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Predicting brain age of children accurately and quantitatively can give help in brain

development analysis and brain disease diagnosis. Traditional methods to estimate

brain age based on 3D magnetic resonance (MR), T1 weighted imaging (T1WI), and

diffusion tensor imaging (DTI) need complex preprocessing and extra scanning time,

decreasing clinical practice, especially in children. This research aims at proposing an

end-to-end AI system based on deep learning to predict the brain age based on routine

brain MR imaging. We spent over 5 years enrolling 220 stacked 2D routine clinical

brain MR T1-weighted images of healthy children aged 0 to 5 years old and randomly

divided those images into training data including 176 subjects and test data including

44 subjects. Data augmentation technology, which includes scaling, image rotation,

translation, and gamma correction, was employed to extend the training data. A 10-layer

3D convolutional neural network (CNN) was designed for predicting the brain age of

children and it achieved reliable and accurate results on test data with a mean absolute

deviation (MAE) of 67.6 days, a root mean squared error (RMSE) of 96.1 days, a mean

relative error (MRE) of 8.2%, a correlation coefficient (R) of 0.985, and a coefficient of

determination (R2) of 0.971. Specially, the performance on predicting the age of children

under 2 years old with a MAE of 28.9 days, a RMSE of 37.0 days, a MRE of 7.8%, a R

of 0.983, and a R2 of 0.967 is much better than that over 2 with a MAE of 110.0 days,

a RMSE of 133.5 days, a MRE of 8.2%, a R of 0.883, and a R2 of 0.780.

Keywords: magnetic resonance imaging, deep learning, brain age, convolutional neural network, artificial

intelligence

INTRODUCTION

The brain development of children undergoes a rapid and complex process, especially in the first 2
years after birth (1, 2). The early brain development follows the law of myelination from caudal to
rostral, posterior to anterior regions, central to peripheral locations, which is closely related to the
development of sensory, motor, and cognitive ability (3). Delayed brain development can lead to
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intellectual disability, language disorder, activity limitation, and
other manifestations in children, which seriously affect their
quality of life. Therefore, accurate and quantitative evaluation
of brain development, early identification, and intervention
treatment is particularly important for children with brain
development analysis and brain disease diagnosis.

At present, brain magnetic resonance (MR) imaging is a
reliable method to evaluate brain development (brain age)
due to its non-invasive, high soft tissue resolution and multi-
parameter imaging advantages. Recently, the main ways of
MR image to evaluate brain development are as follows:
morphometry [including measurement of brain volume (4–6),
cortical thickness (7), surface area (7, 8), etc.], white matter
diffusion (9, 10), functional connectivity (11–14). However,
there are some drawbacks within these studies: the need of
some special sequences with long scanning time, complex data
post-processing, and group-level comparison results without
quantitative analysis to individuals, which limit their wide use in
clinical situations.

With the development of deep learning, more and more
sophisticated deep neural networks have been proposed to
analysis massive image, voice, or video data. Of these,
convolutional neural network (CNN) of deep learning has
achieved great success with superior performance beyond human
experts in many computer vision and speech recognition tasks
since it was put forward (15–20). In the field of medical
image analysis, CNN-based method has been also proposed for
disease diagnosis and lesion detection with high performance
in accuracy, such as the classification and detection of lung
nodules (21, 22), the recognition of melanoma (23), the detection
of cerebral microbleeds (24–26), as well as the classification of
Alzheimer’s disease (27, 28). In addition, brain age prediction
based CNN model has been proved to be a reliable and heritale
biomarker of brain aging and can be used to indicate the risk
of brain degenerative diseases (29, 30), whereas it has not been
reported in young children up to now. Furthermore, unlike
traditional machine learning approaches that implement feature
extraction, feature reduction, and classification separately, CNN
combines them as an end-to-end system, from raw images to
the corresponding target values, avoiding complicated image
preprocessing and manual design of appropriate features. The
excellent performance and transferability lead us to believe that
CNN-based method should be the most promising resolution
for most clinical applications, including brain age prediction
of children.

