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Introduction: Mal de Debarquement Syndrome (MdDS) is a poorly understood

neurological disorder affecting mostly perimenopausal women. MdDS has been

hypothesized to be a maladaptation of the vestibulo-ocular reflex, a neuroplasticity

disorder, and a consequence of neurochemical imbalances and hormonal changes. Our

hypothesis considers elements from these theories, but presents a novel approach based

on the analysis of functional loops, according to Systems and Control Theory.

Hypothesis: MdDS is characterized by a persistent sensation of self-motion, usually

occurring after sea travels. We assume the existence of a neuronal mechanism acting

as an oscillator, i.e., an adaptive internal model, that may be able to cancel a sinusoidal

disturbance of posture experienced aboard, due to wave motion. Thereafter, we identify

this mechanism as a multi-loop neural network that spans between vestibular nuclei

and the flocculonodular lobe of the cerebellum. We demonstrate that this loop system

has a tendency to oscillate, which increases with increasing strength of neuronal

connections. Therefore, we hypothesize that synaptic plasticity, specifically long-term

potentiation, may play a role in making these oscillations poorly damped. Finally, we

assume that the neuromodulator Calcitonin Gene-Related Peptide, which is modulated

in perimenopausal women, exacerbates this process thus rendering the transition

irreversible and consequently leading to MdDS.

Conclusion and Validation: The concept of an oscillator that becomes noxiously

permanent can be used as a model for MdDS, given a high correlation between patients

with MdDS and sea travels involving undulating passive motion, and an alleviation of

symptoms when patients are re-exposed to similar passive motion. The mechanism

could be further investigated utilizing posturography tests to evaluate if subjective

perception of motion matches with objective postural instability. Neurochemical

imbalances that would render individuals more susceptible to developing MdDS could be

investigated through hormonal profile screening. Alterations in the connections between

vestibular nuclei and cerebellum, notably GABAergic fibers, could be explored by
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neuroimaging techniques as well as transcranial magnetic stimulation. If our hypothesis

were tested and verified, optimal targets for MdDS treatment could be found within both

the neural networks and biochemical factors that are deemed to play a fundamental role

in loop functioning and synaptic plasticity.

Keywords: mal de debarquement syndrome, brain derived neurotrophic factor, calcitonin gene related peptide,

functional loops, synaptic plasticity, systems and control theory

INTRODUCTION

Mal de Debarquement Syndrome is a condition characterized
by a subjective sensation of self-motion (i.e., rocking, swaying,
bobbing), which persists after an initial exposure to passive
motion, usually after sea travel but occasionally after air or
overland trips. Commonly, many people report this condition
in its temporary form, “Mal de Debarquement” (MdD), with

symptoms usually subsiding within 48 h, or in the worse cases
a few weeks (1). However, a small subset of these individuals do
not recover, and experience chronic symptoms for months, up
to years, after the initial onset due to passive motion exposure,

thus developing “Mal de Debarquement Syndrome” (MdDS) (2).
The prevalence of the syndrome in the population is currently
unknown, while a neurotology clinic survey reported that 1.3% of

patients were diagnosed annually (3). Despite the lack of precise
epidemiological data, MdDS is considered a rare pathological
condition with associated psychosocial and economic impacts
(4). In addition to its most recognized primary symptoms (i.e.,
chronic self-motion perception and postural instability), there are
a series of secondary symptoms such as brain fog, migraine, visual
sensitivity, and associated mood disorders (4). The underlying
pathophysiology is still not clear; consequently, there are limited
therapeutic and experimental options. In addition to this, low
awareness regarding MdDS in the medical community has
contributed to high misdiagnosis rates (4, 5), which potentially
increases the perceived rarity of the condition.

Emerging research has concluded that the typical
contemporaneous MdDS patient is female (though MdDS
has been reported in males, the current female to male ratio
is 8:2) (6), in the 5–6th decade of life, having been exposed to
passive motion, usually cruise ship travels (7). As mentioned,
the onset cause of the condition, in a typical MdDS patient
is related to the exposure to passive motion and symptoms
began after disembarking; those triggered in this way are termed
Motion-Triggered (MT) MdDS patients. Interestingly, a similar
symptom profile can also be present in individuals that cannot
attribute their symptom onset to a passive motion exposure,
but rather to a non-motion trigger (non-motion triggered onset
MdDS). These cases without any clear trigger are also referred to
as Spontaneous Onset (SO) MdDS (4). The classification of SO
MdDS remains under review. SO MdDS may be re-classified to
come under another central vestibular disorder called Persistent
Postural-Perceptual Dizziness (PPPD) (8), given that these
two disorders present overlapping symptoms. The distinguish
feature so far identified between SO-MdDS and PPPD is that
individuals with PPPD do not report the typical temporal relief

of symptoms described by patients with MdDS when re-exposed
to passive motion (e.g., being passenger in a driving vehicle).
Thus, this partial and temporal alleviation from symptoms when
re-exposed to passive motion has now been described as a key
feature in identifying MdDS patients (4). Thus, more research is
needed to assess the possibility that SO MdDS and MT MdDS
include similar symptom manifestation of differing underlying
pathophysiological mechanisms. The theory presented in this
manuscript will solely focus on MT MdDS, indicated hereafter
as “MdDS” in this manuscript.

