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Intracranial electroencephalography (EEG) studies using stereotactic EEG (SEEG) have

shown that during seizures, epileptic activity spreads across several anatomical

regions from the seizure onset zone toward remote brain areas. A full and objective

characterization of this patient-specific time-varying network is crucial for optimal surgical

treatment. Functional connectivity (FC) analysis of SEEG signals recorded during seizures

enables to describe the statistical relations between all pairs of recorded signals.

However, extracting meaningful information from those large datasets is time consuming

and requires high expertise. In the present study, we first propose a novel method named

Brain-wide Time-varying Network Decomposition (BTND) to characterize the dynamic

epileptogenic networks activated during seizures in individual patients recorded with

SEEG electrodes. The method provides a number of pathological FC subgraphs with

their temporal course of activation. The method can be applied to several seizures of the

patient to extract reproducible subgraphs. Second, we compare the activated subgraphs

obtained by the BTND method with visual interpretation of SEEG signals recorded in 27

seizures from nine different patients. As a whole, we found that activated subgraphs

corresponded to brain regions involved during the course of the seizures and their time

course was highly consistent with classical visual interpretation. We believe that the

proposed method can complement the visual analysis of SEEG signals recorded during

seizures by highlighting and characterizing themost significant parts of epileptic networks

with their activation dynamics.

Keywords: epilepsy, functional connectivity, SEEG, epileptogenic networks, dynamical graph,

subgraphs extraction

1. INTRODUCTION

About 30–40% of epileptic patients are drug resistant (1). For those patients, surgical resection of
the epileptogenic brain structures is considered to promote seizure freedom (1). Intracranial EEG
using depth EEG recordings or the stereoencephalography (SEEG) method is often required to
guide tailored-surgical resection (2, 3).
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The primary aim of SEEG is to delineate precisely the
epileptogenic regions. However, since the pioneering works in
SEEG, it has been shown that seizures cannot be considered as
static phenomena with a single focus activation leading to clinical
manifestations (4). SEEG recordings of focal seizures typically
show that the epileptic activity spreads during seizures across
several anatomical regions. It begins at the seizure onset zone and
spreads toward remote brain areas. This dynamical pathological
process can be described by several brain states characterized
by transient and abnormal connectivity profiles within the
epileptogenic network (5). A full and objective characterization
of this patient-specific dynamic network is crucial for optimal
surgical treatment.

Understanding brain network modifications operating at
different time scales in the interictal state and during seizures is a
very active stream of research. This is in line with computational
neuroscience studies modeling neurological diseases as brain
network disease (6–11).

In the field of epileptology, the structure of epileptic (or
ictal) networks has been explored using connectivity analysis
(functional or effective connectivity) and more recently, graph-
theory analysis, (5). Functional connectivity (FC) approaches,
based on linear or non-linear measures, quantify the statistical
relations between any pair of recorded SEEG signals and
their evolution across time. In most of the studies, pairwise
correlations between remote sites are computed at specific time
points [for a review, see (5)]. Those approaches unveil the
organizational interactions of different regions of interest in
the brains. They have proved very fruitful to investigate the
neurophysiological correlations of symptoms during seizures, or
to describe several subtypes of focal epilepsy involving specific
networks (12–14). Graph theory is the study of graphs, which are
mathematical structures used to model networks, and specifically
pairwise relations between objects (8, 15). A graph is made
up of vertices (also called nodes) that are connected by edges.
Graph theory approaches allow the description of both local
and global characteristics (16). For epilepsy, the nodes usually
represent electrode contacts and the edges represent the FC
measures. The resulting graph structure is known to contain
relevant fingerprints of the seizure dynamic. Studying network
structures with graph theory provides mathematical tools to
investigate different subtypes of epilepsy (17). For example, it
has been shown that the properties of networks’ topology are
different for temporal lobe, mesial temporal lobe, and neocortical
epilepsy (18). Moreover, some studies suggest that investigating
local properties of the network structure through graph theory
concepts provides biomarkers for epileptogenic focus localization
(19–21). Lastly, dynamic graph theory can also provide step-
by-step modeling of the propagation of the seizure in the brain
(19, 22).

A major challenge for the study of ictal networks is that
seizures are a highly dynamical process with rapid transitions
between network states (5, 23). To track network changes during
the seizures, the network organization has to be described at short
time scales. In themost straightforward approach, FC approaches
forming the backbone of the network are estimated at different
time steps of the seizure. Therefore, they are prone to create

spurious connections and constitute a noisy estimation of the
pathologic dynamic network. Moreover, as the brain activity is
commonly monitored with more than 100 electrode contacts
distributed along the stereotactic rods, the number of FC scales
quadratically (100 electrode contacts providing around 5000
FC measures), making the study of FC over time a resources
consuming task that requires high expertise.

One advantage of SEEG monitoring is to allow the
recording of several seizures from the same patient, with the
same measurement points (or nodes), yielding thus as many
realizations of identically distributed dynamical networks of FC.
Hence, several seizures from the same patient can be investigated
that may share some connectivity features but with different
dynamics. Methodological tools have to be proposed to extract
relevant information from those large datasets. Ideally, such
methods should summarize the dynamics of the seizures by
providing several epileptogenic networks, with stable network
structures, that characterize the different steps of the seizures
and that are involved in the production and the propagation of
the ictal events. Those network states may be common to the
different seizures of the patient, but the timeline activation should
follow a pattern that remains specific to each seizure (22).

Along these lines, we propose a novel semi-automatic method
to characterize the dynamic epileptogenic network quantitatively
and across time using SEEG signals. We propose to perform
the joint analysis of all seizures of the same patient, first to
reduce the measurement uncertainty in the calculation of FC
indices, and second to make robust the identification of a time-
functional pattern, systematic in all seizures and characteristic
of a patient’s pathology. First, the full FC matrix is computed
for each time step using a classical FC measure, namely the
Phase Locking Value (PLV) (24, 25). Then, the method extracts
several pathological subgraphs with their own activation score
during seizures. We expect each subgraph to comprise several
brain nodes with high connectivity values. The paper is organized
as follows: We extend our previous work (26) to seizures with
different durations, we call this method the Brain-wide Time-
varying Network Decomposition (BTND). On the application
side, we validate the clinical use of the method on a larger clinical
dataset.

2. MATERIALS AND METHODS

2.1. Description of the Brain-Wide
Time-Varying Network Decomposition
Method
For each patient, the dataset is composed of several SEEG
recordings for different seizures. Seizures can have different
durations. The proposed strategy can be summarized in four
steps: (a) We chop each recording into short segments; (b) for
each segment, we estimate via FC measures the connectivity for
each pair of electrode contacts; (c) we rearrange the FC measures
into a list of matrices representing the time evolution of FC for
each seizure of a patient; (d) the list of matrices representing the
multi-seizures brain-wide time-varying network is decomposed
into FC subgraphs characteristic of one patient but common to
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FIGURE 1 | Overview of the strategy: (A) We chop each recording in time segment, potentially with some overlapping. (B) For each segment, we compute the

connectivity level of each pair of electrode contacts with a Functional connectivity (FC) measure. (C) We rearrange the FC measures in a vector, stacked in time they

form for each seizure an FC matrix. (D) The list of FC matrix is decomposed into a set of FC graphs with their activation profiles respective to each seizure. Here, the

number of subgraph is K = 4, and the activation profiles of each subgraph are represented for the 3 available seizures of this patient.

all his seizures, along with their activation profile specific to each
seizure. The main steps of the method are illustrated in Figure 1.

