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INTRODUCTION

Diffuse low-grade glioma (LGG, i.e., World Health Organization grade II glioma) is a brain
primary neoplasm with a constant invasion along the cerebral connectome and with an inevitable
malignant transformation, which results in functional worsening and ultimately in the death of
the patient (1). To optimize the oncofunctional balance of therapeutic management, namely, to
increase both the overall survival and the quality of life (QoL), the purpose is to achieve an early
and maximal safe surgical resection, performed until critical neural networks have been identified
by means of intraoperative corticosubcortical direct electrostimulation (DES) mapping in awake
patients (2). Indeed, despite the lack of randomized controlled trials, complete LGG removal and,
when functionally feasible, supracomplete resection [i.e., with an oncological margin around the
FLAIR signal abnormality visible on the pre-operative magnetic resonance imaging (MRI)] led to
a significant increase in median survival around 15 years (3, 4), while in parallel, electrical-guided
surgery allowed a significant reduction of severe persistent deteriorations, even in the so-called
“eloquent regions” (5). In fact, mechanisms of neuroplasticity induced by the slow progression of
the LGG over the years, explaining why the vast majority of patients do experience only mild (or
even no) neurological deficits at diagnosis (usually made because of inaugural seizures), open the
door to massive surgical resection in areas deemed to be inoperable in a rigid localizationist view
of brain processing, with functional recovery and return to a normal life (6–9). Such a considerable
functional redeployment is possible, thanks to an actual meta-networking brain organization, based
on dynamic interactions within and between neural circuits subserving sensorimotor, visuospatial,
language, cognitive, emotional, and behavioral functions (10).

SURGERY FOR LOW-GRADE GLIOMA AND FUNCTIONAL

REARRANGEMENT

Nonetheless, despite this major improvement of functional and oncological outcomes following
LGG surgery in the two past decades (11), because of its intrinsic diffuse nature, LGG cannot be
cured, as evidenced by relapse that may arise even many years after supratotal resection (4). As
a consequence, reoperation(s) has been advocated in the event of LGG recurrence, with the aim
of reducing again the tumor volume and then decreasing the risk of malignant transformation
and prolonging overall survival (12, 13). Interestingly, in a large series with more than 1,000
patients, it has been demonstrated that repeat surgeries were significantly associated with greater
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survival (3). However, preservation of QoL might seem more
uncertain still in case of subsequent surgery, especially when the
first resection was interrupted according to individual functional
boundaries. Yet, it is worth noting that functional rearrangement
has been observed between the first and second intervention,
as revealed by intraoperative DES (14, 15). Remarkably, such a
functional reorganization, likely elicited by the initial operation
itself, the post-operative cognitive rehabilitation (16), and the
glioma regrowth, enabled an optimization of the extent of
resection while avoiding neurological morbidity (15, 17).

On the other hand, this reconfiguration over the years is
seen only in a subgroup of LGG patients, and reoperation
did not permit to perform (supra)marginal resection in all
cases because of some limitations of neuroplasticity, especially
related to the involvement of the “minimal common brain”
(18). This “neural core,” with a low interindividual variability
(19) and a low plastic potential, is mainly constituted by the
input systems (as the visual and somatosensory systems), the
output systems (as the pyramidal system), and the subcortical
connectivity [as the associative fibers, e.g., the arcuate fasciculus
or the inferior fronto-occipital fasciculus (IFOF)]; see a recent
probabilistic atlas of brain plasticity (8). Such a limitation of
brain adaption in reaction to glioma migration explains why
some degrees of cognitive disturbances may be found, despite
a normal neurological examination at the standard clinical
evaluation, when an objective neuropsychological assessment is
performed in LGG patients. These disorders may be identified
before any treatment [as semantic impairment if the left IFOF
is invaded (20)], or following surgical resection—as subjective
empathy changes related to the disconnection of the left
cingulum bundle or the right IFOF (21), or lexical access
troubles associated to damages of the left inferior longitudinal
fasciculus (8). Consequently, neurosurgeons should find the
optimal compromise between the dynamics of neural networks
allowing compensation after glioma resection and limitations of
brain reshaping based on the knowledge of critical cortical hubs
and axonal pathways (22, 23). To this end, introducing the fourth
dimension to optimize the oncofunctional balance over the years
in LGG patients led to the proposal of an original paradigm, that
is, to consider a multistage surgical approach. This new concept
enables to deal with the individual capacity of the central nervous
system to reallocate in reaction to slow glioma progression, at
least to some extent (24, 25).

NON-INVASIVE BRAIN STIMULATION AND

NEUROPLASTICITY

In this setting, the next step would be to try to promote
neural redistribution before reoperation in order to increase the
likelihood of achieving an improved extent of resection. This
facilitation of brain functional rearrangement seems now possible
for several reasons. First, mechanisms underlying neuroplasticity
after a first glioma surgery start to be better understood, especially
thanks to post-operative neuroimaging studies by means of
task-based as well as resting functional MRI (fMRI), which
showed a balance between recruitment of perilesional areas

