Potential false positives’ (PFP) in
artificial mosaics at different AF thresholds. PFP comprised SNVs
not recorded as expected mosaic variants, nor reported in dbSNP

(14). We observed 1.2× more PFP when the minimum AF was
lowered from 1% to 0.5% (Supplementary Figure 3). Surecall
showed greater sensitivity when compared to other variant
callers (Supplementary Figure 3). To increase the specificity of
our variant calling analysis, we filtered false positives visually,
using fixed criteria to discard errors (Supplementary Figure 4).
Surecall variants in mosaic 0.25% (at AF = 0.25–5%) were
analyzed on IGV. From the 114 variants analyzed, visual analysis
could not discard 4 false positives. The highest AF was reported
as 0.32%, therefore we set our detection limit at 0.33%. This filter
allowed us to discard numerous false positives, but also increased
the false negative rate. In the artificial mosaic sample carrying
variants at 0.5%, Surecall detected 78% of the expected variants.
After visual inspections, 46% of the expected variants remained,
and false positives were completely discarded. Themost common
reason to filter real variants was their presence in only one paired-
read orientation (strand-bias; Supplementary Figure 4B).

Sample Analysis
We focused on the substantia nigra, and sequenced DNA from
42 samples (including 12 controls). Where available, we also
analyzed DNA from other sources from the same individuals
(Supplementary Table 1): frontal cortex (13, including two
controls), cerebellum (11, including 1 control), and blood
from three. An explanation of our analysis is summarized in
Figure 1A. On the HaloplexHS step, all samples were sequenced
at an average 2,541×. We focused on the detection of coding
SNVs not reported before as common SNPs (population
frequencies < 1%), to reduce the risk of calling low-level variants
arising due to contamination. Thirty-one variants in 23 samples
passed the filtering step, but most of the variants detected (24 out
of 31) had an average AF of 0.45%, close to the detection limit of
our analysis. Twenty-one variants in 18 samples were prioritized
for validation, based on a ranking scale to select variants
with a predictable role in disease (Supplementary Table 4).
We generated amplicons to target the prioritized variants and
sequenced those at even higher coverage (mean= 14,883×). To
account for possible sequencing errors at the genomic positions
of interest, we compared the amplicons from the interrogated
sample with amplicons from controls (a commercial reference
DNA and six samples showing a candidate variant in other parts
of the genome). Two variants in samples 4SN and 34SN were
validated, as these were detected at AFs close to the original
analysis, and significantly different from the sequencing errors
in controls (Figure 1B). The variants were further confirmed
by Mutect2 paired-analysis, using the reference DNA as a
normal sample. However, these variants corresponded to rare
heterozygous SNPs present in samples from our study. SN tissue
was not available for further validation, but the AF at which the
variants were detected was an indicative that the variants might
be present in other brain regions when real (15). ddPCR did not
reveal the variants in the brain regions tested (Figures 1C,D).
In one of the assays, the presumably contaminated DNA was
still available and the variant was confirmed only in this
sample (Figure 1C). To further examine cross-contamination,
we recorded all mosaic variants from Surecall in 4SN, 34SN
and control 1 (a sample used for demonstration purposes) at
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FIGURE 1 | Summary of methods and results. (A) Somatic variant calling workflow explained step by step. (B) Validated variants by Amplicon sequencing (AF, allele

frequency). (C) ddPCR assay for the ATP13A2 variant did not reveal its presence in additional brain regions of sample 4, nor in control DNA (WT). Sample 32SN

(presumable contaminant) showed the variant at heterozygous levels (HZ). The presumably contaminated sample 4SN used in HaloplexHS and Amplicon sequencing

assays showed a mutant signal at AF ∼6%. (D) ddPCR assay for the MAPT variant did not reveal its presence in additional brain regions of sample 34, nor in control

DNA (WT). Sample 22SN (presumable contaminant) showed the variant at heterozygous levels (HZ). Codes for brain regions tested: SN, substantia nigra; P, putamen;

CG, cingulate gyrus; C, cerebellum; O, occipital.