2.2. Representation of the Multi-Seizure
Brain-Wide Time-Varying Network
Practically, FC measurements are stored in a three-dimensional
structure Xlt{s} corresponding to the FC of index l at time
segment t and for the seizure s. The list of matrix X{s} ∈

R
L×T(s) ∀s (1, ..., S) is the mathematical representation of the

multi-seizures brain-wide time-varying network. Here, S is the
total number of seizures recorded for the same patient. We
remind that the number of time steps T(s) can vary for each
seizure. Figure 1C illustrates an example of list of matrices X{s}.

2.3. The Optimization Problem Related to
the BTND Method
The core of the BTND method is then to seek, for each seizure,
for the following decomposition:

X{s} ≈ FVt{s} (1)

where F ∈ R
L×K contains the K FC subgraphs and V{s} ∈

R
T(s)×K are their respective temporal activations corresponding

to the specific seizure s. This approach directly entails the
requested decomposition since the columns of the matrix F

contains the weights of the edges in the sub-graphs, as it can be

seen in Figure 1D and matrices V{s} directly correspond to the
activation profiles of each seizure depicted in Figure 1D.

However, the solution for the decomposition (1) is not unique,
and to favor handily interpretability from the medical viewpoint,
we impose several constraints on the components F and V{s}:

a) because most of the functional connectivity measures and
activation indices are naturally positive values, we impose F

and V to be non-negativematrices;
b) to limit the complexity of the inferred subgraphs, we restrict

the number of non-zero significant FC values, yielding a sparse
matrix F. The sparsity constraint is meaningful in the context
of epilepsy, where a large number of functional connectivities
can be passively implied in the neurological process;

c) to promote FC subgraphs that are continuously activated
over specific periods, we impose sparsity and compactness

on V{s}. These two constraints drastically improve the
interpretability of the solution, as they prompt sparse and
piecewise continuous activation periods that are close to
cluster-like solutions. Formally, they correspond to the fused
lasso constraint that reads:

C(v, γ , η) : γ

T∑

t=1

| vt | + η

T−1∑

t=1

| vt+1 − vt | +

T∑

t=1

v2t ≤ 1,

(2)

where the parameter γ and the parameter η compel each
activation profile v = V: k{s}, to be sparse and compact,
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respectively. As for the third term in expression (2), it prevents
incoherent solutions due to scaling indeterminacy (27).

Finally, the BTND boils down to an instance of joint non-
negative matrix factorization (28–31) that takes on the following
form:

argmin
F,V{1},...,V{S}

S∑

s=1

ζs || X{s} − FV{s}t ||2F + λS

K∑

k=1

L∑

l=1

| Flk |,

s.t. C(V: k{s}, γs, ηs) ∀k ∈ {1, ...,K}, ∀s ∈ {1, ..., S},
(3)

s.t. F ≥ 0, V{s} ≥ 0 ∀s ∈ {1, ..., S}.

The ζs are free parameters to balance the relative importance of
each seizure (in our study, we consider all seizures evenly and
select the ζs parameter according to the energy of each seizure, see
the Supplementary Materials for more precision). The sparsity
factor γs and the compactness factor ηs are chosen to adapt to the
particular duration of each seizure s.

Then, the method is associated with three hyperparameters:
λ and γ , respectively, controlling the sparsity level of the FC
subgraphs and the activation profiles, and η regulating the
temporal compactness of the activation profiles.

2.4. Additional Comments on BTND
Let us stress that the optimization problem of Equation (3)
is non-convex, and therefore, different initial conditions yield
different solutions corresponding to local maxima. As it is
common practice for non-convex methods in machine learning
[e.g., k-means for data clustering, (32)], we repeatedly solve (3)
with a different initialization and retain the one that reached
the smaller minimum cost function. In practice, we empirically
chose 20 trials. As for the other hyper-parameters, we observed
that η = 0.2 produces coherent activation profiles. Also, fixing
λ = γ simplifies the procedure without altering the results
significantly. Then, λ is tuned so as to identify the 20% most
resilient activated FC. To select the most pertinent number of
subgraphs, we successively compute the decomposition for K
ranging from 3 to 10. Based on an Elbow criterion and on visual
inspection, we compare the quality of the resulting temporal
activation and subgraphs, identifying thus the best value for K.
Finally, we normalize each subgraph such that their connectivity
strengths are between 0 and 1. We only retain connections above
some threshold (empirically set to 0.2 in our experiments) to
eliminate non-significant interactions.

For more details on the practical use of the method, see the
Supplementary Materials. We provide the URL1 for a Github
repository with Matlab implementation of the proposed BTND
method.

1https://github.com/FrusqueGaetan/BTND

3. APPLICATION ON A REAL DATASET OF
EPILEPTIC PATIENTS

3.1. Patients
To illustrate the clinical relevance of the BTND method, we
applied the method on seizures recorded with intracranial EEG
in 9 epileptic patients.

We included 9 adult patients suffering from drug-resistant
focal epilepsy, followed in the Department of Functional
Neurology and Epileptology at Lyon’s University Hospital,
who underwent intracranial EEG with SEEG according to the
following criteria: (i) at least 1 seizure recorded during long-term
monitoring; and (ii) conventional visual analysis of the SEEG
signals identified clearly the seizure-onset zone.

Clinical details of all the patient included are listed in Table 1.
Among them, 8 patients presented seizures suggesting

a temporal lobe involvement but with clinical features or
morphological alterations on brain magnetic resonance imaging
(MRI) not typical for medial temporal epilepsy requiring
intracranial EEG. For one patient, clinical semiology suggested
an involvement of operculo-insular cortex. Three patients
underwent surgical resection of the epileptogenic cortex and all
had a good surgical outcome (Engel class Ia for all patients with
a follow-up duration between 4 and 48 months). For 2 patients,
a focal thermolesion using SEEG electrodes was performed,
resulting in a dramatic improvement of epilepsy (Engel Ia for
both patients with 4 and 5 months of follow-up). For 2 patients,
surgery was contraindicated because of the involvement of both
temporal lobes during seizures. For 2 patients, surgical resection
is planned based on SEEG findings but has not been performed
at the time of the present study.

This study, involving human participants, was reviewed
and approved by Ethics Committee CPP Lyon Sud EST
IV (24/05/2012 N2012-A00516-37). The patients/participants
provided their written informed consent to participate in this
study.

3.2. SEEG Recordings
Intracerebral multi-contact electrodes (5–15 contacts, diameter
0.8 mm, length 2 mm, and 1.5 mm apart) were implanted
according to Talairach’s stereotactic method (3). Electrode
location was verified with post-implantation MRI. Prolonged
extra-operative recordings were performed to capture each
patient’s habitual seizures.