A series of hypotheses have been formulated to explain the
pathogenesis of this condition. It has been proposed thatMdDS is
the result of Vestibular Ocular Reflex (VOR) maladaptation (9),
involving velocity storage (VS), a central vestibular mechanism
that increases the time constant of the VOR with respect to
that of semicircular canal (SCC) afferents. In this hypothesis,
the authors propose that a cross-axis-coupled stimulus (e.g., roll
while pitching, a type of stimulation that can be experienced by
passengers on a boat) may alter the VS of the VOR (9). The VS
circuit is thought to be located in vestibular-only (VO) neurons,
which are found in the medial and superior vestibular nuclei
(VN) of the brainstem (10), and has been investigated in non-
human primates (11). This study demonstrated that monkeys
without VS, and thus having a very short VOR time constant,
did not develop abnormal responses to roll while rotating. A
similar mechanism was hypothesized to be present in humans
(9). VO neurons are γ-aminobutyric acid (GABA) neurons and
their axons decussate in the brainstem, where information is then
projected to the reticulospinal and vestibulospinal pathways (12).

Cohen and colleagues proposed that the cause for the
appearance of MdDS symptoms could potentially be a
maladaptive response to the typical oscillatory frequencies
experienced during air or sea navigation, which ranges between
0.2 and 0.3Hz, and activates the lower limbs into compensatory
rocking and swaying movements for balance maintenance
(13). In MdDS, VO neurons, on both sides of the brainstem,
are theorized to persistently oscillate at these frequencies after
disembarking (9), and these oscillations may have originated
in the nodulus of the vestibulocerebellum, which has control
over the VS (9, 13, 14). Indeed, such activity was observed
in the nodulus of the rabbit (15), suggesting that a similar
mechanism may be possible and present in humans. Moreover,
additional symptoms which are a part of MdDS manifestations,
such as brain fog, anxiety, depression, and sensitivity to
sound and light, may be the result of the inability to “turn
off” these incessant oscillations (9). Cortical changes also
seem to contribute to MdDS (16). In particular it has been
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theorized that MdDS is a disorder of the central mechanism that
generates a memory for an internal representation of passive
movement (17). Accordingly, in MdDS patients a decrease in
functional connectivity has been reported in different brain
regions, including visual-vestibular processing areas (e.g., middle
temporal visual area [V5]), the brain’s default mode network
(that includes the cingulate cortex), somatosensory network
(including the postcentral gyrus), and central executive network
including the dorsolateral prefrontal cortex (2, 17, 18). Resting-
state functional Magnetic Resonance Imaging (fMRI) studies
have also shown variations in functional connectivity involving
the left entorhinal cortex (EC)/amygdala, with increased
connectivity to posterior visual and vestibular processing areas,
and decreased connectivity to multiple prefrontal areas (17).
Also, high-density Electroencephalogram (EEG) studies have
shown that MdDS patients have a higher synchronicity during
periods of higher symptom severity, specifically in vestibular
projections to the limbic system (1, 19). While abnormalities in
the limbic system are correlated to abnormal motion perception
(17, 18), the EC is known to also play a role in keeping the
hippocampus active during sleep for memory consolidation
(20). This has been hypothesized as why in some MdDS patients
symptoms present after a night’s sleep and not immediately after
landing/disembarking (2, 16). Following this hypothesis, a series
of experimental treatment protocols have been developed to treat
MdDS sufferers with the use of neuromodulation techniques
targeting these regions (21, 22).

In addition to neutrally-centered hypotheses, which may
not be mutually exclusive, a new hypothesis was formulated
which proposed that gonadal hormones may influence MdDS
pathophysiology (7). Correlations between MdDS and hormonal
factors have been reported, driven by the fact that MdDS patients
are mostly females and that the average onset age matches
with the perimenopausal phase (23). It is known that hormones
play an important role in various vestibular pathologies such as
vestibular migraine, and Meniere’s disease (24), and that there
are correlations between hormonal fluctuations and various inner
ear symptoms such as vertigo, instability, tinnitus, hearing loss
and intra-aural pressure (25). Additionally, it is well-known
from animal studies and human clinical data that hormonal
changes also influence neurochemical pathways that are linked to
depression (26). As for migrainous patients, a recent pilot study
showed that pregnant MdDS patients reported an alleviation
of symptoms during the first two trimesters (27). Following
these preliminary observations, hormones were theorized to
play a role in aggravating patient symptoms as well as in
rendering an individual more susceptible to developing the
disorder per se (7, 23). Specifically, it was theorized that patients
who developed MdDS may have had, at the time when onset
occurred, significant decreases in estrogen levels which altered
their GABAergic system, as well as Calcitonin Gene-Related
Peptide (CGRP) levels (7). Recently, CGRP has been implicated
in the pathophysiology of migraine and depression, which are
also comorbidity factors of MdDS (2, 7, 28). It is known to
support vestibular function and, more specifically, to strengthen
the VOR (29, 30). Accordingly, CGRP positive neurons have
been found in VN and the vestibulocerebellum (30). In addition,

CGPR could be overlooked for its role in neuroplasticity,
e.g., influencing neurotransmitters such as the brain-derived
neurotrophic factor (BDNF) (31, 32). Despite the above
hypotheses, knowledge about the comprehensive mechanisms
of MdDS is still lacking, thereby hindering the possibility of
developing resolutive treatments for the condition. Therefore,
this manuscript aims to combine the relevant aspects and
ideas from these theories and review them within a theoretical
model based on Systems and Control Theory. This is an
interdisciplinary field combining mathematics and engineering
to study the functioning and the emergent behavior of systems
arising both in nature and in engineering. Although most of its
subsequent developments are aimed at designing and managing
human-made systems, such as processes and machines, the
discipline was originally inspired by the study of living processes
and is particularly well-suited to model and analyse phenomena
in physiology and biology (33). One of the main topics of
Systems and Control Theory is the study of feedback loops
that accomplish a specific function. Accordingly, our hypothesis
provides a pathophysiological mechanism ofMdDS involving the
interaction of functional loops at various levels, including neural
networks and intracellular biochemical pathways.