In this paper, we collected 220 routine brain MR images of
healthy children for investigating the brain age of children based
on deep learning. Data augmentation was utilized to extend
the training data for avoiding the potential over-fitting and
enhancing generalizability of the model. With delicate design of
structure and careful setting of hyper parameters, we proposed
a 3D deep neural network and achieved high performance.
We analyzed the prediction results of different age groups in
detail and compared them with those of other two state-of-
the-art methods. The factors in the proposed model that may
affect the prediction results were investigated comprehensively.
Furthermore, we compared the proposed 3D CNN with the

corresponding 2D CNN that has a similar structure in predicting
brain age of children with 3D MR image data.

METHODS

Dataset Acquisition
Ethical approval for the research was obtained from the ethics
committee of Children’s Hospital of Nanjing Medical University.
This is a retrospective study, and informed written consent was
thus waived. The dataset consists of T1-weighted images of
220 healthy children aged 0 to 5 years old. The data were all
acquired using a 1.5T Siemens Avanto Scanner, but scanning
parameters of newborns (≤1 month) are different from older
children due to variation in water content of brain tissue. Scans of
newborns were imaged using a T1-weighted spin-echo sequence
(repetition time [TR] = 4,490ms, echo time [TE] = 7.5ms, flip
angle [FA] = 150◦, 18 slices, slice thickness = 4.5mm, FOV
= 180 × 180mm, voxel dimensions = 1.0 × 0.7 × 4.5mm).
Scans of older children (>1 month) were also imaged using the
T1-weighted spin-echo sequence (TR = 3,850ms, TE = 7.3ms,
FA = 150◦, 22 slices, slice thickness = 5.0mm, FOV = 220
× 220mm, voxel dimensions = 1.4 × 1.0 × 5.0mm). Those
whose brain MR image quality was good enough to diagnose
and reports were diagnosed as normal by two experienced
radiologists, and whose history, clinical data, and phone call
following-up can’t show the existence of neurological disease
were enrolled into our dataset. Premature infants, subjects
who were diagnosed with congenital diseases (congenital heart
diseases, Down’s syndrome, etc.), neurodevelopmental or mental
disorders (neurodevelopmental delay, autism, etc.), and other
serious illnesses (hypoxic-ischemic encephalopathy, cerebral
hemorrhage, septicopyemia, etc.) affecting brains were excluded
from our dataset. Furthermore, we used downsampling method
to convert the stacked 2D brain MR images of newborns and
older children to the same size of 128× 116× 12.

Data Augmentation Technology
Basically, data augmentation methods are extensively used
to train a deep neural network having huge parameters for
improving prediction accuracy that had been validated in the
“Results” section. In our experiments, four commonly used
methods of data augmentation were employed to enhance the
training dataset. They are listed as: (a) scaling, (b) image rotation,
(c) translation, and (d) gamma correction.We scaled images with
scaling factor of 0.85 to 1.15 with step of 0.03 for generating 10
new images. Image rotation was used to generate 10 new images
with rotation angle of −15 to 15 degrees increased by 3 degrees.
We translated images with factor of −0.1 to 0.1 with step of 0.02
diagonally for generating 10 new images. Gamma correction with
gamma value of 0.85 to 1.15 increased by 0.03 was employed
to generate 10 new images. At last, we augmented the training
dataset by 41 times using data augmentation methods.

Noted: For one routine brain MR image with size of 128 ×

116 × 12 in this paper, we split the volume into 12 slices, then
used the same transformation method to process every slice, and
finally stacked those slices into a 3D image (see Figure 1). We
achieved the transformation of the whole 3D image by this way.

Frontiers in Neurology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 584682

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hong et al. Brain Age Prediction via DL

FIGURE 1 | Illustration of data augmentation to a 3D image.