SEEG data were acquired with a 256 channel video EEG
monitoring system, Micromed video EEG acquisition system
(SD LTM express, Micromed, Treviso, Italy), using the following
parameters: sampling rate 256 Hz, high-pass filter 0.15 Hz, low-
pass filter 200 Hz, notch filter at 50 Hz.

The median number of bipolar contacts recorded per patient
was 101 (range 64–130). The main cerebral structures targeted
by intracranial electrodes for each patient are listed in the
Supplementary Table 1. As a whole, for all patients, the medial
temporal lobe (anterior hippocampus, posterior hippocampus,
amygdala, entorhinal cortex), the temporal lateral neocortex
and the insular cortex were always targeted. Depending on the
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TABLE 1 | Clinical details of each patient.

Patient Brain MRI Interictal EEG Ictal EEG FDG PET Ictal semiology Surgery Surgical
outcome

1 LT pole atrophy LT slow wave activity
and temporal spikes

LT ictal
activity

left medial temporal
hypoM + left anterior
temporal neocortical

hypoM

Oro alimentary
automatisms + right

hand dystonia + loss of
consciousness

Left ALT la (24 m)

2 LT post surgical
sequelae

LT&RT spikes with
left predominance

LT ictal
activity

Left medial temporal
hypoM + right medial

temporal hypoM

Loss of consciousness
+ speech arrest NA NA

3 Right HS
Temporal spikes

+ temporal
background slowing

RT basal
ictal

activity

Right medial temporal
+ RT pole hypo M

+ RT lateral neocortical
hypoM

Left hand paresthesias
+ Ascending visceral

sensation + tachycardia
+ loss of consciousness
post icttal confusion

Right ATL Ia (16 m)

4 Left HS,
LT pole atrophy

LT&RT spikes with
left predominance

LT ictal
activity

LT pole
+ LT lateral neocortical

hypo M

Oro alimentary
automatismes + mental
slowing with preserved

consciousness

left ATL la (48 m)

5 Post surgical right
temporal lesion RT spikes RT ictal

activity RT pole hypoM

Loss of consciouness
+ bilateral dystonic
arm posturing + oral

automatisms

NA NA

6 Normal Normal Left central
activity

Left perisylvian
Hypo M including
anterior temporal
gyrus + temporal
pole + insula

Bilateral tonic posturing
of arms + right head
deviation + right arm

paresthesias

Left
operculo
insular

thermolesion

la (4 m)

7 Left amygdalar
hyperintensity LT spikes LT ictal

activity

LT pole hypoM
+ left medial temporal

lobe hypoM

Cephalic sensation
+ dreamy state

+ language disturbance

Left medial
temporal

thermolesion
la (5 m)

8 Right HS RT slow wave activity RT ictal
activity

Right medial temporal
hypoM + right anterior

temporal neocortical hypoM

Oro alimentary automat.
+ preserved consciousness

+ left facial clonus
NA NA

9 Right HS RT spikes RT ictal
activity

Right medial temporal
hypoM

Verbal automatisms
+ dysgeusia + loss
of consciousness

NA NA

HS, hippocampal sclerosis; LT, left temporal; RT, right temporal; hypoM, hypometabolism; ATL, anterior temporal lobectomy; NA, not performed/surgical outcome is expressed as Engel

Class.

electroclinical findings of each patient, frontal lobe, parietal lobe,
and occipital cortex were targeted.

For 9 patients, all available seizures were extracted, forming
a dataset composed of a total of 27 seizures. For 6 patients, 3
seizures were analyzed. For 2 patients, 4 seizures were analyzed
and for 1 patient, a single seizure was available for analysis. For
each seizure, we extracted signals for at least 1 min before the
onset of the seizure and the whole course of the seizure.

The duration of the seizure was largely heterogeneous both at
the inter-individual and intra-individual level. Themedian length
of the seizures across patients was 96 s (range 18–337).

3.3. SEEG Signal Analysis
SEEG signals are considered in bipolar derivations; hence each
signal is referenced to its closest neighbor. A high-pass filter, with
a cut-off frequency equal to 20 Hz at -3 dB was applied on SEEG
signals in order to highlight the high-frequency activity typical of
seizure activity, particularly at seizure onset (33).

For each seizure, we computed the FC matrices during the
pre-seizure period and the course of the whole seizure using
a classical connectivity measure, the PLV (24, 25). Briefly, the
PLV quantifies the synchronization in phase between two signal.
The phase of each signal is computed by the Hilbert transform.
The PLV is the time average of the relative phase difference. To
compute the FC matrices, the SEEG signals were windowed with
4 s sliding windows moving by steps of 1 s. For each 4 s window,

the PLV between all pairs of bipolar contacts was computed to
produce the overall network at each time step.

Finally, the BTND method is applied to the set of several
seizures for each patient, to decompose all seizures in several
subgraphs, activating through time.

3.4. Comparison of Network Dynamics
Estimated Through Conventional Visual
Analysis and the BTND Method
Each seizure was pragmatically segmented in three main periods
defined by visual analysis: seizure-onset, seizure propagation, and
seizure ending. Visual analysis of the seizures was performed
by an expert in clinical SEEG interpretation (JJ). Seizure onset
corresponded to the time period with a dramatic change of SEEG
signals with either low-voltage fast activity (typically above 20
Hz) or rhythmic spikes in a subset of electrode contacts. Seizure
propagation corresponded to an extended time period where
ictal SEEG discharge spread to several brain structures either
locally or remotely from the seizure onset zone. The recruitment
of these regions in the propagation zone can happen either
by independent activation of the single areas or by activating
multiple areas at the same time. Lastly, a seizure was supposed
to have ended when the activation across brain structures was
mostly synchronous (typically synchronous spikes) and stable in
time and resolved ultimately.
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For each time period, we determined the electrode contacts
that were involved in the ictal wave with a conventional visual
inspection. The electrode contacts were then pooled in several
anatomical predefined subregions.

For each patient, the output of the BTND method provided
the temporal profile of activation of several common subgraphs
of the whole network during each seizure. The list of activated
subgraphs at each time period of the seizure was then collected.
Each subgraph included several contacts with strong functional
connectivity. At each time period, we determined which
anatomical subregions were connected based on the activated
subgraphs.

Lastly, a qualitative comparison between the set of activated
structures determined by visual analysis and the BTND method
was performed for each seizure.

3.5. Results for the Real Dataset of
Epileptic Patients
The overall functional connectivity organization was extracted
in all 27 seizures using the BTND method. This means that
the seizures (from 1 to 4) of one patient are processed together
according to BTND. Table 2 provides the qualitative comparison
between the set of activated structures between visual analysis
and the BTND method for patients 1 and 2. Also, Tables 3, 4
show the same qualitative comparison for, respectively, patients
2–4 and patients 5–9.