THE HYPOTHESIS

Our model is based on the hypothesis that, to ensure
adaptation to an external oscillatory stimulus, an internal
oscillatory behaviors must be activated by a neural network
(34). The internal generation of oscillatory behaviors most
likely relies on a loop-based arrangement, due to the presence
of negative feedback loops containing inhibitory interactions
(35). Specifically, our hypothesis relies on Systems and Control

Theory, whose mathematical formalism was mainly developed
in engineering but has been widely applied to biological systems
since its origin (33, 36). Following this Theory, a perfect
adaptation to an external periodic perturbation (like a wave),
can only occur thanks to the activation of an “internal model”
that cancels the perturbation. In our case, the internal model is
a neuronal oscillator that generates a signal of the same type but
opposing the forcing input (37). According to this fundamental
principle, it could be hypothesized that what has been previously
described as the presence of a brain oscillator in MdDS may
be part of this mechanism (2). Hence, MdDS could be the
pathological permanence of such a compensatory mechanism,
after the external perturbation has vanished.

However, no clear evidence is available about the neural
site of this hypothetical oscillator. In the first theory described
previously, MdDS pathophysiology is attributed primarily to the
VN in the brainstem, receiving input from SCC and generating
vestibulo-ocular, vestibulocollic, vestibulospinal, and vestibulo-
thalamo-cortical pathways (13). As already mentioned, it has
been proposed that MdDS is driven by an oscillation between
VO neurons on each side of the brainstem at frequencies of 0.2–
0.3Hz, controlled by output from cerebellar nodular neurons
(13, 38). Interestingly, similar oscillatory behavior has been
experimentally induced in the vestibulocerebellum of rabbits
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through a rolling about the longitudinal axis (15). In these
experiments, 5% of climbing fibers in the uvula and nodulus
started firing periodically at the same frequency after the
sinusoidal vestibular stimulation had stopped, persisting for 200–
300 s (15). Although obtained in animal studies, these results
were believed to provide a potential neural basis for oscillations
at 0.2 and 0.3Hzmanifesting as rocking, swaying, and bobbing in
MdDS patients (13, 14, 39).

Besides identifying a brain oscillator, in order to understand
the pathogenesis of MdDS a mechanism converting the
adaptation to environmental oscillations into a permanent
noxious condition must be found. According to Systems and
Control Theory, positive loops are a common distinctive feature
of multi-stationary systems that can undergo transitions among
different equilibrium points (35, 40). These kinds of transitions
are thought to operate also in processes of pathogenesis, and
therefore, the identification of a positive loop could be a key
step in the understanding of MdDS onset. As shown below, we
identify this multi-stationary positive loop with an intracellular
biochemical pathway involved in synaptic rearrangement.

Biomechanical Analysis
In order to formulate a hypothesis regarding the mechanisms
implicated in MdDS pathophysiology, we first consider a
biomechanical analysis of body posture from the standpoint of
Systems and Control Theory.

The considered mechanical system that governs body posture,
labeled as P in Figure 1, is composed of two loops:

• One, labeled as C in Figure 1, is the well-studied stabilizing

posture control mechanism (41, 42), whose function is of
ensuring the correct angle (the angle between main body axis
and gravity axis).

• The second, labeled as A in Figure 1, which we consider as
the adaptation mechanism, has the function of adapting the
posture in the presence of a persistent sinusoidal disturbance
(wave motion, craft fluctuations, or similar).

Both the stabilization loop C and the adaptation loop A are
negative loops (having one inhibitory step) because their action
is in opposition, respectively, to destabilizing gravity and to
the external disturbance signal. The following considerations are
based on well-known physical laws.

In addition to this, in order to fully understand the loop
theory, few more points must be considered:

• The stabilization loop C must compensate the discrepancies
between the position, the posture angle, and the angular
speed, namely the derivative of the angle. For doing this, the
stabilization loop requires a feedback of the proportional-
derivative type, which compensates for both posture and angle
errors and their derivatives.

• The adaptation loop A is activated to ensure perfect
adaptation. For example, it is able to cancel a persistent
disturbance whenever it comes into play.

• Perfect (or semi-perfect) adaptation requires the generation
of a signal that cancels the external disturbance, hence it needs
to have the same frequency as the disturbance, but needs to

FIGURE 1 | Mechanical loops involved in the stabilization of body’s posture

and the adaptation to a periodic disturbance, such as passive environmental

movements experienced by travelers aboard. P, posture mechanism; C,

posture-stabilizing feedback control; A, adaptation mechanism (C and A are

negative feedback loops; see Supplementary Materials for a mathematical

analysis).

be in phase opposition, so that the sum of the two signals is
almost zero.

• To be synchronized with the disturbance (in particular, in
phase opposition), the compensating signal must be generated
by a feedback loop, otherwise it is impossible to robustly
generate a signal of the same frequency and synchronization.

• To achieve perfect adaptation, the adaptation loop must
therefore include an oscillator capable of producing a signal
having the same frequency as the external disturbance, an
assertion supported by the Internal Model Principle (37,
43). Remarkably, the idea of an internal model has been
invoked also for MdDS and firstly mentioned by Hain and
Helminski (44).
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FIGURE 2 | (A) Diagram of the loop system envisaged for vestibulocerebellar neural circuits, consisting of two ipsilateral negative loops, a central, contralateral,

double-negative loop, and two contralateral vestibulocerebellar connections. PJ, Purkinje cell; VN, vestibular nuclei; R and L, subscripts refer to right and left sides of

the brainstem; dashed line, brainstem midline. (B) MatLab analysis of the above system yielding the probability of oscillation (i.e., the fraction of Jacobian matrices

associated to the loop system with positive-real-part complex eigenvalues, out of 100,000 randomly generated Jacobian matrices). The curves represent the variation

of oscillation probability when the weight of inhibitory connections varies in the range 1–100, in arbitrary units, and the weight of excitatory connections is 1 (blue

curve), 10 (red curve), and 100 (yellow curve). The weight of self-inhibitory connections (matrix diagonal entries) is always set to 1. (C) Probability of oscillation

calculated as above, when the weight of inhibitory connections varies in the range 1–30, the weight of excitatory connections is 1 (blue), 10 (red), and 100 (yellow),

and the weight of self-inhibitory connections (d) is 0.1 (top), 1.0 (middle), and 10 (bottom). Plot axes as in B.