AF similar to the variants of interest. The mosaic variants
were compared to germline variants from samples where the
contamination was suspected to come from (in the case of control
one, a non-related sample or control two). While control one
showed fewer mosaic variants, not matched with control two
germline variants, the presumably contaminated samples showed
numerous mosaic variants matched with germline variants from
samples where the contamination came from (p < 0.0001, linear
regression; Supplementary Figure 5).

DISCUSSION

Previous work from our group could not detect somatic SNVs
in SNCA exons at AF above 5% in cerebellum, frontal cortex
and SN of sporadic PD patients (16). In this study, we expanded
our search to other PD-genes. We excluded as many cases as
possible with long disease duration and late-onset, as somatic
variants playing a role in disease are hypothesized to be less
likely to occur in these cases (16, 17). We included a patient
carrying a LRRK2 G2019S mutation, who had a phenotypically
discordant monozygotic twin and where somatic variation could
have played a role in penetrance (11). We used a highly sensitive
approach to detect low-level variants in the genes of interest,
by firstly combining deep sequencing coverage and molecular
barcodes, followed by amplicon sequencing at higher coverage
and ddPCR as validation steps (18). We could not detect somatic

SNVs in PD-associated genes at AF higher than 0.33%. Similar
to our results, a recent report could not identify somatic SNVs
at AF above 0.5% in familial PD-genes from brains with Lewy
body disorders (n= 20), using similar methodologies and higher
sequencing coverage (19). Previous studies using HaloplexHS

reported variant detection at AF above 0.2%, further supporting
that our analysis was close to the detection limits of this
methodology (19–21). We focused on refining the analysis to
mainly discard false positives. Our filtering criteria were tailored
to discard sequencing artifacts, similar to other studies using
Haloplex and common sequencing datasets (22–26). Advantages
of visual analysis are the comprehensive analysis for each variant,
easy implementation across datasets; however, it can become
labor-intensive. Our results demonstrate the difficulties of SNV
detection at low AF, due to low-level contamination and false
positives, even when using molecular barcodes.

Challenges of somatic variant studies are not only technical,
but also related to the stochastic nature of the variants. According
to a previous hypothesis where neurons carrying somatic
variation may be the most vulnerable and first to degenerate, we
selected for patients with disease duration as short as possible
(∼10 years) (16). When studying neurodegeneration in post-
mortem brains, only the latest stages of the disease are being
portrayed and, perhaps, events involved in disease development
are missed. Conversely, if somatic SNVs arise post-mitotically
in an age-dependent manner (4), detailed studies at different
age groups are required. Furthermore, as we focused on the SN,
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and only had access to DNA from other brain regions or blood
in a few cases, we have not provided a detailed assessment of
these. The use of patient-derived cell lines or animal models
could also be considered. We are not aware of studies of somatic
mutations in such samples, but PD patient fibroblasts have
inefficient DNA repair, specifically the nucleotide excision repair
(NER) pathway, and mice with a mutation compromising NER
have dopaminergic pathology (27).

Our data combined with work discussed above, suggest that
coding somatic SNVs in PD-associated genes are uncommon.
In Alzheimer’s disease, two brain somatic SNVs were found in
72 sporadic AD-patients (28). When using molecular barcodes,
two brain somatic SNVs were found in AD-associated genes
of 98 patients (29), whereas no somatic SNVs in familial AD-
genes were found in 20 patients (19). Somatic SNVs in APP
were reported in AD in the context of the novel mechanism
of recombination leading to “genomic cDNA” (30). Recently,
14 out of 52 AD-patients analyzed by deep exome sequencing
harbored exonic somatic mutations in genes involved in tau
phosphorylation, but not familial AD genes (31). This contrasts
with somatic CNVs, with SNCA gains in PD nigral dopaminergic
and cortical neurons (32, 33).

In summary, our study could not detect coding somatic SNVs
at AF above 0.33% when analyzing PD-associated genes from
brain samples. Reaching lower AF to detect late somatic variant
events using bulk-tissue requires an even larger sequencing effort,
and it is complicated by the common presence of contamination
and sequencing errors. Sequencing of dopaminergic single-
nuclei should give enough resolution to describe somatic
variants in cells mainly affected by PD (dopaminergic neurons).
Additinal studies can be aimed to explore other types of
somatic variations or other mechanisms by which somatic
SNVs outside PD-associated genes could play detrimental roles
in neurodegeneration.
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