Using this method, we found, in the case of 6 patients, that
6 distinct functional subgraphs characterized the organization
of seizures; 7 subgraphs for 1 patient; 5 subgraphs for another
one; and only 4 subgraphs characterized seizures for the last
patient. However, for each patient, some subgraphs were more
strongly activated before seizure onset or were continuously
activated before seizure onset and remained active during the
course of the seizures. Those subgraphs were considered as non-
specific subgraphs for the ictal events. For 5 patients, 2 subgraphs
were non-specific while for 4 patients a single subgraph was
non-specific.

At seizure onset, a single subgraph was activated for 1 patient,
two subgraphs were activated for 4 patients, three subgraphs were
activated for 3 patients, and 5 subgraphs were activated for 1
patient. For 24 seizures in 6 patients, the seizure onset determined
by visual analysis overlapped closely with the network disclosed
by the BTND method. For those patients, the cortical regions
underlying the seizure-onset zone determined through visual
analysis were included in the seizure-onset subgraphs. However,
the seizure-onset subgraph also included other regions with
strong functional connectivity not directly outside of the seizure-
onset zone. For one of those 6 patients (Pt 2), the seizure involved
either the left or the right medial temporal lobe at seizure onset.
The seizure-onset subgraph was different for each seizure, and
the lateralization of the activated structures was concordant
with visual analysis. For 3 seizures in one patient (Pt 9), the
seizure-onset subgraph was discordant from the seizure onset-
zone. For this patient, the seizure-onset zone involved either
right or left medial temporal lobe depending on the seizure. The

seizure-onset subgraph for this patient was wrongly lateralized to
the right or the left temporal lobe.

During seizure propagation, there was always a close spatial
overlap between the activated subgraphs and the brain regions
involved at each part of the seizure in all patients. For the
27 seizures in the 9 patients, the brain regions involved
during seizure propagation were included in activated subgraphs.
However, the congruence between activated subgraphs and
regions disclosed by visual analysis was not perfect: a minority of
regions were revealed by the BTNDmethod but was not detected
by visual analysis.

During seizure ending, a tight spatial overlap was also
observed between activated subgraphs and brain regions
determined by visual analysis. For 23 seizures, the brain regions
involved at seizure ending were included in activated subgraphs.
For 4 seizures in 1 patient, visual analysis disclosed more
activated regions than the BTND method (Pt 4).

The detailed results are now presented for two cases (Pt 1 and
Pt 2).
CASE 1:

Pt 1 is a 49 years old male patient. Presurgical non-invasive
investigations suggested left temporal lobe epilepsy but some
radiological features were considered as atypical for mesial
temporal lobe epilepsy syndrome and prompted invasive EEG
with SEEG. SEEG targeted several regions within left temporal
lobe (anterior hippocampus, posterior hippocampus, amygdala,
temporal pole, anterior temporal neocortex, posterior temporal
lobe), left orbito frontal cortex, and right temporal lobe (right
amygdala, right anterior temporal neocortex).

Three seizures were recorded during SEEG. During the
3 seizures, the initial seizure-onset activity developed in left
anterior and posterior hippocampus with secondary involvement
of the temporal pole, amygdalar nucleus, and left anterior
temporal neocortex at the end of the seizures.

The BTND method applied to the three seizures decomposed
the connectivity pattern in 6 subgraphs. Figure 2 shows the
recording of two seizures (seizure 1 and 2) of the patient
1 for selected electrode contacts. Below each recording, we
provide the activation profiles of all subgraphs obtained by
the BTND for this specific seizure. On top is represented the
main cerebral structures targeted by intracranial electrodes for
this patient. Figure 3 shows the 6 FC subgraphs revealed by
the BTND.

One subgraph was active before the seizure and during the
whole course of the seizures. This subgraphwasmostly composed
of local connections within temporal lobe (mostly within anterior
hippocampus, posterior hippocampus, amygdala). At the seizure
onset, during the first seconds of the seizure, there was a
reproducible activation of one subgraph, that involved mostly
connections between anterior hippocampus and amygdala,
posterior hippocampus, and posterior temporal neocortex. A
few seconds later, a strong activation of another subgraph
was observed that involved mostly connections between medial
temporal lobe and temporal pole. During the course of the
seizures, there was a consistent activation of three other
subgraphs, with a very similar pattern between seizures. Those
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TABLE 2 | Qualitative comparison between the set of activated structures determined by visual analysis and the BTND method for the patient 1 and 2.

Seizure onset Seizure propagation Seizure ending
P
a
tie
n
t
1

Seiz. 1
Clinical:L ANT HIPPOC + L POST HIPPOC

Method: subg3 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE

Method: subg3 + subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L ANT TEMP NEOCORTEX

Method: subg4 + subg5 + subg6 + (subg1)

Seiz. 2
Clinical:L ANT HIPPOC + L POST HIPPOC

Method: subg3 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE

Method: subg3 + subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L ANT TEMP NEOCORTEX

Method: subg4 + subg5 + subg6 + (subg1)

Seiz. 3
Clinical:L ANT HIPPOC + L POST HIPPOC

Method: subg3 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE

Method: subg3 + subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L ANT TEMP NEOCORTEX

Method: subg4 + subg5 + subg6 + (subg1)

subgraphs
subg1: L ANT HIPPOC + L AMYG, subg2: L ANT HIPPOC + L POST HIPPOC + L TEMPORAL POLE + L AMYG, subg3: L ANT HIPPOC + L POST HIPPOC + L POST TEMPORAL NEOCORTEX

+ L AMYG, subg4: L POST TEMPORAL NEOCORTEX + L TEMPORAL POLE + L ANT HIPPOC + L POST HIPPOC subg5: L ANT TEMPORAL NEOCORTEX + L TEMP POLE,
subg6: L TEMPORAL POLE + L ANT TEMPORAL NEOCORTEX.

P
a
tie
n
t
2

Seiz. 1
Clinical: L ANT HIPPOC + L POST HIPPOC

Method: subg1 + (subg7)

Clinical: L ANT HIPPOC + L POST HIPPOC +
L ANT TEMPORAL NEOCORTEX + L ORBITO FRONTAL NEOCORTEX

Method: subg2 + (subg7)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG

Method:subg3 + subg4 + subg5 + subg6 + (subg7)

Seiz. 2
Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG

+ R ENTORHINAL CORTEX

Method: subg3 + subg4 + (subg7)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORHINAL CORTEX + R ANT TEMPORAL NEOCORTEX

Method: subg5 + (subg7)

Clinical: L ANT HIPPOC + L POST HIPPOC

Method: subg1 + subg2 + subg6 + (subg7)

Seiz. 3
Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG

+ R ENTORHINAL CORTEX

Method: subg3 + subg4 + (subg7)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORHINAL CORTEX

+ R ANT TEMPORAL NEOCORTEX

Method: subg5 + (subg7)

Clinical: L ANT HIPPOC + L POST HIPPOC

Method: subg1 + subg5 + subg6 + (subg7)

subgraphs
subg1: L ANT HIPPOC + L POST HIPPOC, subg2: L ANT HIPPOC + L POST HIPPOC + L ENTORHINAL CORTEX + L ORBITO FRONTAL CORTEX, subg3: R ANT HIPPOC + R POST HIPOC + R AMYG