Within our hypothesis, if the external signal is removed
(disembarking), then the oscillator in the adaptation loop A

could remain active for a time under normal conditions, or
for longer time under pathological status (when developing
MdDS). This oscillator is not capable of destabilizing the
posture, since the main stabilizing loop C prevails. Yet, the

effect of the oscillator persists in generating phantom sensations,
possibly at a frequency very close to the initial forcing
disturbance. This phenomenon manifests in the patients as a
sensation of self-motion (bobbing, swaying and rocking). The
mathematical description of the above loop system can be found
as Supplementary Materials.
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FIGURE 3 | Bistable hysteretic model of synaptic plasticity depicted by a stimulus-response curve. The stimulus is represented by variations of brain-derived

neurotrophic factor levels (BDNF) in the central nervous system. The response is a biochemical pathway arranged as a positive loop (not shown here) leading to

synaptic long-term potentiation (LTP), according to Hao et al. (68). If the loop has a lower strength (left chart) the stimulus-response curve shows a bifurcation

generating bistability and hysteresis. Bistability means the occurrence of two equilibrium points, i.e., low or high (excess) LTP. Hysteresis means that for some given

values of BDNF there are two possible values of LTP, and the status assumed by the system will depend on its previous history, i.e., it will be low LTP for increasing

BDNF, or high LTP for decreasing BDNF (see small arrows on charts). If the BDNF-induced, biochemical positive loop that produces LTP is progressively strengthened

by calcitonin gene-related peptide (CGRP), the bistability region widens until hysteresis switches to irreversibility (right chart), meaning that once LTP is developed,

after BDNF rise, it becomes permanent even if BDNF decreases to zero. The model has been envisaged according to data reported by Buldyrev et al. (31). Small

arrows on charts indicate the evolution of the system for increasing or decreasing BDNF values.

Physiological Analysis
We consider now the possibility of establishing a link between
the mechanical loop system of Figure 1 and vestibular neural

networks, by using a neuroanatomical representation.
In the mechanical loop system, the stabilization loop C can

be easily matched to a postural reflex that corrects postural
bias. This element can be identified with vestibulocollic (VCR)
and vestibulospinal (VSR) reflexes that are realized by VN
and induce compensatory movements maintaining head and
postural stability and preventing falls (45). The VCR and VSR
involve SCC, otolith, neck proprioception, and visual afferences
to the VN, where they become processed through commissural
inhibition and ipsilateral integration and filtering (46, 47). One
mechanism involved in the processing and fine-tuning of the final
reflexes is the VS mechanism, which is particularly relevant when
considering head rotation movements (angular acceleration).
This mechanism is believed to prolong the SCC afferent signal, by
extending the VOR time constant with respect to the SCC signal
time constant, and then improving compensatory responses
to low-frequency rotations of the head (48, 49). Similarly to
this, there is another mechanism (gravity estimator) which
processes linear acceleration movements, by integrating SCC and
otolith inputs, and estimates head tilt (50). Both mechanisms
act as integrators provided with negative loops avoiding error
accumulation due to afferent signal noise (50).

A correspondence between these mechanisms and vestibular
pathways can be found in the scheme proposed by Galiana
and Outerbridge for bilateral VOR pathways in the cat (51).
This scheme shows a commissural inhibitory circuit between the
two contralateral VN, which is connected on each side to two
ipsilateral circuits spanning between VN and the cerebellum.

According to the viewpoint of Systems and Control Theory,
the central commissural circuit is a double negative loop, i.e., it
has an even number of inhibitory steps (two) and therefore it
is a candidate multi-stationary system with at least two stable
equilibrium points. The two lateral elements are negative loops,
i.e., they have an odd number of inhibitory steps (one) and
therefore they are candidate oscillators (35, 40). These circuits
could be at least partially overlapped with vestibular networks
that are regarded to be relevant in MdDS pathophysiology, such
as VOR and VS. Specifically, the external negative loops could
correspond to the noise correction mechanisms described for the
integrators of SCC and otolith afferences, while it is known that
cutting the commissural fibers connecting the contralateral VN
permanently destroys the VS mechanism (52).

According to Systems and Control Theory, a model which
includes a triple loop chain with a core positive loop flanked
by two negative loops could generate oscillations upon alternate
stimulation of the two sides. The two lateral negative loops,
behaving as oscillators, would induce the central loop to toggle
between its two stable states (53) (Figure 2A). However, VN
also project as GABAergic fibers to the inferior olive that in
turn projects as glutamatergic climbing fibers to the contralateral
cerebellar flocculonodular lobe, altogether realizing contralateral
inhibitory pathways (54). Mossy fibers are also derived from VN
to cerebellum, which could participate to the network; however,
experimental recording of periodical firing at the same frequency
of sinusoidal vestibular stimulation was recorded in climbing
fibers (see above) (15). The complete system (Figure 2A),
consisting of the triple loop discussed above with the further
addition of two contralateral inhibitory connections, can still
produce oscillations, depending on the values of the parameters
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that regulate the interactions among the elements of the system.
Therefore, a main role in the tendency to oscillate could be played
by the relative strength of excitatory and inhibitory pathways.

