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In the past decade, several groups have reported that microRNAs (miRNAs)

can participate in the regulation of tau protein at different levels, including its

expression, alternative splicing, phosphorylation, and aggregation. These observations

are significant, since the abnormal regulation and deposition of tau is associated

with nearly 30 neurodegenerative disorders. Interestingly, miRNA profiles go awry

in tauopathies such as Alzheimer’s disease, progressive supranuclear palsy, and

frontotemporal dementia. Understanding the role and impact of miRNAs on tau biology

could therefore provide important insights into disease risk, diagnostics, and perhaps

therapeutics. In this Perspective article, we discuss recent advances in miRNA research

related to tau. While proof-of-principle studies hold promise, physiological validation

remains limited. To help fill this gap, we describe herein a pure tauopathy mouse model

deficient for the miR-132/212 cluster. This miRNA family is strongly downregulated

in human tauopathies and shown to regulate tau in vitro and in vivo. No significant

differences in survival, motor deficits or body weight were observed in PS19 mice lacking

miR-132/212. Age-specific effects were seen on tau expression and phosphorylation

but not aggregation. Moreover, various miR-132/212 targets previously implicated in

tau modulation were unaffected (GSK-3β, Foxo3a, Mapk1, p300) or, unexpectedly,

reduced (Mapk3, Foxo1, p300, Calpain 2) in miR-132/212-deficient PS19 mice. These

observations highlight the challenges of miRNA research in living models, and current

limitations of transgenic taumousemodels lacking functional miRNA binding sites. Based

on these findings, we finally recommend different strategies to better understand the role

of miRNAs in tau physiology and pathology.
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INTRODUCTION

Tauopathies comprise a group of ∼30 neurodegenerative disorders characterized by the
pathological accumulation of hyperphosphorylated and insoluble tau in neurons and/or glia (1).
In humans, the MAPT gene encoding tau contains 16 exons, with the first exon as part of the
promoter region and last exons comprising the 3′ untranslated region (3′UTR). The tau mRNA
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transcript undergoes different steps of regulation including fine-
tuning of expression, alternative splicing of exons 2, 3, and 10,
and multiple levels of phosphorylation (1). These modifications
play a central role in tau function related to the binding
and stabilization of microtubules (2). While rare mutations
in the MAPT gene underlie familial forms of disease (e.g.,
frontotemporal dementia with parkinsonism-17), the majority
of tauopathies are sporadic and of unknown origin. The most
prevalent tauopathy is Alzheimer’s disease (AD), where tau
aggregates into neurofibrillary tangles (NFTs) in conjunction
with amyloid-β (Aβ) plaques (3). So far, it remains uncertain
which mechanisms surrounding tau biology contribute to brain
degeneration and clinical outcomes.

The small (∼21 nts) non-coding microRNAs (miRNAs)
play a fundamental role in brain development, function, and
survival (4, 5). They function as part of the endogenous RNA-
induced silencing complex (RISC) to control protein output.
This occurs by binding to mRNA transcripts within the 3′UTR
to promote translational repression or mRNA degradation.
Interestingly, the brain contains a rich repertoire of miRNAs,
some of which go awry in tauopathies. While affected miRNAs
have been associated with tau pathology in humans and
animal models, the cause-consequence relationship between
these factors remains ill defined. Nonetheless, specific miRNAs
have emerged as promising diagnostic and therapeutic targets
in tauopathies (6–8).

Several methods currently exist to study miRNA:mRNA
interaction and biological function (9). These range
from bioinformatic predictions, 3′UTR reporter assays,
overexpression and inhibition studies, to cross-linking
with immunoprecipitation (CLIP). The most common and
straightforward approach is introducing a mutation within
the miRNA target site (in particular the seed sequence)
to inhibit miRNA:mRNA binding and gene expression
regulation. This strategy is however quite challenging
in vivo with only one known report in the mammalian
brain (10), unrelated to tau. Most miRNA literature is
therefore based on indirect or artificial paradigms that await
physiological validation.