+ R ENTORHINAL CORTEX, subg4: R ANT HIPPOC + R POST HIPOC + R AMYG + R ENTORHINAL CORTEX, subg5: R ANT HIPPOC + R POST HIPPOC + R ENTORHINAL CORTEX
+ R ORBITO FRONTAL CORTEX + R ANT TEMPORAL NEORTEX, subg6: R ANT TEMPORAL NEOCORTEX + R POST TEMPORAL NEOCORTEX, subg7: L ANT TEMPORAL NEOCORTEX

Legend; subg: subgraph, Seiz.: seizure, L: left, R: right, ANT HIPPOC: anterior hippocampus, POST HIPPOC: posterior hippocampus, ANT TEMPORAL NEOCORTEX: anterior temporal neocortex,
POST TEMPORAL NEOCORTEX: posterior temporal neocortex, AMYG: amygdala.
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TABLE 3 | Qualitative comparison between the set of activated structures determined by visual analysis and the Brain-wide Time-varying Network Decomposition (BTND) method for the patients 3, 4, and 5 (see

legend Table 2).

Seizure onset Seizure propagation Seizure ending

P
a
tie
n
t
3

Seiz. 1
Clinical: R ANT HIPPOC

Method: (subg2)

Clinical: R ANT HIPPOC + R POST HIPPOC + R ENT CX

Method: subg1

Clinical: R ANT HIPPOC + R POST HIPPOC + R ENT CX
+ R TEMPORAL LATERAL + R OCCIPITAL CX + R PARIETAL CX

+ R POST CENTRAL OPERC

Method: subg3 + subg4 + subg5 + subg6

Seiz. 2
Clinical: R ANT HIPPOC + R POST HIPPOC

Method: (subg2) + subg3 + subg5

Clinical: R ANT HIPPOC + R POST HIPPOC + R ENT CX

Method: subg1

Clinical: R ANT HIPPOC + R POST HIPPOC + R ENT CX
+ R TEMPORAL LATERAL + R OCCIPITAL CX + R PARIETAL CX

+ R POST CENTRAL OPERC

Method: subg3 + subg4 + subg5 + subg6

Seiz. 3
Clinical: R ANT HIPPOC + R POST HIPPOC

Method: (subg2) + subg3 + subg5

Clinical: R ANT HIPPOC + R POST HIPPOC + R ENT CX
+ R TEMPORAL LATERAL + R OCCIPITAL CX + R PARIETAL CX

+ R POST CENTRAL OPERC

Method: subg1 + (subg2) + subg4 + subg6

Clinical: R ANT HIPPOC + R POST HIPPOC + R ENT CX
+ R TEMPORAL LATERAL + R OCCIPITAL CX + R PARIETAL CX

+ R POST CENTRAL OPERC

Method: (subg2) + subg4

subgraphs subg1: R ANT HIPPOC + R POST HIPPOC + R AMYG + R ENT CX, subg2: R ANT HIPPOC, subg3: R PARIETAL CX + R OCCIPITAL CX, subg4: R TEMP LATERAL,
subg5: R TEMP LATERAL + R POST CENTRAL OPERC, subg6: R TEMP LATERAL,

P
a
tie
n
t
4

Seiz. 1
Clinical: L ANT HIPPOC

+ L POST HIPPOC + L TEMP POLE

Method: subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg3 + subg4 + subg5

Clinical:L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg4 + subg5 + (subg6)

Seiz. 2
Clinical: L ANT HIPPOC

+ L POST HIPPOC + L TEMP POLE

Method: subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg3 + subg4 + subg5

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg4 + subg5 + (subg6)

Seiz. 3
Clinical: L ANT HIPPOC

+ L POST HIPPOC + L TEMP POLE

Method: subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg3 + subg4 + subg5

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg4 + subg5 + (subg6)

Seiz. 4
Clinical: L ANT HIPPOC

+ L POST HIPPOC + L TEMP POLE

Method: subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg3 + subg4 + subg5

Clinical: L ANT HIPPOC + L POST HIPPOC + L TEMP POLE
+ L POST TEMP NEOCORTEX + R AMYG + R ANT HIPPOC

Method: subg4 + subg5 + (subg6)

subgraphs subg1: L ANT TEMP NEOCORTEX + R ANT HIPPOC, subg2: L ANT HIPPOC + L POST HIPPOC, subg3: L POST TEMPORAL NEOCORTEX + L AMYGDALA + L ANTERIOR CINGULATE,
subg4: R AMYGD + R ANT HIPPOC + L ANT HIPPOC + L AMYG, subg5: R AMYGD + R ANT HIPPOC subg6: L TEMP LATERAL + L TEMP POST

P
a
tie
n
t
5

Seiz. 1
Clinical: R ANT HIPPOC

+ R POST HIPPOC + R TEMP POLE + R AMYG

Method: subg3 + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG

Method: subg3 + subg2 + (subg1)

Clinical:R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG

Method: subg3 + (subg4) + (subg1)

Seiz. 2
Clinical: R ANT HIPPOC

+ R POST HIPPOC + R TEMP POLE + R AMYG

Method: subg3 + (subg1)

Clinical:R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG + R POST TEMP NEOCORTEX

Method: subg3 + subg2 + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG + R POST TEMP NEOCORTEX

Method: subg3 + (subg4) + (subg1)

Seiz. 3
Clinical: R ANT HIPPOC

+ R POST HIPPOC + R TEMP POLE + R AMYG

Method: subg3 + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG + R POST TEMP NEOCORTEX + R ORBITO FRONTAL CX

Method: subg3 + subg2 + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG + R POST TEMP NEOCORTEX R ORBITO FRONTAL CX

Method: subg3 + (subg4) + (subg1)

Seiz. 4
Clinical: R ANT HIPPOC

+ R POST HIPPOC + R TEMP POLE + R AMYG

Method: subg3 + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG + R POST TEMP NEOCORTEX

Method: subg3 + subg2+ (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R TEMP POLE
+ R AMYG + R POST TEMP NEOCORTEX

Method: subg3 + (subg4) + (subg1)

subgraphs subg1: R LAT TEMP NEOCORTEX + R LAT FRONTAL CORTEX, subg2: R ANT HIPPOC + R POST HIPPOC + R AMY + R TEMPORAL POLE, subg3: R ANT HIPPOC + R POST HIPPOC
subg4: R POST HIPPOC + R ORBITO FRONTAL CX + R TEMPORAL POST NEOCORTEX

F
ro
n
tie
rs

in
N
e
u
ro
lo
g
y
|
w
w
w
.fro

n
tie
rsin

.o
rg

8
D
e
c
e
m
b
e
r
2
0
2
0
|
V
o
lu
m
e
1
1
|A

rtic
le
5
7
9
7
2
5

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


F
ru
sq

u
e
e
t
a
l.

S
e
m
i-a

u
to
m
a
tic

E
xtra

c
tio

n
o
f
F
C
N
e
tw

o
rks

TABLE 4 | Qualitative comparison between the set of activated structures determined by visual analysis and the Brain-wide Time-varying Network Decomposition (BTND) method for the patients 6, 7, 8, and 9 (see

legend Table 2).