In order to evaluate the capability of this system to
yield sustained oscillations, we studied it by using MatLab
(The MathWorks, Inc., Natick, MA, USA). We computed the
oscillation probability as a function of the strength of excitatory
and inhibitory pathways. In particular, given the graph in
Figure 2A, with the addition of stabilizing self-inhibitions for
each functional agent, we randomly generated instances of the
associated Jacobian matrix (see Supplementary Materials):

J =









−α µ −ν 0
−κ1 −β −σ 0
0 −ϕ −γ −κ2

0 −τ ξ −δ









(1)

where each non-zero entry, denoted by a Greek letter, is
generated as a random number with absolute value between 0
and 1, multiplied by a scaling coefficient that can be chosen
differently for: (i) diagonal entries associated with self-inhibitory
connections (α,β , γ , δ ), (ii) entries associated with excitatory
connections (µ, ξ ), and (iii) entries associated with inhibitory
connections (ν, κ1, σ ,ϕ, κ2, τ ), so as to modulate their relative
strength. Then, we computed the eigenvalues of each randomly
generated Jacobian matrix J, to evaluate the fraction of Jacobian
matrices having strictly complex eigenvalues with positive real
part; the presence of this type of eigenvalues is associated
with persistent oscillations. Figure 2B shows the probability of
oscillation (precisely, the fraction of matrices with positive-real-
part complex eigenvalues out of 100,000 randomly generated
matrices) when (i) the weight of self-inhibitory connections is set
to 1 in arbitrary units, (ii) the weight of inhibitory connections
grows from 1 to 100, and (iii) the weight of excitatory connections
is chosen as 1 (blue curve), 10 (red curve) and 100 (yellow curve).
In Figure 2C the same curves are shown, with the weight of
inhibitory connections growing from 1 to 30, and the weight of
self-inhibitory connections (i.e., the matrix diagonal entries) set
to 0.1, 1.0, and 10.

The results of our numerical study show that, if the strength
of inhibitory connections is low (i.e. their weight equals about
0–20 in arbitrary units), the tendency to produce contralateral
oscillations is inversely correlated with the strength of excitatory
connections. Conversely, if the strength of inhibitory connections
is intermediate (about 20–40), then the tendency to produce
oscillations is high and almost independent of the strength of
excitatory connections. Finally, if the strength of inhibitory

connections is high (about 40–100) the effect of excitatory

connections is reversed, since higher values of the latter

induce a higher tendency to produce oscillations (Figure 2B).
As for the role of self-inhibitory connections (i.e., the matrix
diagonal entries, associated with weight d), Figure 2C shows
that oscillations are more likely when the strength of these
connections is lower (as expected, given their stabilizing effect);
however, irrespective of their strength, the trend of the curves
is always qualitatively similar (in Figure 2C plots, the axes
and the curve colors have the same meaning as in Figure 2B).

Taken together, these data show that our loop system can
generate oscillations, and moreover, the tendency to oscillate
increases together with the increasing strength of inhibitory
connections, reaching its highest when both inhibitory and
excitatory connections are strong.

Given its ability to realize oscillations, the loop system
depicted in Figure 2A could be hypothesized to be the
adaptation loop A, i.e., the internal model, of the mechanical
loop system (Figure 1). Specifically, during adaptation to external
stimulation, the circuit alternatively activates and inhibits VN
neurons located on the right and left side of the brainstem.
This model of course is a simplified schematic representation
of the actual neural networks, while other components could
contribute to the adaptivemechanism. For instance, in agreement
with studies on the role of efference copy and feed-forward
loop in postural adaptation to environmental disturbance (55),
a feed-forward loop could help make the system faster and more
accurate. However, the feedback loop system is to be considered
the key component of the oscillator.

Active Scenario
Having this basis aforementioned, we are now able to consider
the passive motion and environmental stimuli (active scenario).
In the presence of an oscillatory movement, where the individual
is exposed to passive motion, such as being passenger in a boat
or plane, the VN are stimulated from side to side by their
various afferents, i.e., vestibular sensors, proprioceptors, and
visual inputs. This stimulation corresponds to the sinusoidal
external disturbance applied to the mechanical loop system
(Figure 1). If the adaptation A (internal model) circuit were
absent, the stabilization C (postural reflex) circuit would
continuously stimulate the proprioceptors and the muscle
tone to correct the posture. However, we assume that the
adaptation loop becomes entrained by this kind of external
stimulation, thereby undergoing an oscillatory behavior that
cancels the environmental stimulation and abolishes the need of
postural correction. This scenario fits the previously commented
assumption that in ship travelers VO neurons are entrained to
oscillate at frequencies of about 0.2–0.3Hz, (under control of
cerebellar nodulus neurons) (38). Hence, in this scenario the
individual exposed to passive motion is going through natural
adaptation and compensatory mechanisms of passive motion.

Thereafter, when the individual is disembarking (returning
to a stable environment), the oscillatory external stimulus
ceases, and the adaptation loop system is expected to stop
its compensatory work. However, it can be shown through
mathematical analysis (see Supplementary Materials) that the
adaptation mechanism has poorly damped oscillations for a
reasonably wide range of its parameters, possibly explaining
the above-mentioned, temporary MdD condition that can be
experienced after a ship travel. Conversely, in MdDS the
adaptation loop seems to persist beyond any possible delayed
damping, thus becoming a permanent oscillator that provides an
undesired input to the stabilization mechanism. Consequently,
this creates a sensation of postural unbalance (phantom sensation
of bobbing, rocking, swaying). This interpretation of MdDS
seems confirmed by the notion that patients report a feeling
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of phantom motion when in a stable environment (e.g., on
land), but they find a temporal relief while re-exposed to passive
motion. This would happen by being re-exposed to the dominant
frequencies of their postural swaying that match fairly with
passive motion (around 0.2–0.3 Hz) (4).