Proposed 3D CNN Architecture
A 3D CNN was proposed to predict the brain age of children
using brain MR images with size of 128 × 116 × 12. The 3D
image was input to the model and then a single scalar denoting
the brain age was output. The proposed 3D CNN model, shown
in Figure 2, contains 7 3D convolution layers, 4 3D max pooling
layers, and 3 fully connected layers. All convolution layers are
followed by 3D batch-normalization (31) and ReLU activation
function (32), while the first two fully connected layers are
followed by ReLU activation function. All convolution layers have
the same kernel size of 3 × 3 × 3, stride size of 1 × 1 × 1, and
padding size of 1 × 1 × 1, which means the feature map size is
the same as that of the input. The kernel size in the first, second,
third, and fourth max pooling layer are 4× 4× 1, 3× 3× 1, 3×
3 × 3, and 3 × 3 × 3, respectively, and the stride size is equal to
the kernel size in all max pooling layers.

The mean absolute error (MSE) was used as the loss
function. The reliable and commonly used stochastic gradient
descent with momentum of 0.9 (SGDM) was employed as the
optimization method. The mini-batch and epoch were set to
64 and 40, respectively. The initial learning rate was set to
0.0000008 and decreased by 10% every epoch. The weights were
initialized randomly.

Note: 10 runs were implemented for accounting
for the stochastic properties of CNN, and the

average value of the 10 runs is regarded as the
final result.

2D CNN Architecture
We designed a 2D CNN model, shown in Figure 3, according
to the structure of the proposed 3D CNN, so both have similar
hierarchical structures. The 3D image with size of 128× 116× 12
was split into 12 slices, and those slices were then input to the 2D
CNN model, and finally the age was given. Same as the proposed
3D CNN, all convolution layers in 2D CNN are followed by batch
normalization and ReLU, and the first two fully connected layers
are followed by ReLU. The kernel size, stride size, and padding
size in convolution layers are 3× 3, 1× 1, and 1× 1, respectively.
The kernel size is equal to stride size in all max pooling layers,
and they are 4× 4, 3× 3, 3× 3, and 3× 3, respectively, from the
first to the last max pooling layer. In terms of hyperparameters,
the loss function, optimizer, mini-batch, epoch, learning rate, and
weights initialization were set the same as the proposed 3D CNN.

Software Availability and PC Configuration
All data augmentation methods were implemented using
imgaug (https://github.com/aleju/imgaug). All experiments of
deep learning were carried out on PyTorch (https://pytorch.
org/). The running environment of the programs: i9-9900k CPU,
NVIDIA GeForce RTX 2080 Ti GPU, and 16.0 GB RAM.
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FIGURE 2 | The hierarchical architecture of proposed 3D CNN. The “32” and “128 × 116 × 12” in “32@128 × 116 × 12” denote the number and size of feature maps.

FIGURE 3 | The hierarchical architecture of the 2D CNN.

RESULTS

Dataset Characteristics
To develop an AI system for predicting the brain age of
children using routine clinical brain MR images, we enrolled
220 subjects aged 0 to 5 years old (Figure 4 shows the
distribution of participant ages with 100-day intervals) and
scanned them to achieve the brain MR images. The hold-
out method was employed to divide the 220-image dataset
into two parts randomly, and one part containing 176 images
(80%) was regarded as training dataset and the other part
containing 44 images (20%) as test dataset. The reason for
abandoning the validation dataset is that the whole dataset only
contains 220 subjects.Table 1 gives the demographic information
of the training and test datasets. Since the amount of the
training dataset is slightly small to train a deep neural network,
data augmentation was implemented for generating new “fake”
images. At last, the training dataset containing 7,216 images and
the test dataset containing 44 images were obtained.

Performance of the Proposed Model
With grid search and trial-and-error methods, we optimized a 3D
CNNmodel for predicting the children’s age more accurately and
reliablly. The detailed information of the proposed model can be

FIGURE 4 | Distribution of participant ages.

found in Figure 2. The model was trained by the data-augmented
dataset including 7,216 images and evaluated on the test dataset
including 44 images. In our experiments, the learnable weights
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TABLE 1 | Subjects demographic (Std denotes standard deviation).