In this Perspective article, we provide an overview of advances
related to the regulation of tau by miRNAs. As the reader will
notice, the literature is promising but lacks consistency and in
vivo validation. To aid in this effort, we also describe herein
PS19 mice deficient for the miR-132/212 cluster. This is the
first description of a pure tauopathy mouse model genetically
deficient for specific miRNAs. Some paradoxical results obtained
in this model prompted us to address certain “barriers” regarding
experimental reproducibility and propose guidelines to help
move forward this line of research.

PERSPECTIVE ARTICLE

Evidence That tau Is a MicroRNA Target
The human MAPT gene produces two 3′UTR isoforms of 256
and 4,163 nucleotides in length (11). The longest isoform is
conserved and highly expressed in the brain (frontal cortex)
(12). Previous studies have shown that different domains within

the tau 3′UTR are important for mRNA structure, stability, and
transport (13–15). Since tau is a dose-sensitive gene candidate
(16, 17), and that its mis-regulation is associated with disease
(18), it seems logical that different regulatory mechanisms have
evolved to keep tau expression levels in check.

A simple search of common miRNA target site prediction
programs (e.g., targetscan.org) reveals several conserved binding
sites within the tau 3′UTR. Consistent with this, a handful of
miRNAs have been shown to bind to tau mRNA, including
miR-132 (19, 20), miR-34 (11), miR-186 (21), miR-219 (22),
miR-362 (23), and miR-766 (23). Most groups have relied on
3′UTR luciferase reporter assays and mutagenesis to confirm
gene expression regulation in vitro. One report could not confirm
the interaction between miR-132 and its corresponding seed
region however (11). Whether this is due to technical issues
(type of mutagenesis, miRNA titration) or unknown regulatory
mechanisms remains to be determined. Taken together, these
observations provide strong evidence that tau is a bone fide
miRNA target that now awaits in vivo validation using gene
editing technologies. Interestingly, the ratio between tau 3′UTR
isoforms seems to differ between healthy and AD brain (12,
24). Whether this results in altered miRNA regulation requires
further investigation.

MicroRNA Regulation of tau Pre- and
Post-translational Modifications: Unlimited
Possibilities?
As stated above, alternative splicing and phosphorylation are
key elements of tau regulation and function. Nearly 15 miRNAs
have been implicated so far in the indirect modulation of tau
(8, 25). These “tau modifier” genes are mostly kinases, and
include Gsk-3β [miR-132 (26), miR-125b (27), miR-124 (28),
miR-219 (29, 30), miR-138 (31)], Cdk5 [miR-125b (32, 33), miR-
26b (34), miR-195 (35)], Erk [miR-125b (32)], Itpkb [miR-132
(36)], Fyn [miR-369 (37), miR-106b (38)], and Rock1 [miR-146a
(39)]. Tau phosphatases include: Ppp1ca [miR-125b (32)] and
Ptpn1 [miR-124 (40)]. Other genes a priori unrelated to kinases
or phosphatases include p300 [miR-132 (26)], RbFox1 [miR-132
(26)], Nos1 [miR-132 (41)], BNDF [miR-322 (42)], RARα [miR-
138 (31)], Cacna1c [miR-137 (43)], Uchl1 [miR-922 (44)], and
HspB8 [miR-425 (45)].

The number of miRNA targets involved in tau splicing
(exon 10) is more limited. These include Ptbp1 [miR-132
(19)] and yet unidentified genes [miR-124, miR-9, miR-
153, miR-137 (19)]. Overall, while some miRNAs (miR-132,
miR-125b, miR-124) and target genes (GSK-3β, Cdk5) seem
recurrent, no clear pathway or trigger stands out and in vivo
validation is again largely lacking. To study miRNAs in living
organisms, especially in mammals, is particularly challenging
since most tau modifier genes contain several miRNA-binding
sites themselves (e.g., GSK-3β 3′UTR contains ∼100 putative
miRNA sites). Thus, the amount of potential miRNA:mRNA
networks surrounding tau biology seem almost limitless, at least
in appearance.