Seizure onset Seizure propagation Seizure ending

P
a
tie
n
t
6

Seiz. 1
Clinical: L PRECENTRAL OPERCULUM + L POST
CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg2 + subg3 + subg4 + (subg1) (subg5)

Clinical: L PRECENTRAL OPERCULUM
+ L POST CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg2 + subg3 + subg4 + (subg1) (subg5)

Clinical: L PRECENTRAL OPERCULUM +
L POST CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg4 + (subg1) (subg5)

Seiz. 2
Clinical: L PRECENTRAL OPERCULUM + L POST
CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg2 + subg3 + subg4 + (subg1) (subg5)

Clinical: L PRECENTRAL OPERCULUM
+ L POST CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg2 + subg3 + subg4 + (subg1) (subg5)

Clinical: L PRECENTRAL OPERCULUM +
L POST CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg4 + (subg1) (subg5)

Seiz. 3
Clinical: L PRECENTRAL OPERCULUM + L POST
CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg2 + subg3 + subg4 + (subg1) (subg5)

Clinical: L PRECENTRAL OPERCULUM
+ L POST CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg2 + subg3 + subg4 + (subg1) (subg5)

Clinical: L PRECENTRAL OPERCULUM +
L POST CENTRAL OPERCULUM + L FRONTAL CORTEX

Method: subg4 + (subg1) (subg5)

subgraphs subg1: L PRECENTRAL OPERCULUM + L POST CENTRAL OPERCULUM + L FRONTAL CORTEX, subg2: L PRECENTRAL OPERCULUM + L POST CENTRAL OPERCULUM
+ L FRONTAL CORTEX + L PARIETAL CORTEX, subg3: L POST CENTRAL OPERCULUM + L PARIETAL CORTEX, subg4: L TEMPORAL LOBE + L POST PARIETAL CORTEX

P
a
tie
n
t
7 Seiz. 1

Clinical: L ANT HIPPOC
+ L POST HIPPOC + L AMYGD

Method: subg2 + (subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC + L AMYGD
+ L ANT TEMPORAL NEOCORTEX

Method: subg3 (+subg1)

Clinical: L ANT HIPPOC + L POST HIPPOC
+ L AMYGD + L ANT TEMPORAL NEOCORTEX

Method: subg4 + subg5 + subg6 (+subg1)

subgraphs subg1: L ANT TEMPORAL NEOCORTEX, subg2: L ANT HIPPOC + L POST HIPPOC + L AMYGD, subg3: L ANT HIPPOC + L POST HIPPOC + L AMYGD,
subg4: L ANT TEMPORAL NEOCORTEX, subg5: L ANT TEMPORAL NEOCORTEX, subg6: L ANT HIPPOC + L POST HIPPOC + L AMYGD.

P
a
tie
n
t
8

Seiz. 1
Clinical: R ANT HIPPOC + R POST HIPPOC

+ R AMYG + R ENTORINAL CORTEX + R TEMP POLE

Method: subg3 + subg6 + (subg1) + (subg2)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

Method: subg3 + subg4 + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

Method: subg1 + subg4 + subg5 + (subg2)

Seiz. 2

Clinical: R ANT HIPPOC + R POST HIPPOC
+ R AMYG + R ENTORINAL CORTEX

+ R TEMP POLE

Method: subg3 + subg6 + (subg2)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

Method: subg5 + subg6 + (subg2)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

+ R ANT TEMPORAL NEOCORTEX

Method: subg1 + subg4 + subg5 + (subg2)

Seiz. 3

Clinical: R ANT HIPPOC + R POST HIPPOC
+ R AMYG + R ENTORINAL CORTEX

+ R TEMP POLE

Method: subg3 + subg6 + (subg2)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

Method: subg5 + subg6 + (subg2)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

+ R ANT TEMPORAL NEOCORTEX

Method: subg3 + subg6 + (subg1) + (subg2)

subgraphs
subg1: R ANT TEMPORAL NEOCORTEX + R POST TEMPORAL NEOCORTEX, subg2: R POST HIPPOC + R ANT TEMPORAL NEOCORTEX + R POST TEMPORAL NEOCORTEX,

subg3: R ANT HIPPOC + R AMYG, subg4: R ENTORHINAL CORTEX + R TEMPORAL POLE + R ANT TEMPORAL NEOCORTEX,
subg5: R ANT HIPPOC + R POST HIPPOC + R AMYG, subg6: R ANT HIPPOC + R AMYG

P
a
tie
n
t
9

Seiz. 1

Clinical: R ANT HIPPOC + R POST HIPPOC
+ R AMYG + R ENTORINAL CORTEX

+ R TEMP POLE

Method: subg2 + (subg1)

Clinical: L ANT HIPPOC + L TEMP POLE

Method: subg2 + subg3 + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE + L TEMP POLE

+ R ANT TEMPORAL NEOCORTEX L ANT HIPPOC

Method: subg3 + subg4 + subg5 + subg6

Seiz. 2
Clinical: L ANT HIPPOC + L TEMP POLE

Method: subg3 + (subg5) + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

Method: subg2 + subg3 + (subg5) + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE + L TEMP POLE

+ R ANT TEMPORAL NEOCORTEX L ANT HIPPOC

Method: subg4 + subg5 + (subg1)

Seiz. 2
Clinical: L ANT HIPPOC + L TEMP POLE

Method: subg3 + (subg5) + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE

Method: subg2 + subg3 + (subg5) + (subg1)

Clinical: R ANT HIPPOC + R POST HIPPOC + R AMYG
+ R ENTORINAL CORTEX + R TEMP POLE + L TEMP POLE

+ R ANT TEMPORAL NEOCORTEX L ANT HIPPOC

Method: subg4 + subg5 + (subg6)

subgraphs
subg1: L POST TEMPORAL NEOCORTEX + L ANT TEMP NEOCORTEX + R ANT HIPPOC + R LAT TEMPORAL NEOCORTEX, subg2: L ANT HIPPOC + L ANT TEMPORAL NEOCORTEX

+ L POST TEMPORAL NEOCORTEX, subg3: R ANT HIPPOC + R POST HIPPOC + R ENTORHINAL CX + R AMYG, subg4: L ANT HIPPOC + L ANT TEMPORAL NEOCORTEX, subg5: + L POST
TEMPORAL NEOCORTEX + L ANT TEMP NEOCORTEX + R ANT HIPPOC + R LAT TEMPORAL NEOCORTEX, subg6: R ANT TEMPORAL NEOCORTEX + R POST TEMPORAL NEOCORTEX
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Frusque et al. Semi-automatic Extraction of FC Networks

FIGURE 2 | On top is represented the main cerebral structures targeted by intracranial electrodes for the patient 1. Then we picture the recording of two seizures of

the patient 1 for selected electrode contacts. Under each seizure, we show the activation level of each subgraph obtained by the BTND decomposition. A subgraph is

composed of pairs of contacts with high FC values. The activation level shows the FC dynamic of a subgraph. The main features of ictal semiology are represented by

vertical lines, SS, start of the seizure; BA/LC, clinical onset with behavioral arrest and loss of consciousness; OAO, oro alimentary automatisms; RAD, right arm

dystonia; SE, end of the seizure.
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Frusque et al. Semi-automatic Extraction of FC Networks

FIGURE 3 | Six functional connectivity (FC) subgraphs revealed by the Brain-wide Time-varying Network Decomposition (BTND) decomposition for the patient 1. The

colorbar is the same for each graph. Only the electrode contacts that show one or several connections in at least one subgraph are represented.
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subgraphs contained mostly connections between anterior lateral
temporal neocortex, temporal posterior neocortex, and temporal
pole. As a whole, the pattern of activations was very similar for
the three seizures and was very consistent with visual analysis of
the seizures.