Total dataset Test dataset Training dataset

0–2 years old 2–5 years old 0–2 years old 2–5 years old 0–2 years old 2–5 years old

Subjects 88 132 23 21 65 111

Age (days) 4–697 731–1820 36–680 749–1687 4–697 731–1820

Mean ± Std 283.6 ± 215.7 1333.5 ± 314.2 244.2 ± 201.0 1267.0 ± 288.4 297.6 ± 220.5 1346.1 ± 318.4

FIGURE 5 | Training performance of one run. (A) Loss against training epoch,

and (B) MAE against training epoch. The loss and MAE are the average of all

iterations in one epoch.

of model were initialized randomly, and the random seed was
not fixed, causing the randomness of prediction results. Thus, we
implemented 10 runs under the same settings of the model for
ensuring the reliability of the results.

Figure 5 shows the training performance of one typical run.
As Figure 5 shows, after 40 epochs (iterations through the whole
training dataset), both training dataset and test dataset in loss and
MAE reached a plateau and were at a minimum, which means
that the training process has converged.

Figure 6 shows the average and standard deviation of
prediction results of 10 runs under the same setting. It is found
that most true data fall within the standard deviation of predicted
data, which means that the predictions can fit the true data well.
To further quantitatively evaluate the prediction accuracy of the
model, MAE, RMSE, MRE, R, and R2 between the average values
and the true values were employed (Table 2). With aMAE of 67.6

days, a RMSE of 96.1 days, a MRE of 8.2%, a R of 0.985, and a
R2 of 0.971, the proposed model was considered to achieve quite
high accuracy in predicting the brain age of children aged 0 to 5
years old.

Since the brain development of infants under 2 years old is
heterogeneous and particularly rapid, it is necessary to divide the
age into two age groups according to 2 years old and evaluate the
prediction results of the two groups separately. Table 2 gives the
assessment results. We found that age predictions for children
under 2 years old are significantly better than those over two
according to all evaluation indicators. We can also observe that
most predictions under 2 years old are closer to the true values
compared with those over 2 years old in Figure 6. Comparing
to the 0–2 age group, there is a stronger correlation between
predicted and true values in the age group from 0 to 5 years old
according to R, but there is a bigger MAE. The reason is that
the true values in 0–2 age group are smaller as a whole than that
in 0–5.

To further assess the reliability of the predicted results, we
gave the residual plot (Bland-Altman plot) and performed paired
samples T-test. The residual plot was employed to show the
relationship between mean and difference of the predicted and
actual value, which is show in Figure 7. The P-values of the paired
samples T-test were 0.5665, 0.9407, and 0.7979 in 0–2, 2–5, and
0–5 age groups, respectively, showing that there are no significant
statistical differences between the predicted and the actual values
of all age groups. As the Figure 7A indicating the 0–2 age group
shows, 95.7% (22/23) of the points fall within the 95% limits of
agreement, and the mean of difference is 4.6, which is close to
0. Similar to the 0–2 age group, 95.2% (20/21) of the points fall
within the 95% limits of agreement, and the mean of difference
is−2.3 according to Figure 7B. In terms of 0–5 age group, which
is shown in Figure 7C, 90.9% (40/44) of the points fall within the
95% limits of agreement, and the mean of difference is 3.8 which
is quite close to 0.

Impact of Data Augmentation
In this research, the amount of the obtained 220-subject dataset
is big enough to draw a conclusion of statistical analysis, but
it is still insufficient for training a deep neural network with
huge parameters. Many researches have reported that increasing
the number of samples in training data can avoid over-fitting,
enhance generalizability, and improve the performance on test
set (33–37). Therefore, we performed data augmentation on a
176-subject training dataset and extended the dataset to 7,216 in
our proposed method.
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FIGURE 6 | Prediction results of the proposed 3D CNN. The error bar represents the average and standard deviation of the prediction results over 10-run.

TABLE 2 | Performance of the proposed 3D CNN in predicting children aged.