Indeed, bioinformatics and in vitro paradigms need to
be tested and experimentally validated using in vivo models
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recapitulating the cellular and miRNA-target interaction
networks occurring in human physiology and pathology.
Furthermore, not all miRNAs modulated in cultured cells
are biologically relevant since expressed at low or insufficient
levels in vivo (as with their target counterparts). Also, not
all target genes are sensitive to small changes in mRNA
transcript or protein levels (46–48). This said, it is likely
that only a limited number of miRNAs and dosage-sensitive
genes are involved in the physiological regulation of tau (see
also Barrier 2 below). This adds to other potential modes of
miRNA action implicating competitive endogenous RNAs
(ceRNA) (49) as well as cooperative binding and target
site competition (50). An important step will be to identify the
functional miRNA:mRNA pairs within the biological networks in
brain cells.

A Mouse Model to Study miRNA Deficiency
in Pure Tauopathies
Recent RNA deep-sequencing efforts have shown that ∼50–
100 miRNAs are expressed at moderate to high levels in
the mouse and human brain (51–53). Several of these are
enriched in neurons, glia, or other cell types (54). Given
the diversity of tau pathologies, selecting a candidate miRNA,
and biological model for functional studies is a daunting
task. Interestingly, accumulating studies highlight the potential
biological importance of specific miRNAs. For example, loss
of the miR-132/212 cluster shows a strong correlation with
memory decline, NFTs, and Braak (tau pathological) stages in
AD (20, 26, 51, 55–59). This cluster is also downregulated
in other tauopathies such as frontotemporal dementia (60)
and progressive supranuclear palsy (19). Deletion of the miR-
132/212 cluster, or inhibition of neuron-specific miR-132,
causes an increase in tau phosphorylation or aggregation
in 3xTg-AD and APP/PS1 mice (36, 41, 61). Inversely,
the brain delivery of miR-132 using viruses reduced tau
pathologies in 3xTg-AD (61) and PS19 (26) mice. While
promising, different target genes and underlying mechanisms
have been proposed, and therefore the mode of action
remains unresolved.

To further build on these findings, we investigated the effects
of genetically removing the miR-132/212 cluster in PS19 mice,
a model of pure tauopathy that overexpresses human tau with
a mutation (P301S) that causes FTD in humans (62). This
model develops motor deficits, tau deposition, and neuronal
loss between 6 and 12 months, with a high mortality rate at
late-stage disease.

We observed no significant differences in mouse survival
(Figure 1A) and motor deficits (Figure 1B) following miR-
132/212 deletion in PS19 mice (PS19 vs. PS19-KO). A trend
for increased body weight was seen in 11–12-month-old PS19-
KO females but not males (Figure 1C). A small but significant
increase in tau expression was seen in pre-symptomatic (3
months) PS19-KO mice with a trend in aged (12 months)
mice (Figure 1D). In contrast, tau phosphorylation at Ser422
and PHF1 (Ser396/Ser404) epitopes was reduced in aged PS19-
KO mice (Figure 1E). This was not attributed to changes

in body temperature known to influence tau phosphorylation
(63) (Figure 1F). Non-significant trends were noticed in tau
aggregation (sarkosyl-insoluble tau) in PS19-KO mice, owing to
∼20% of KO mice with more aggregates (Figure 1G and not
shown). In addition, no or minimal effects were seen on different
markers of brain integrity, including NeuN (neuron), Snap25
(presynaptic), PSD95 (postsynaptic), GFAP (astrocyte), and Iba1
(microglia) (Figure 1H). Taken together, the deletion of the miR-
132/212 cluster had nomajor effects on disease phenotypes tested
with divergent effects on tau biology.

We finally investigated a panel of miR-132/212 targets (other
than tau) previously associated with tau metabolism or disease,
including GSK-3β (26, 61), Mapk3/Erk1 (5, 64), Mapk1/Erk2
(5, 64), p300 (20, 26), Calpain 2 (26), Foxo1a (20), and Foxo3a
(20, 26). We observed no significant differences caused by miR-
132/212 deficiency on endogenous GSK-3β, Mapk1, and Foxo3a
in vivo at all ages of study (Figure 2A). On the other hand, and
unexpectedly, Mapk3, p300, Calpain2, and Foxo1a levels were
reduced in PS19-KO mice, albeit at different ages (Figure 2A).