Hence, a remaining open question concerns the causes
of the over-synchronization affecting the neural network that
generates MdDS. The mathematical analysis of our neural
loop system shows that the tendency to oscillate increases for
increasing strength of inhibitory pathways, while it reaches its
maximum when the strength of both inhibitory and excitatory
pathways is high. Such a result strongly suggests that the
over-synchronization of the internal oscillator may be found

in synaptic plasticity (56), which can induce variations of
connection strength in the neural loop system. Most notably,
a typical example of this kind of neuronal rearrangement
is long-term potentiation (LTP) (57). Synaptic plasticity has
been shown to occur in Purkinje cells of the flocculonodular
cerebellum, as well as in their interconnected vestibular circuit
(58, 59). Hence, it can be hypothesized that LTP may occur
in these neurons during passive motion (e.g., when in/on a
vehicle), due to continuous, alternate stimulations from sensory
inputs. The distinction between MdD (rapid healing) and MdDS
(recalcitrant healing), could be due to differences in the strength
of synaptic plasticity. Therefore, excess synaptic plasticity could
be the essential element that switches a physiological mechanism
(internal model) into a pathological condition.

The involvement of excessive synaptic plasticity has been
reported for various disorders, e.g., diminished LTP and long
term depression (LTD) in schizophrenia (60), dopamine-driven
synaptic facilitation in drug addiction (61), or unbalanced
excitatory and inhibitory stimuli on fusiform cells of the
dorsal cochlear nuclei in tinnitus (62). Even closer to MdDS,
maladaptive cortical plasticity is involved in the pathophysiology
of focal dystonia, such as writer’s cramp and spasmodic torticollis,
where repetitive sensory input reaches cortical sensory areas
that show excessive plastic adaptation characterized by increased
motor output, excessive muscle contractions, abnormal postures,
and involuntary movements (63–66). Similarly, we suggest that
in MdDS abnormal plasticity occurs in vestibular and Purkinje
neurons. This is strongly supported by the above results from
MatLab computational analysis of the loop system modeling the
vestibulocerebellar connections in the brainstem. These findings
show that an increase in the strength of inhibitory connections
renders the loop more incline to oscillate, suggesting that excess
LTP in GABAergic fibers could strengthen the vestibulocerebellar
oscillator, thus rendering it recalcitrant to vanish when the
environmental stimulus ceases (stable environment).

If excess synaptic plasticity is responsible for the insurgence
of MdDS, we have now to explain why it occurs in some
individuals at a certain time. Taking this into account, we aim
at a unifying paradigm between vestibular sensory processing
and Systems and Control Theory, according to the approach
advocated by Burlando (67). Based on this theoretical view, a
transition from health to disorder can be always reconducted to
a positive loop showing a bifurcation that creates the possibility
of shifting from one steady state equilibrium point to another

one. Interestingly, LTP has been described as a shift in gene
expression due to the activity of a biomolecular positive loop
undergoing bifurcation (68). Moreover, a relevant property of
dynamic systems showing bifurcation and bistability is hysteresis,
meaning that it is easier to maintain the system in one stable
state, or equilibrium point, than to make it jump to another
stable state by applying or removing a stimulus. In addition, if
the strength of the positive loop increases, the system develops
irreversibility, i.e., the impossibility of returning to a former
equilibrium point by complete removal of the stimulus (69).
It has been shown that different cellular and biomolecular
processes can be modeled through bistability and hysteresis
(70), while positive feedback loops are starting to be taken
into consideration also for mechanisms of pathogenesis (e.g.,
Alzheimer’s’ Disease) (71). In our model of adaptation to an
oscillating environment, the occurrence of synaptic plasticity in
the vestibulocerebellar circuit (Figures 1, 2) could be modulated
from normal to excessive by the strength of a biomolecular
positive loop, thus determining a variable degree of persistence
of the internal model after disembarkation. Normal synaptic
plasticity could be converted into excessive synaptic plasticity
by a predisposing factor expressed in some individuals. This is
a point of convergence of our hypothesis with the theory of
MdDS hormonal and neurochemical predisposition published
in 2018 (7). As known, hormonal changes at the luteal phase
of pre-menstrual syndrome, or in perimenopause, can influence
the brain levels of CGRP, whose expression is regulated by
gonadal hormones (7, 72, 73). CGRP has been reported as an LTP
promoter (32), while its expression is closely correlated with that
of the BDNF (31), which is the key element of bifurcation in the
above-mentioned positive feedback loop that generates LTP (68).

BDNF is not only influenced by CGRP but also by gonadal
hormones (74), possibly indicating that a particular hormonal
state may induce neurochemical changes. In addition to this,
CGRP is known to strengthen the VOR reflex (29), confirming
the role of this neuromodulator in modifying the activity
of vestibular neural networks, and being consistent with the
correlation between CGRP brain levels and the severity of MdDS
symptoms (34). Hence, by putting it all together, we can theorize
that some gonadal imbalance, correlated with high CGRP brain
levels, potentially affects other modulators, like BDNF, thereby
leading to excessive synaptic plasticity and ultimately causing
symptom chronicity in MdDS (Figure 3).