Age group

(years old)

MAE (days) RMSE (days) MRE (%) R R2

0–2 28.9 37.0 7.8 0.983 0.967

2–5 110.0 133.5 8.2 0.883 0.780

0–5 67.6 96.1 8.2 0.985 0.971

Here we investigated the impact of data augmentation on
predicting children’s age using stacked 2D routine clinical brain
MR images. Figure 8 offers the prediction results of our proposed
method without data augmentation. All the results are average
on 10 runs. Comparing with Figure 6, it is found that most of
the predicted values deviate from the true values further, and
the standard deviation of the predicted values is larger, showing
the instability of the model. Table 3 gives a detailed comparison
of our proposed method with and without data augmentation,
which further confirms data augmentation can improve the
prediction accuracy of the model.

Impact of Network Depth
To test the impact of network depth on performance of predicting
children age, different 3D CNN including different convolution
layers and fully connected layers were validated. The evaluation
results are given in Table 4. Ten runs were implemented, and
the average values were regarded as the final results. It is
found that the proposed 3D CNN structure containing seven
convolution layers and three fully connected layers achieved the
best performance according to the comprehensive assessment
of four indicators. Figure 9 is utilized to further visualize the
performance differences between different 3D CNN.

Impact of Batch Normalization
In the proposed 3D CNN structure, every 3D convolution
layer is followed by a 3D batch normalization. We investigated

the impact of batch normalization on prediction accuracy in
this section. All batch normalization layers were removed, and
initial learning rate was set as 0.000000008. All other settings
remain the same. Table 5 gives the comparison result of the
proposed approach with and without batch normalization. All
the results are averaged on 10 runs. As Table 5 shows, the 3D
CNN without batch normalization achieved a MAE of 132.6
days, a RMSE of 189.9 days, a MRE of 15.0%, a R of 0.945,
and a R2 of 0.893, which is obviously worse than the proposed
3D CNN with batch normalization. Figure 10 gives the training
performance of the 3D CNN without batch normalization. As we
can see, both training dataset and test dataset in loss and MAE
reached the minimum plateau, indicating that the network is
fully trained.

Impact of Batch Size and Learning Rate
Except for the structure, hyper parameters also can affect
the 3D CNN performance. We compared different prediction
results of the proposed 3D CNN trained by different batch
size and initial learning rate for understanding the influence
of them on the performance. Table 6 gives the survey results.
All results are average on 10 runs. As the Table 6 shows, the
3D CNN with batch size of 64 and learning rate of 0.0000008
achieved the best prediction results according to all four
evaluation indicators.

Comparing With 2D CNN
The input of 2D CNN is a 2D image with three color channels
(i.e., RGB) in most natural scenes. With this regard, the simplest
way for 2D CNN to deal with 3D input is to replace the color
channels with the slices of the volumetric image. We designed a
2D CNNmodel, shown in Figure 3, according to the architecture
of the proposed 3D CNN model for predicting the brain age of
children using stacked 2D routine clinical brain MR image (gray-
level) and investigated the performance differences between
the two models. The comparison results are given in Table 7.
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FIGURE 7 | Bland-Altman plots for the proposed 3D CNN. Plot (A–C) denote

0–2, 2–5, 0–5 age groups, respectively.

All the results are average on 10 runs. We observed that the
proposed 3D CNN achieved better performance in terms of all
the evaluation indicators.

DISCUSSION

High Reliability and Accuracy of 3D CNN
for Brain Age Prediction
It is important to predict the brain age reliably and accurately
for brain development analysis and brain disease diagnosis in
pediatric patients. Basically, methods for predicting brain age can
be divided into two categories: shallow learning algorithms and
deep learning algorithms (38). So far, numerous shallow learning
algorithms have been developed, such as gaussian processes
regression (GPR) (29, 39, 40), support vector regression (SVR)
(41, 42), partial least squares (PLS) regression (43), relevance
vector regression (RVR) (44), hidden Markov model (HMM)
(45), and Bayesian linear discriminant analysis (46). In terms of
deep learning algorithms, CNN (29, 47) and back propagation
neural network (BPNN) (48) were proposed to predict the brain
age with brain MR images.