Of note, we could confirm the regulatory effects of ectopic
miR-132 on all genes in cells (Figure 2B). Some cell-type specific
effects were noticed, however, including an upregulation of
p300 in miR-132-treated HEK293 cells. Representative miRNA
qRT-PCR quantification and Western blots of targets are shown
in Figure 2C. Inversely, inhibition of endogenous miR-132
in cells had only modest and sporadic effects on a subset of
target genes (Figure 2D). Representative results are shown
in Figure 2E. Clearly, some discrepancies exist in target gene
regulation by miRNAs depending onmodels and methodological
approach. Potential reasons for such paradoxes are
discussed below.

Barrier 1: Animal Models
To date, nearly 40 rodent models are available to study different
tau species, isoforms and mutations (Alzforum.org) (66). In all
cases, the study of human (or humanized) tau is essential to
model human pathologies including aggregation and deposition.
To our knowledge, only two rodent models contain the complete
human tau 3′UTR. These include hTau mice (67) and MAPT
knock-in mice (68). Obviously, only these or similar models can
validate the direct binding ofmiRNAs to human taumRNA.Only
a few studies have investigated the effects of miRNA deficiency
or overexpression on endogenous murine tau expression with
its native 3′UTR (36, 61), but with no direct confirmation using
miRNA seed mutagenesis or other techniques. Unfortunately,
no group has yet evaluated the contribution of the human
tau 3′UTR in disease progression and pathology in mice or
other animals.

Of note, most findings linkingmiRNAswith tau were obtained
in mice with human Aβ pathology (3xTg-AD, APP/PS1, 5xFAD)
(36, 39, 61, 69). This cannot be underestimated since miR-
132/212 deletion promoted tau aggregation in 3xTg-AD (61)
but not (robustly) in PS19 mice (Figure 1G). Of course, we
cannot exclude all other distinct features of each model (e.g.,
backgrounds, promoters, transgenes, disease onset) including
model-specific variations in gene expression networks. The fact
that PS19-KO mice display also lower tau phosphorylation
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FIGURE 1 | Characterization of PS19 mice lacking the miR-132/212 cluster. (A) Kaplan-Meier survival curves, (B) clasping scores, and (C) body weight of PS19 and

PS19-KO mice that are deficient for the miR-132/212 cluster. PS19 mice (JAX No. 008169) were bred with full miR-132/212 KO mice as before (61). Graphs were

divided by sex. No significant changes were observed between mouse models. Kaplan-Meier and one-way ANOVA. N = 6–16 mice per group. (D) Western blot

quantifications of cortical total tau expression and phosphorylation (Ser422 and PHF1 epitopes) (E) at different ages (3–12 months). N = 12–16 mice per group, mixed

sex. Unpaired t-test, where *P < 0.05, ***P < 0.001. (F) Rectal temperature at sacrifice. # denotes significant changes (multiple t-tests, P < 0.05) between PS19

males and females at 12 months. (G) Western blot quantifications of cortical sarkosyl-insoluble tau (Tau total and CP27) at different ages. N = 9–16 mice per group,

mixed sex. Unpaired t-test. (H) Western blot quantifications of cortical endogenous NeuN, Snap25, PSD95, GFAP, and Iba1 in 12-month-old PS19 and PS19-KO

mice. N = 9–10 mice per group, divided by sex. One-way ANOVA with multiple comparison, where *P < 0.05. Error bars represent SEM. In (D-G), the groups of mice

were analyzed separately per age.

and reduced (instead of increased) expression of some miR-
132 targets could be accountable to these and other factors as
well, including regulatory feedback loops and the absence of
the human tau 3′UTR. Fortunately, recent advances in gene
editing technologies in vivo (e.g., CRISPR-Cas9) and humanized
models (e.g., induced pluripotent stem cells, knock-in mice)
can help us to address these issues. The observation that other
miRNAs can modulate tau pathology in PS19 mice (40) also
opens the door to independent validation studies, that is, taking
into consideration the pros and cons of transgenic mice without
a human tau 3′UTR.