From a clinical point of view, at seizure onset, the patient
was asymptomatic and the seizure remained clinically silent for
almost 80 s. First clinical symptoms (behavioral arrest and loss
of consciousness) occurred more than 1 min after seizure onset
during the course propagation. Secondary clinical manifestations
included oro alimentary automatisms (seizure 1) and right arm
dystonia (seizure 2). Those symptoms occurred while several
modules were simultaneously activated.

The patient underwent left anterior lobectomy that resulted in
seizure freedom with more than 24 months of follow-up.
CASE 2:

Pt 2 is a 37 years old female patient. Presurgical non-invasive
investigations suggested that both temporal lobes could trigger
habitual epileptic seizures of the patient. Intracranial EEG using
SEEG was thus required to evaluate the intrinsic epileptogenicity
of each temporal lobe. Intracranial SEEG electrodes targeted
mostly both medial and lateral temporal lobes (left and right
anterior hippocampus, left and right temporal pole, right
amygdala, left and right anterior temporal neocortex, left and
right posterior temporal neocortex, left and right insula), but also
left and right orbitofrontal cortex.

Three seizures were recorded during SEEG. For the seizure 1,
seizure-onset was characterized by a rapid discharge in the left
anterior and posterior hippocampus with secondary spread to left
anterior lateral temporal and left orbito frontal cortex fast activity
and at the end of the seizure propagation to right temporal
lobe (right hippocampus and right amygdala). For two seizures
(seizures 2 and 3), the initial seizure-onset activity developed in
right hippocampus, right amygdala, and right entorhinal cortex
with a secondary ictal spread to right anterior temporal cortex
and with a propagation to left temporal lobe at seizure ending.

The BTND method applied to the three seizures decomposed
the connectivity pattern in 7 subgraphs. Figure 4 shows the
recording of two seizures (seizures 1 and 2) of the Patient 2 for
selected electrode contacts. Below each recording, we provide
the activation profiles of all subgraphs obtained by the BTND
for this specific seizure. On top is represented the main cerebral
structures targeted by intracranial electrodes for this patient.
Figure 5 shows the 7 FC subgraphs revealed by the BTND.

One subgraph was mostly composed of connections within
left medial temporal lobe and left orbitofrontal cortex. Another
subgraph was mostly composed of connections within left
anterior temporal neocortex. The remaining five subgraphs
consisted of regions connecting mostly right medial temporal
structures (hippocampus, amygdala, entorhinal cortex) and/or
right lateral temporal neocortex. The time course of activation
of those subgraphs was closely related to the ictal involvement
of both temporal lobes revealed by visual analysis of the
seizures: involvement of the left (right) medial temporal lobe was
paralleled by an activation of the left (right) subgraphs in a timely
fashion, depending on the seizure.

Clinically, ictal semiology for seizure 1 consisted of nausea and
olfactory hallucinations with preserved consciousness reported
consciously by the patient 30 s after EEG onset followed by
behavioral arrest with loss of consciousness more 60 seconds
later. Loss of consciousness occurred lately during the course
of the seizure when both temporal lobes were involved. At that
time, the BTND method showed activation of modules in both
temporal lobes. Seizure 2 was a nocturnal seizure with mild
clinical semiology, mostly consisting of nocturnal arousal and
confusion.

Since SEEG revealed an intrinsic epileptogenicity of both
temporal lobes, surgical resection was contraindicated.

4. DISCUSSION

This study investigated a new method named BTND to
decompose the multi-seizure brain-wide time-varying network
obtained by means of FC. The dataset is visualized as FC sub-
graphs characterizing the dynamic of all seizures from the same
patient. The FC measure used was the PLV, estimated at different
time steps of the seizure and applied on large band signal (20–
100 Hz). We compared the obtained decomposition of ictal
events from 9 patients who have drug-resistant focal epilepsy
(observation of a total of 27 seizures) to the visual interpretation
from the clinician. Overall, for every patient, results consisting
of spatially localized FC subgraphs with stepwise activation were
easily interpretable. For 8 of the 9 patients, the decomposition
matched with the clinical observation entailing the BTND
method as a relevant tool to visualize the multi-seizure brain-
wide time-varying network.

4.1. Investigating Seizure Dynamics With
Brain-Wide Time-Varying Network
It is well-established that the brain is a complex network, with
a sophisticated structural connectivity architecture and specific
anatomical networks shaping sensory and cognitive processes
(34, 35). Functional connectivity measures are a statistical
way to investigate the interrelations between brain regions,
forming a physiological or pathological brain network (36).
When applied on static processes, FC network analysis can
provide an instantaneous picture of a stable network. In the field
of clinical neuroscience, this proved to be useful for studying
stable disease traits like the effects of specific lesions (10) or
the effects of drugs on the brain (6, 11, 37). Graph theory-
based measures can then provide quantitative tools to explore the
overall topology of the network (35). Thus, specific metrics such
as modularity, clustering coefficients, or efficiency originating
from graph theory (16) were proposed as a useful strategy,
for example, to classify patients with Alzheimer disease from
standard patients (9) or to explain the effect of physical activity
on relations between brain regions (38).

However, static network analysis does not capture one
fundamental property of epileptic seizures, the dynamic
propagation of the ictal wave. Analysis of time-varying network
inferred by dynamic FC measures is a recent topic. Newly

Frontiers in Neurology | www.frontiersin.org 12 December 2020 | Volume 11 | Article 579725

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Frusque et al. Semi-automatic Extraction of FC Networks

FIGURE 4 | On top is represented the main cerebral structures targeted by intracranial electrodes for patient 2. Then we picture the recording of two seizures of the

patient 2 for selected electrode contacts. Under each seizure, we show the activation level of each subgraph obtained by the Brain-wide Time-varying Network

Decomposition (BTND) decomposition. A subgraph is composed of pairs of contacts with high functional connectivity (FC) values. The activation level shows the FC

dynamic of a subgraph. The main features of ictal semiology are represented by vertical lines, BA/LC, behavioral arrest and loss of consciousness; N/OH, clinical

onset with nausea and olfactory hallucinations; NA, nocturnal arousal; IC, ictal confusion.
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FIGURE 5 | Seven functional connectivity (FC) subgraphs revealed by the Brain-wide Time-varying Network Decomposition (BTND) decomposition for the patient 2.