As the above references report, for achieving fairly good
prediction result, all methods except CNNneed to accomplish the
complicated preprocessing task well including feature selection,
dimension reduction, and segmentation of brain MR image into
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) tissues. The manual interventions in preprocessing lead to
high intra-observer and inter-observer variability, which easily
biased the final interpretation. Comparing to the traditional
machine learning methods, CNN-based methods are an end-
to-end system that uses the raw MR image data as the input
and output the age value without manual interventions, showing
higher reliability and improving clinical practice (38).

Although there is no error caused by manual intervention
in predicting brain age using CNN-based model, there may
be systematic bias (49, 50). As reported in (49), CNN-based
model will overestimate the younger and underestimate the older,
decreasing the reliability of prediction results. To evaluate the
reliability of the predicted results in this paper, the Bland-Altman
plots characterizing the relationships between the mean and the
difference of the predicted and actual value were given, showing
in Figure 7. According to Figures 7A,B, the mean of difference
in the 0–2 age group is slightly higher than 0, while that in the
2–5 age group is slightly lower than 0. This observation seems
to indicate that the prediction results in this paper confirm the
conclusion of (49). However, the means in age group of 0–2 and
2–5 are quite close to 0, and the paired samples T-test results
revealed there are no significant statistical differences between
the predicted and the actual values on both age groups, which
means the predicted results of 0–2 and 2–5 age group are in good
agreement with the actual age. Similarly, the predicted results
of 0–5 age group are also in good agreement with the actual
age according to Figure 7C. Therefore, the predicted results
achieved by the proposed CNN-based model are considered to
be reliable overall.

Furthermore, the CNN-based methods can achieve more
accurate prediction results compared with traditional machine
learning methods. Cole et al. (29) reported the detailed
comparison between 3D CNN and GPR method in predicting
the brain age using different input data (GM, WM, GM+WM,
and raw data). We found that the 3D CNN achieved higher
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FIGURE 8 | Prediction results of the proposed method without data augmentation. The error bar represents the average and standard deviation of the prediction

results over 10-run.

TABLE 3 | Comparison of the proposed method with and without data

augmentation.

MAE (days) RMSE (days) MRE (%) R R2

Without data

augmentation

118.3 166.7 13.7 0.963 0.926

With data

augmentation

67.6 96.1 8.2 0.985 0.971

TABLE 4 | Performance of different network depths.

No. of

convolution

layers

No. of fully

connected

layers

MAE

(days)

RMSE

(days)

MRE

(%)

R R2

6 2 75.9 102.8 9.2 0.983 0.967

6 3 73.8 101.6 9.0 0.984 0.968

6 4 70.1 95.1 8.4 0.985 0.971

7 2 80.4 110.5 10.0 0.981 0.962

7 3 67.6 96.1 8.2 0.985 0.971

7 4 70.3 97.1 8.6 0.985 0.970

8 2 73.4 106.8 9.2 0.982 0.964

8 3 68.7 99.5 8.2 0.984 0.969

8 4 69.5 96.6 8.3 0.985 0.971

performances than the GPR in all kinds of input data in this
reference. Especially, theMAE of 4.65 years obtained by 3D CNN
are much lower than the MAE of 11.81 years obtained by GPR
when the raw data was used as the input.

However, it is not particularly reasonable to compare our
results with the above example since the subjects used above
are aged 18 to 90 years old. To the best of our knowledge,
only two traditional machine learning-based methods for age
prediction of young children were investigated currently. Toews
et al. (51) firstly developed a feature-based developmental model

for predicting infant age using structural brain MR images.
They enrolled 92 subjects aged 8–590 days and achieved a MAE
of 72 days. Hu et al. (46) proposed a two-stage prediction
method named Hierarchical Rough-to-Fine (HRtoF) model for
predicting infant age. They enrolled 50 infants aged 14–797 days
and achieved a MAE of 32.1 days. Since it is hard to collect the
brain images of young children, the data amount reported in
(51) and (46) is not large, <100. In our study, we spent over
5 years collecting 220 subjects, which is enough for reaching
a convincing conclusion comparing to the above two studies.
Table 8 gives the performance comparison of our proposed
method and the above twomethods. It is found that the proposed
3D CNN gained the best performance in predicting the brain
age of infant aged about 0–2 years old. The prediction accuracy
of the 3D CNN for the age of 4–1,820 days is even better than
the prediction accuracy of Toews’s method (51) for the age of
8–590 days.