Barrier 2: Physiological Regulation of tau
and Other Targets
Proof-of-principle studies have shown that removing Dicer,
the major enzyme responsible for miRNA maturation, induced
significant changes in tau metabolism in both neurons (5, 19)
and glia (70). However, this approach is largely inadequate to

study single miRNAs and targets involved in tau regulation.
The function of individual miRNAs is typically (and historically)
inferred from overexpression studies in cells or animals, where
a single miRNA can regulate tens (up to hundreds) of targets
as predicted by bioinformatics tools. However, we know now
that most overexpression studies do not reflect physiological
context (47, 71–73). Indeed, they can result in the saturation
of miRNA maturation products, induce off-target effects, or
promote toxicity (74, 75). Lastly, and most importantly, gain-of-
function (GOF) tells if a miRNA can exert a specific function,
while loss-of-function (LOF) tests whether it is required for that
function (72).

Interestingly, recent genetic inactivation studies in C. elegans
suggest that some miRNAs function mainly through one or a
limited number of master genes (76). Proof-of-principle exists
in mice (for miR-155) but not yet in neuronal cells (77, 78).
If true, most of the genes (modestly) influenced by miRNAs
could be biologically “inactive” (47, 48). The results obtained
herein in vivo (Figure 2A), often in theoretical disagreement with
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FIGURE 2 | Analysis of miR-132 targets in vitro and in vivo. (A) Western blot quantifications of endogenous miR-132 targets (Gsk-3β, Foxo1, Foxo3a, Mapk1/Erk2,

Mapk3/Erk1, Calpain2, p300) in PS19 and PS19-KO mice at different ages in the cortex. All significant trends and changes indicate lower expression in KO mice. N =

6–15 per group, mixed sex. Unpaired t-test, where *P < 0.05. (B) Western blot quantification of endogenous miR-132 targets, including tau, in native human

SHSY-5Y, human HEK293, and murine Neuro2a cells. Cells were treated with 50 nM miR-132 mimics or scrambled control for 48 h prior to protein extraction. N =

2–4 experiments performed in triplicate. Results are shown as ratios between miR-132 over scrambled mimics (normalized to 1). Unpaired t-test, where *P < 0.05,

**P < 0.01, ***P < 0.001. (C) Upper panel: Ectopic miR-132 levels measured by qRT-PCR in each cell line. Relative to scrambled mimic control. Lower panel.

Representative western blot analyses. (D) Western blot quantifications of endogenous miR-132 targets. Here, cells were treated with 50 nM miR-132 inhibitors or

scrambled control for 48 h. Unpaired t-test, where *P < 0.05, **P < 0.01, ***P < 0.001. (E) Upper panel: Endogenous miR-132 levels measured by qRT-PCR in each

cell line following treatment. Relative to scrambled inhibitor control (normalized to 1). Lower panel. Representative western blot analyses. miRNA qRT-PCR were

normalized using RNU19 as before (61, 64). Blots were normalized to all proteins using Ponceau or Stain-Free technology. # denotes possible alternate splicing (65) or

phosphorylated form of targets. N.A., not available; N.D., not detected; GOF, gain-of-function; LOF, loss-of-function. Error bars represent SEM. In A, the groups of

mice were analyzed separately per age. See Supplementary Methods for additional details.

the mode of miRNA function, is somewhat in agreement with
this hypothesis, more so given the subtle or negligible effects
on tau aggregation and mouse phenotypes in PS19-KO mice.
Ideally, the selection of dosage-sensitive genes, combined with
prior documented effects on tau in vivo, would be important for
functional validation studies.

A variety of technical and other biological factors need
also to be considered in the future, including cell-type
specificity, spatiotemporal regulation, statistical power, and
potential compensation mechanisms from development or
aging. Other tau modifications (e.g., acetylation) (79) could
also influence its processing, expression, and analysis using
more conventional antibodies. Adapted tools and models are
now required to fully understand the regulation of tau by
individual miRNAs in its physiological milieu, and at the single
cell level.