In summary, by our hypothesis MdDS is not only regarded
as a maladaptation of the VOR, but upstream to it, as a
malfunctioning of a vestibulocerebellar network that realizes an
oscillatory loop system. According to this new approach, we
have shown how this loop system could be entrained to oscillate
by environment movements, thereby leading to MdDS through
its over-synchronization. While undergoing synaptic plasticity,
this process could become excessive in individuals experiencing
an impairment in the brain levels of specific hormones and
neuromodulators (possibly including low levels of estrogen, as
well as high levels of CGRP and BDNF). This would render the
internal oscillator noxiously persistent after disembarking from
a vehicle, thereby leading to the constant perceptions of self-
motion that we know asMdDS. This theory may also explain why
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MdDS patients experience a temporary relief of symptoms when
exposed to passive motion, as mentioned before, because their
over-synchronized loop would be working in its perfect status of
canceling the external stimuli.

COMPARISON WITH PREVIOUS THEORIES

In the herein proposed hypothesis, feedback loop dynamics are
invoked as an explanatory umbrella for a series of ailments of
increasing severity going from MdD to MdDS. The hypothesis
is innovative in the framework of MdDS studies, but to some
extent it is also a synthesis of different ideas that have been
previously formulated about this syndrome. As discussed above,
the most significant synergism can be established between our
hypothesis and the hormone theory of MdDS (7). However, a
close connection can also be found with the idea of an over-
synchronization of brain networks caused by entrainment due to
the exposure to passive motion (18, 21). The proposed treatments
that follow this kind of analysis, such as transcranial Direct
Current Stimulation (tDCS) (75) and repetitive Transcranial
Magnetic Stimulation (rTMS) (21), are consistent with our
hypothesis since they could disorganize an excessive neural
network connection (21), but the success rate reported by
patients is considered poor (22), suggesting that more refined
targets and modalities of treatment are needed.

The theory concerning VOR and VS maladaptation (9, 76)
is also somewhat consistent with our hypothesis, given that
the neural circuits of these mechanisms are presumed to be,
at least in part, coincident with our oscillating loop system.
Following this theory, patients were exposed to a full-field
optokinetic (OKN) stimulus during head rotation, obtaining an
improvement of symptoms in 70% of cases (14), even though
there was a slight decline in the success rate over time (9).
Similar results were obtained in a recent study which involved a
sham protocol for MdDS patients undergoing OKN stimulation,
while it was speculated that OKN stimulation worked in re-
adapting the so-called maladapted VOR (77). To date, the success
rate of the OKN treatment is higher for those with MT MdDS
compared to the SO patients (22), further research is needed
to understand why this is the case. These studies considered
the relationship between VOR and OKN reflexes, knowing
that the VOR response can adapt and accommodate sensory
arrangements, as shown in a study by Draper (78). The authors
hypothesized that a disrupted VOR leads to a disrupted VS
and VSR, which consequently leads to poor postural control
(9). The results from this study (77) support Dai’s theory that
the OKN stimulation and head roll is able to induce a VOR
adaptation process by altering the performance of the OKN
reflex through visual anomalies. However, a striking difference
with our hypothesis is that this VOR maladaptation would be a
downstream consequence of MdDS, not a triggering effect, i.e.,
the cause-effect relationship between MdDS pathogenesis and
VOR would be inverted. Nevertheless, the OKN treatment fits
well also under our hypothesis, since a strong stimulation of the
VOR could partially alleviate the excessive synaptic plasticity that
we presume to be present in MdDS patients. In addition to this,

as reported in the sham study (77), the OKN treatment could be
just one part of the treatment process for MdDS subjects, since
most subjects also continued to report associated symptoms such
as migraine (7, 77) following a postural improvement.

HOW TO VALIDATE THE HYPOTHESIS

Our hypothesis is, for now, only a theoretical model and a series
of studies have to be developed and executed in order to validate
it. Specific clinical protocols and tests will have to be developed
according to a suitable, hypothesis-driven experimental design
based on the herein proposed model, thus collecting data
specifically suitable to prove or disprove the model.

One of the first aspects to consider is the assessment of
the internal model, such as verifying that MdDS is triggered
in the presence of a regular wave with a single (or strongly
dominant) sinusoidal component (boat or plane); rather than
in the presence of noise (car or train). Such a result has been
partially achieved in a retrospective study on a large number of
MdDS patients, showing that the disease is mainly triggered by
boat travels (4). However, additionally, the mechanism could be
further investigated with the use of computerized posturography
tests under static or moving conditions at different frequencies
of oscillations, to evaluate if subjective perception of motion
matches with objective postural instability.

Secondly, to specifically prove the over-synchronization
of an oscillatory neural loop system the use of neuroimaging
techniques could be a suitable approach. By employing
high-resolution functional magnetic resonance imaging
(fMRI)/18F-fludeoxyglucose positron-emission tomography
(18F-FDG–PET) scans, and electroencephalogram (EEG) it
would be possible to explore variations in functional connectivity
between VNs and the flocculonodular lobe. This kind of analysis
could be done on controls and patients without previous
treatment or after different exposures, including various kinds
of vestibular stimulation, hence showing possible differences in
vestibulocerebellar connectivity consistent with the hypothesized
model. If the vestibulocerebellar connectivity pattern would show
higher correlation in patients with respect to controls, selectively
at the internal oscillator frequencies, this will confirm that the
internal oscillator would have become undesirably persistent
in MdDS. This would potentially provide a neuroimaging
biomarker allowing to distinguish MdDS from other central
vestibular disorders, especially SO MdDS, which might be falling
more clearly into the PPPD diagnostic sphere.

In addition, as posed in the hypothesis, MdDS patients may
develop this permanent form due to a neurochemical imbalance
that would render them more susceptible to this maladaptation,
hence their hormonal status and history should be taken into
account (e.g., perimenopausal, low testosterone or estrogen, and
usage of steroids or hormonal replacement therapy) (23).