In addition to traditional machine learning-based methods,
we also compared 3D CNN with 2D CNN in predicting brain
age of young children using 3D MR images. The inputted 3D
images are stacked 2D brainMR images (slices) and there is a gap
between two adjacent slices in the actual location of the brain.
Thus, we speculated that the correlation between slices will not
be great, and we think that 2D CNN model may also be able
to complete the age prediction task well with the inputted 3D
images. If the prediction effect of the 2D CNN is the same as that
of the 3D CNN, then the 2D CNN will be more recommended
in clinical practice, because the 2D model requires much less
computation and computer memory. However, as Table 7 shows,
the proposed 3D CNN outperformed the 2D CNN significantly.
This result shows that the small correlation between adjacent
slices is beneficial to the prediction accuracy of the model,
and also shows the 3D CNN employing 3D kernels is a more
reliable resolution that can take all full advantage of spatial
contextual information of the 3D MR images for more accurate
age prediction (16, 29, 52).
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FIGURE 9 | Comparison of different network depths. “6, 2” (“No. of convolution layers, No. of fully connected layers”) denotes 6 convolution layers and 2 fully

connected layers.

TABLE 5 | Comparison of the proposed method with and without batch

normalization.

MAE (days) RMSE (days) MRE (%) R R2

Without batch

normalization

132.6 189.9 15.0 0.945 0.893

With batch

normalization

67.6 96.1 8.2 0.985 0.971

Predictions for Children Under 2 Years Old
Are Better Than Those Over 2
As Table 2 shows, the proposed 3D CNN achieved a MAE of 28.9
days, a RMSE of 37.0 days, a MRE of 7.8%, a R of 0.983, and a
R2 of 0.967 in predicting brain age of children aged 0–2 years
old, while a MAE of 110.0 days, a RMSE of 133.5 days, a MRE of
8.2%, a R of 0.883, and a R2 of 0.780 were obtained in predicting

brain age of children aged 2–5 years old. It is found that the
predictions for children under two years old are much better than
that over two. Actually, this phenomenon is consistent with the
understanding of clinical practice—that is, brain development
under 2 years old is rapid and heterogeneous, while the brain over
2 years old develops relatively statically (1, 2). Slow development
of the brain over 2 years old leads to low distinguishability and
high prediction error.

Optimizing Model Parameters Can Improve
Prediction Accuracy
Generally, the prediction performance is quite dependent on
the structure of CNN and the hyper parameters. Thus, we
optimized the 3D CNN structure and the hyper parameters with
grid search for achieving the best performance on training set
and reported the performance on the test set independently.
Recently, some evidence reports that network depth is crucially
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FIGURE 10 | Training performance of one run without batch normalization. (A) Loss against training epoch, and (B) MAE against training epoch. The loss and MAE

are the average of all iterations in one epoch.

important for achieving remarkable prediction results (53, 54).
Thus, we investigated the influence of different network depths
on the prediction results, showing in Table 4 and Figure 9. As
we can see, the best performance was achieved by the 3D CNN
containing seven convolution layers and three fully connected
layers, not the deepest or shallowest network. Theoretically,
the more convolution layers, the higher the extracted feature
levels, and the more fully connected layers, the more complex
the mapping function that can be fitted. However, too many
neuron layers will produce redundant parameters, easily resulting
in overfitting. Except for overfitting, a degradation problem
may also occur when the deep network starts to converge:
with the network depth increasing, accuracy gets saturated
(55, 56). Therefore, in order to obtain the best performance,
it is necessary to choose a network structure with the
appropriate depth.