and involvement of contralesional homologous regions (26–
28). Second, besides fMRI, which is based on the principle
of neurovascular coupling, resulting in serious limitations as a
low reliability and the impossibility to distinguish critical areas
from those that can be compensated following brain insult (29),
transcranial magnetic stimulation (TMS) has been proposed for
functional mapping in cerebral tumor patients (30). Indeed,
by evoking a magnetic field able to bypass the skull, TMS
may excite neurons in a suprathresholded manner and then
can elicit neuronal activity: this permits to quantify network
properties such as excitability and connectivity or to cause a
transitory virtual lesion disrupting ongoing task, as DES, but
non-invasively (31). However, in a recent investigation that
compared navigated repetitive TMS (rTMS) with intraoperative
DES in glioma patients, TMS showed only 81.6% sensitivity,
59.6% specificity, 78.5% positive predictive value, and 64.1%
negative predictive value for pre-operative language mapping
(32), confirming that DES remains the criterion standard. Third,
beyond pre-surgical planning, TMS has recently been used to
study neuroplasticity before and after tumor surgery. In a recent
preliminary experience with 18 patients harboring a left glioma,
rTMS languagemapping has been achieved before a first and then
before a second surgery and confirmed a functional reallocation
of language sites, with (i) more “language-negative areas” around
the neoplasm during the reoperation in patients in whom critical
language areas have been found during the first mapping; (ii)
more functional reorganization in slow-growing tumors: in other
words, these findings support that eloquent regions can leave
the tumor area over time, especially in LGG (33). In agreement
with fMRI studies, by generating many language disorders over
the right hemisphere, rTMS investigations plead in favor of an
active recruitment of the contralesional side to compensate for
the glioma growth in the left side (34).

In addition, non-invasive brain stimulation (NBS)
techniques by means of rTMS or anodal transcranial direct
current stimulation (tDCS), which can actively generate
neuromodulation by changing cortical excitability into
inhibitory or excitatory direction using magnetic or electric
fields, respectively, may enable both to potentiate behavioral
performances in healthy volunteers and to facilitate post-lesional
neuroplasticity in brain-damaged patients (35, 36). Indeed,
repeated sessions of NBS over the healthy brain have significantly
improved language functions such as speech, semantic fluency,
word retrieval, and verbal learning (37–39). Interestingly, this
functional improvement was significantly associated with a
modulation of the effective connectivity, especially between
the left inferior frontal gyrus and the right insula in verb
learning facilitation (40). This is in line with DES mapping,
which disrupts behavior by stimulating focally an entry door
to a larger circuit (41, 42); even though the effects of NBS
are foremost local, neural activity within the whole network
is actually affected. For example, regarding movement, the
interhemispheric transcallosal inhibitory effects may be modified
by applying tDCS to one primary motor cortex, as it can facilitate
the contralateral primary motor cortex through potentiation
of interhemispheric interactions (43). The same concept has
been utilized in patients with cerebral insult, in particular
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for the therapy of post-stroke aphasia. Indeed, although the
actual mechanisms of reorganization elicited by excitatory
combined with inhibitory effects of NBS on different nodes
of the injured neural networks are still matter of debate, it
seems that the complex interactions between the ipsilesional,
contralesional, and interhemispheric connectivity may be
modulated to facilitate functional compensation (44). For
instance, anodal tDCS over the left inferior frontal gyrus resulted
in an improvement of speech, naming, and repetition in aphasic
patients (45, 46). However, because the effect of NBS is not
restricted to the stimulated region but also evokes modifications
of the functional connectivity in a wider language circuit (47, 48),
beyond excitatory stimulation to perilesional sites, inhibitory
low-frequency rTMS has been performed over contralateral
homotopic language regions to facilitate post-stroke recovery
(49, 50). In the same spirit, NBS has also been used in association
with speech therapy to potentiate functional compensation (51).

PERSPECTIVES

Based on these preliminary results in stroke, it could be
considered to use NBS in patients who underwent brain surgery,
in addition to functional rehabilitation, which is already known
to participate in post-operative network rearrangement (16, 52).
As mentioned, besides the improvement of QoL, the goal would
be to optimize the post-operative functional redeployment and
to reopen the door to subsequent surgical resection(s), especially
for slow-growing LGG (15). Of note, invasive stimulation has
previously been suggested by placing a grid of electrodes over
the residual glioma at the end of a first partial resection,
in order to perform continuous cortical electrical stimulation
simultaneously with behavioral training and then to accelerate
plastic reorganization prior to reoperation; however, only five
patients have been reported, with a high rate of surgical
complications (two infections, one subdural hematoma) due to
the invasiveness of this technique (53). Moreover, these findings
were not reproduced in the literature. As a consequence, a
more reliable and feasible original therapeutic solution in clinical
routine might be to develop specific NBS protocols that aim

pushing away functional nodes to leave the glioma region.
Indeed, contrary to the post-stroke aphasic patients, in whom
it has been proposed to use inhibitory rTMS over the right
hemisphere, particularly the inferior frontal gyrus, in order
to facilitate reinforcement within the left damaged language
network (51), the main purpose in brain tumor patients would be
to favor the recruitment of the contralateral homologous areas,
which have been demonstrated by means of fMRI as playing a
pivotal role in recovery following a first surgery (26, 54). In fact, to
increase the extent of resection during a reoperation, NBS could
be utilized to inhibit the perilesional critical sites and to force
them out of the periphery of the surgical cavity, where the tumor
removal was interrupted at the end of the first operation because
functional boundaries have been reached. In other words, the
ultimate goal would be to change the respective weight of the
nodes within a large-scale bilateral functional network, or even
to modulate the interactions between brain systems—as it has
been evidenced that language compensation after surgery for left
LGG might involve non-language functions such as attentional
resources, i.e., that picture naming recovery was correlated to
the recruitment of the right frontoparietal attentional network
(28). This means that such an innovative therapeutic strategy
can be conceived only in a dynamic metanetworking account
of neural processing, breaking with the traditional dogmatic
localizationist theory (10); therefore, a stronger link should
be built between cognitive neurosciences (as the new field of
connectomics), technical advances in neuromodulation tools (as
rTMS and tDCS), and elaboration of original management for
glioma patients, based on a better understanding and guidance of
interactions between tumor progression and brain adaptation. In
this spirit, the next question could be to use NBS with the aim of
catalyzing neuroplasticity and optimizing the extent of resection
for gliomas involving critical neural networks even before the
first surgery.
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