Another method of exploring altered connections between
VN and cerebellum, potentially affecting the functioning of
VS, VOR, and other vestibular circuits, could be the use of
transcranial magnetic stimulation (TMS), a technique that has
contributed significantly to the understanding and treatment
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of several neurological and psychiatric disorders (79, 80). TMS
can be used with single and paired pulses over the primary
cortex (M1), allowing to trace excitatory and inhibitory pathways
(79). For instance, paired-pulse TMS can induce short-interval
intracortical inhibition (SICI) by involving GABAA receptors
(79, 81). TMS has been also used in combination with drugs (82),
showing that benzodiazepine (a positive modulator of GABAA)
enhances SICI (79), while long-interval intracortical inhibition
(LICI) and cortical silent period (CSP), which are measures
of long-lasting inhibition, increase with the GABAB receptor
agonists tiagabine (working on LICI) (83), and baclofen (working
on CSP) (84). These techniques have been used to study the
pathophysiology of motor system disorders such as amyotrophic
lateral sclerosis, Parkinson’s disease, Tourette syndrome, and
altered motor cortex GABAB function in concussed athletes
(79, 80).

Despite that MdDS may not be a motor disorder, TMS
could allow researchers to understand if a GABAergic
alteration is characteristic of MdDS patients. Studying
pharmacological changes with TMS allows for an indirect
measure of excitatory and inhibitory mechanisms and their
implications in neurotransmitters modulation. It has also been
proposed that TMS could be used with in vivo proton magnetic
resonance spectroscopy (1H-MRS), thus measuring the levels
of GABA during different phases of the menstrual cycle and
aligning these data with symptom intensity in MdDS patients
(7). 1H-MRS would allow the detection and quantification of
different neurometabolites besides GABA, such as myoinositol,
N-acetylaspartate, and glutamate (79, 85).

A recent study utilized transcranial direct current stimulation
(tDCS) to ease MdDS symptoms, with promising results (75).
This novel neuromodulation technique would be advantageous
for patients since it can be performed at home in a remote
setting, reducing or eliminating long commutes which are
known to cause discomfort for those with MdDS. Another
technique used to test vestibular-spinal control system is Galvanic
Vestibular Stimulation (GVS) (86). In a recent study on PPPD
patients, GVS allowed the stimulation of vestibular afferents
without head motion on either side separately, showing higher
instability with higher intensity GVS (range from low to high,
0.8–2.8mA) and closed eyes, consistent with the greater visual
dependency in controlling posture of these subjects (86). A
similar experiment could be performed on MdDS patients to
examine their sensory reweighting.

Finally, the aforementioned postural, neuroendocrine,
neurochemical, neuroimaging and transcranial stimulation data
has the potential to contribute partial confirmations of our
hypothesis, however their amassing has the ability to ultimately
validate the hypothesis.

CONCLUSIONS

MdDS remains a challenging problem for healthcare
professionals. Due to unclear underlying mechanisms and the
lack of definitive biomarkers, the diagnostic process is typically
long and costly, while treatment options are experimental and

limited. Our hypothesis provides an innovative vision into this
syndrome, by proposing that dynamic loops are involved in brain
adaptive responses to oscillatory passive motion. Our hypothesis
does not reject previous theories on MdDS pathogenesis,
but it rather embodies elements of these in a comprehensive
mechanism, based on Systems and Control Theory. The main
elements of our hypothesis are the following:

• Starting from an essential biomechanical analysis of posture,
we derived the notion that perfect adaptation to an
external oscillatory disturbance needs the activation of an

adaptation loop including an internal oscillator able to

cancel disturbance (Internal Model Principle).
• Thereafter, starting from available neuroanatomical and

physiological knowledge of the vestibulocerebellar region we
identified a bilateral neural network arranged as a triple

loop with two further contralateral connections, involving
the VNs and the cerebellar flocculonodular lobe.

• By using computational simulation, we proved the tendency
of the neural network to behave as an oscillator with the

increasing strength of inhibitory connections, reaching its
highest when both inhibitory and excitatory connections
are strong.

• We therefore assumed that the identified neural loop system
becomes entrained by exposure to passive motion, e.g., those
experienced onboard of a vehicle, thus activating an adaptive
internal model.

• Finally, given that such entrainment is likely to involve
synaptic LTP, and by assuming that synaptic plasticity is
triggered by a biomolecular positive loop, we envisaged
that under some unbalance of neuromodulators like CGRP
and BDNF, during peculiar gonadal hormonal phases, the
transition to LTP becomes irreversible. This would maintain
the internal oscillator after the removal of the external stimulus
(e.g., after disembarkation), thereby producing MdDS.

If this hypothesis were tested and verified, then optimal targets
for MdDS treatment could be found inside the neural networks
and biochemical factors that play a fundamental role in loop
functioning and synaptic plasticity. We proposed a few studies to
address this theory, such as: the use of dynamic posturography
for exposing patients at different frequencies and evaluate
their self-perception of motion; perform specific neuroimaging
studies to explore variations in functional connectivity between
VNs and the flocculonodular lobe in MdDS patients vs.
healthy controls; assess patient’s hormonal status and history
and observe if specific hormonal imbalances or conditions
are characterizing of MdDS patients; using TMS to study
SICI and LICI by involving the use of medications and
their effect on the patient’s GABAergic system, evaluating if
altered GABAergic system is present in MdDS patients, this
could also be combined with 1H-MRS, thus measuring the
levels of GABA during different phases of the menstrual
cycle and aligning these data with symptom intensity in
MdDS patients.

As a corollary, our hypothesis falls into a wider theory of
the organism’s physiology (67, 87), based on the assumption
that dynamic loops are an essential trait for all processes and
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transitions that occur in the organism, notably transitions from
physiological to pathological status. Therefore, this hypothesis
can be taken as a basis for theoretical analysis and novel
experimental models of other neurological disorders.
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