If the neural network is too deep, the gradient will become
very small when it propagates back to the shallow layer, so that
the parameters of the shallow layer cannot be updated or the

amplitude of the update is very small. This phenomenon called
gradient dispersion will lead to the requirement of lower learning
rate and careful parameter initialization. Batch normalization
was developed to address the above problems (31). In this
study, we firstly tried to set the initial learning rate of the
3D CNN without batch normalization the same as that of the
proposed 3D CNN. However, it is found that the learning
rate is too high, which leads to the failure of training the 3D
CNN without batch normalization. With grid search and trial-
and-error methods, we set the learning rate of the network to
0.000000008. This observation fully proves that the network
without batch normalization requires more careful parameter
setting. According to Figures 5, 10, the training loss of the 3D
CNN without batch normalization is bigger than that of the
proposed 3D CNN, indicating that the former fits the training
data worse than the latter. Furthermore, as Table 5 shows,
we observed that batch normalization can greatly improve the
prediction performance according to MAE, RMSE, R, and R2.
Thus, batch normalization is strongly recommended for use in
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TABLE 6 | Comparison of the proposed 3D CNN trained by different batch size

and initial learning rate.

Batch

size

Learning

rate

MAE (days) RMSE (days) MRE (%) R R2

16 0.0000008 72.3 96.2 8.3 0.985 0.971

32 0.0000008 74.1 97.4 9.2 0.985 0.971

64 0.0000008 67.6 96.1 8.2 0.985 0.971

64 0.0000012 69.9 97.1 8.6 0.985 0.971

64 0.0000004 75.0 104.8 9.3 0.983 0.966

TABLE 7 | Comparison of 2D CNN and our proposed 3D CNN.

MAE (days) RMSE (days) MRE (%) R R2

2D CNN 75.1 104.6 9.2 0.982 0.965

3D CNN 67.6 96.1 8.2 0.985 0.971

TABLE 8 | Comparison with state-of-the-art approaches.

Method Subjects Age (days) MAE (days)

Feature-based developmental model (51) 92 8–590 72

HRtoF model (46) 50 14–797 32.1

The proposed 3D CNN 88 4–697 28.9

The proposed 3D CNN 220 4–1,820 67.6

3D CNN for predicting brain age using stacked 2D routine
clinical brain MR images.

In terms of hyper parameters, we investigated the influence of
batch size and learning rate on the performance of the 3D CNN.
Basically, the larger the batch size, the more stable the gradient
descent and the more accurate the direction. However, large
batch size may cause the model to fall into local minimums and
cannot come out because of the little noisiness. Small batch size
may cause the data distribution to be too random to converge.
Thus, the best batch size should be obtained by experiments for
making the model converge to the global minimum as much
as possible. In this paper, we set the batch size as 16, 32, and
64 for observing their effects on the predictions, showing in
Table 6. It is found that the batch size of 64 achieved the best
performance. The reason for not increasing the batch size is
because the computer does not have enough computing memory,
which is also the disadvantage of large size that cannot be ignored.
Learning rate controls the convergence speed ofmodel.When the
learning rate is set too small, the convergence process becomes
very slow and may make the model overfit. When the learning
rate is set too large, the gradient may oscillate back and forth
around the minimum value, and may not even converge. Thus,
it is necessary to select the appropriate learning rate with grid
search for achieving the best performance. As Table 6 shows, the
middle-sized learning rate yields the best predictions.

CONCLUSION

In this paper, we developed an end-to-end AI system based on 3D
CNN for predicting the brain age of children aged 0 to 5 years old
and achieved reliable and high performance with a MAE of 67.6
days, a RMSE of 96.1 days, a MRE of 8.2%, a R of 0.985, and a R2

of 0.971.We found that the predictions for children under 2 years
old are much better than those over two, which is also better than
two state-of-the-art methods of predicting brain age of infants.
The changes in the structure of the model have small effects on
the prediction results, as do the changes in learning rate and batch
size. The tricks of data augmentation and batch normalization
have a significant impact on model performance. The proposed
3D CNN outperformed the 2D CNN having similar structure in
prediction results.

In the future, we will collect more subjects for enhancing
the performance of the model since CNN is a kind of data-
driven method. Furthermore, we will enroll child patients with
neurodevelopmental or mental disorders for validating the
performance of the model in predicting the biological age of
their brains.
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