Only the electrode contacts that show one or several connections in at least one subgraph are represented. The dotted line separates the electrode contacts located

in the right hemisphere from those located in the left hemisphere.
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emerging dynamic measures that quantify how community
organization evolved in time have been proposed in recent
years (39). In this context, Kerr et al. (40) shows that simple
metrics using the first eigenvector of each FC network lead
to the separation of ictal, pre-ictal, or non-ictal events of a
recording. A similar metric demonstrated in (22) used to
describe the seizure as a succession of states. The strategy can be
used to decompose the time axes in states, and then to extract
the major FC network of each state (41). Despite producing
intelligible results, this strategy hampers the identification of FC
subgraphs with interconnected temporal activation, and prevents
highlighting some complex relations between brain regions. A
complementary approach has been proposed in (23): the authors
identify first the main subgraphs of the seizures by modularity
optimization (42), and the evolution in time of the main
subgraphs leads to a decomposition of the seizure in time states.
It should be noticed that this approach is not fundamentally
different from the study of static graphs since the subgraphs and
their time evolution are determined independently. However,
in addition to finding a measure characterizing each FC graph,
one must know how to analyze the temporal evolution of the
proposed scores. It becomes even more complicated when
several modalities are used, as in (43), where several seizures are
analyzed for different frequency bands over time.

The present study proposes another strategy, consisting
of decomposing all modalities characterizing the dataset
simultaneously. Thus, the main advantages of the proposed
method are that the analysis pipeline provides both the subgraphs
and their temporal activations. The output of the process
highlights themain components of the connectivity structure and
summarizes a large amount of data with an automatic approach.
A similar approach has already been employed in the context of
epilepsy in (44) to decompose FC matrices from seizures into
FC subgraphs with their respective activation profile. Khambhati
et al. (44) demonstrate that inferred FC subgraphs during
interictal periods can predict brain regions that generate seizures,
and that those subgraphs undergo slower and more coordinated
fluctuations during the ictal events compared to interictal states.
However, this kind of simultaneous decompositions can produce
results that are difficult to interpret. Therefore, for an application
different from epilepsy, a sparsity constraint applied on activation
profile was shown to enforce intelligibility of the results (45),
providing FC subgraphs discriminating the brain network’s
dynamic in neurodevelopment. Moreover, contrary to our study,
the decomposition from (44) does not integrate the different
seizures of the same patient to obtain more reproducible FC
subgraphs. Tools to decompose several modalities, like tensor
decomposition (46–48), were already applied in neuroscience
(41, 49, 50) and recently in the context of epilepsy (26). In
(26), we proposed a specific tensor decomposition with relevant
constraints to encourage the inference of interpretable clusters
of FC common to several seizures of the same patient. However,
this method is only applicable if all seizures from the same patient
have similar durations. In the present study, we developed a new
method offering the possibility of decomposing several seizures
with different durations from the same patient, which is a more
realistic situation in a clinical setting.

4.2. Limitations
The BTND method can produce relevant FC, but several
limitations have to be addressed. First, the method requires 3
parameters that are directly related to the obtained FC results.
We expose a simple procedure to choose each parameter that
produces relevant results for each of the 27 seizures. However, the
optimal selection of these parameters may be dependent on the
FC measure and might be adapted for other clinical applications.
Second, for one patient, the BTND method identified a seizure-
onset subgraph that was discordant from the seizure onset-zone.
For that patient, at seizure-onset, there was a rapid discharge
within the seizure-onset zone (without any focal change of
synchrony) and a spiking activity within the contralateral
hemisphere (accompanied with an increase in synchrony). The
increase of FC evaluated by the phase-locking value was wrongly
lateralized, emphasizing that the BTND method is dependent
on the FC measure used to infer the brain-wide time-varying
network. Thus, using another FC measure could be envisaged
for this patient. In addition, several studies have already shown
that seizure-onset is often marked by a dramatic decrease in
seizure connectivity among recorded brain structures. At the
same time, synchrony increases progressively during the seizure
(51, 52). It might be thus expected that seizure-onset should be
characterized by a decrease of activation of subgraphs located
within the seizure-onset zone with the BTND method in some
patients. It is important to consider that our procedure only
highlights functional subgraphs associated with high values of
functional connectivity. Thus, it is ideal for showing activations
of synchrony in different areas of the brain. However, it is
not able to explicitly demonstrate the deactivations that may
occur in the brain at the early start of the seizure when SEEG
activities in different areas of the brain are suddenly decorrelated.
Lastly, direct validation of the method is out of reach since
there is no perfect gold standard for the estimation of the
connectivity pattern in epileptic patients. We chose to make a
correspondence between the propagation patterns disclosed by
classical visual interpretation of SEEG signals and the BTND
method. Simulation studies generating neural models of epileptic
activity with a known connectivity pattern could represent an
alternative in future studies.

4.3. Clinical Application of the Method
In the present study, we presented an automatic method to
describe the connectivity structures of epileptic seizures using
an original algorithm with several constraints optimized for that
clinical context.

As a whole, we found that the method produces several
subgraphs of connections with their activation time course that
parallel the patterns of propagation of the seizures closely. In
24/27 seizures, one or two subgraphs overlapped clearly with
the seizure onset zone. This suggests that the method can help
to localize the seizure-onset zone if there is an increase in
synchrony at seizure-onset revealed by FC. This finding confirms
several studies evidencing that focal modulations of synchrony
help to localize the seizure-onset zone to be surgically resected
(5, 53). Moreover, thanks to the sparsity and temporal coherence
constraints, the method effortlessly reveals how FC synchrony
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propagates to the different regions of the brain. As a whole,
the method summarizes a vast amount of complex interactions
with high readability. We believe that the method is thus highly
valuable in clinical studies focusing on connectivity in epileptic
patients. For example, this may help to unravel the neural bases
of clinical semiology of seizures, which are often related to ictal
dysfunction of widespread brain networks involving cortical or
subcortical structures. The BTNDmethod provides an exhaustive
view of the structure of functional networks at each period of
the seizure enabling a fine-grained correlation ictal semiology
and network analysis. Lastly, clinical interpretation of SEEG
signals is mostly focused on changes of power in large frequency
bands (typically high-frequency above 20 Hz at seizure-onset and
low band or large band frequency during propagation) revealed
by visual inspection. The BTND method enables the detection
of changes of synchrony revealed by functional connectivity
measures, which are not necessarily paralleled by changes
of power. In that respect, we believe that the method may
thus contribute to bringing into clinical practice computational
measures complementary to a visual interpretation of seizures.

5. CONCLUSION

We present here a novel approach to decompose epileptic
seizures in several time-varying subgraphs with high and
reproducible functional connectivity values. The method extracts
the most significant subgraphs and their corresponding time
course of activation. We suggest that this represents a first step
to simplify the interpretation of large datasets of functional
connectivity for clinical practice. We believe that this will enable
further studies investigating the clinical relevance of networks
identification for epilepsy surgery.
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