Barrier 3: Biological State and Context
There is increasing evidence that cell or biological context also
influences miRNA function (80). The probability that miRNAs
regulate tau differently according to the pathological state of the
brain and peripheral system is therefore quite high. Contributing
factors include inflammation, oxidative stress, immune response,
and co-pathologies if present. Obviously, such systemic effects
are difficult to reproduce in single animal models and even
more in cells. And, of course, all of these factors influence
miRNA expression to some degree. Interestingly, changes in the
immune response and neuroinflammation are known to play a
role on tau pathology in PS19 mice (62, 81). While some of
these markers seem unaffected in PS19-KO mice (Figure 1H),
a detailed analysis remains to be done. The challenge now is to
decipher the individual and combined role of above-mentioned
factors on miRNA-mediated tau pathology during disease onset.

Frontiers in Neurology | www.frontiersin.org 5 September 2020 | Volume 11 | Article 578720

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Boscher et al. MicroRNAs and Tauopathies

Barrier 4: Cause or Consequence
Understanding why, where, and when miRNAs become
misregulated in tauopathies is key to elucidating their function
and potential use in diagnostics and therapeutics. Interestingly,
changes in miRNA levels occur at all stages of disease in
tauopathy mouse models. Examples include miR-142, miR-10,
miR-146, miR-155, miR-455, and miR-211 in THY-Tau22 mice
(82), miR-142 in Tg4510 mice (83), miR-132, miR-146a, miR-22,
and miR-455 in hTau mice (84), and miR-132 in PS19 mice (26).
These results suggest that human tau (wildtype or mutant) itself
can promote miRNA changes in the mammalian brain. The link
with human disease remains, at this stage, uncertain given that
most mouse models tested so far (THY-Tau22, Tg4510, PS19)
overexpress human mutant tau.

The identification of causal mutations or risk factors within
miRNA genes or binding sites provides an alternative strategy
to elucidate the cause and consequence relationship between
tau and miRNAs in humans. So far, there is little evidence
that MAPT 3′UTR polymorphisms are associated with AD risk
(85). Nevertheless, a role for 3′UTR polymorphisms in other
tauopathies cannot be excluded. Interestingly, a study recently
identified a polymorphism within the miR-142 promoter that
confers risk for AD (86). Given the complexity of MAPT
haplotypes and their importance in disease risk (87), one
cannot exclude also a role for miRNA-mediated regulation in
this context.

Another strategy to determine causality involves a cure or
relief of disease symptoms using miRNA therapeutics. MiRNA
mimics can rescue in part disease-related phenotypes in AD
and tauopathy mice (40, 61, 69). As inferred above, it will be
important to define a therapeutic window for the in vivo use
of miRNA oligonucleotides in humans. Note that a miRNA
replacement therapy, with the goal of restoring physiological
miRNA levels, could provide an attractive alternative to
overexpression per se. Taking into consideration all published
studies so far, candidate miRNAs for therapeutics include,
but are not limited to, miR-132, miR-142, miR-219, miR-455,
and miR-146.

CONCLUSION

To date, nearly 30miRNAs have been implicated in the regulation
of tau. The precise role and mode of action of individual miRNAs
remains however unsettled. So far, the miR-132/212 cluster
stands out for its potential role in regulating tau expression
(11, 20, 26, 36, 61), splicing (19), acetylation (26), secretion
(26, 88), proteolysis (26, 61), and aggregation (61). This adds to its

correlation with disease progression and cognitive impairments
in humans and mouse models. However, the choice of living
model(s) and hypothesis(es) that need to be addressed are critical.
Central elements of tau biology that have not yet been explored
is the role of miRNAs in tau function (e.g., microtubule binding,
DNA damage, gene expression, cell signaling) and propagation
(e.g., spreading and seeding). The importance of miRNAs in
familial tauopathies and many other sporadic tauopathies also
remain unexplored. Clearly, much more work is needed to fully
understand and appreciate the complexity of tau regulation by
miRNAs and other non-coding RNAs.
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