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Background: Differentiating neuromyelitis optica spectrum disorder (NMOSD) from

multiple sclerosis (MS) is crucial in the field of diagnostics because, despite their

similarities, the treatments for these two diseases are substantially different, and

disease-modifying treatments for MS can worsen NMOSD. As brain magnetic resonance

imaging (MRI) is an important tool to distinguish the two diseases, extensive research has

been conducted to identify the defining characteristics of MRI images corresponding to

these two diseases. However, the application of such research in clinical practice is still

limited. In this study, we investigate the applicability of a deep learning-based algorithm

for differentiating NMOSD from MS.

Methods: In this study, we included 338 participants (213 patients with MS, 125 patients

with NMOSD) who visited the Asan medical center between February 2009 and February

2020. A 3D convolutional neural network, which is a deep learning-based algorithm, was

trained using fluid-attenuated inversion recovery images and clinical information of the

participants. The performance of the final model in differentiating NMOSD from MS was

evaluated and compared with that of two neurologists.

Results: The deep learning-based model exhibited an area under the receiver

operating characteristic curve of 0.82 (95% CI, 0.75–0.89). It differentiated NMOSD

from MS with an accuracy of 71.1% (sensitivity = 87.8%, specificity = 61.6%),

which is comparable to that exhibited by the neurologists. The intra-rater

reliability of the two neurologists was moderate (κ = 0.47, 0.50), which was

in contrast with the consistent classification of the deep learning-based model.
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Conclusion: The proposed model was verified to be capable of differentiating NMOSD

from MS with accuracy comparable to that of neurologists, exhibiting the advantage

of consistent classification. As a result, it can aid differential diagnosis between two

important central nervous system inflammatory diseases in clinical practice.

Keywords: brain magnetic resonance image (MRI), convolutional neural network (CNN), deep learning, multiple

sclerosis, neuromyelitis optica spectrum disorder

INTRODUCTION

Neuromyelitis optica spectrum disorder (NMOSD) and multiple
sclerosis (MS) are both inflammatory diseases of the central
nervous system (CNS) (1). Because of the clinical and radiological
similarities between the two, there has been a persistent debate
on whether they are actually different. However, since the
discovery of the anti-aquaporin-4 antibody (AQP4-Ab), which
is an NMOSD-specific autoantibody (2), studies have confirmed
MS andNMOSD to be distinct disease entities (3). Differentiating
NMOSD from MS is of considerable importance in the field of
diagnostics because the treatments for the two diseases differ
considerably from each other, and disease-modifying therapies
for MS can worsen NMOSD (4–6). Even though the presence of
AQP4-Ab is essential for the diagnosis of AQP4-Ab-seropositive
NMOSD, clinical and radiological differentiation between AQP4-
Ab-seropositive NMOSD and MS remains crucial for the
following reasons: (i) clinicians need to identify patients on
whom the AQP4-Ab test should be performed; (ii) the result of
an AQP4-Ab assay can be influenced by assay methodology and
the patient’s clinical status (3, 7, 8). Therefore, the role of brain
MRI, which is the most common test for CNS inflammatory
diseases, is significant in the differentiation between the two
diseases (9).

Recently, machine learning-based algorithms have been
applied to classify MRIs of patients with various neurological
diseases (10–12). In particular, researchers have attempted to
use various such methods, including multimodal data fusion
and random forests, to differentiate NMOSD from MS (13,
14). Deep learning, which is a type of machine learning, does
not require the specification of explicit features by experts
and deduces most predictive features directly based on images
(15, 16). Deep learning has been applied for classification
based on medical images such as chest X-rays and fundus
photographs, and it has been reported to exhibit excellent
differentiation performance (17, 18). Fluid-attenuated inversion
recovery (FLAIR) is an MRI technique that highlights T2
hyperintense lesions while suppressing cerebrospinal fluid (CSF)
signals, thereby clearly revealing lesions that are in proximity to
CSF, such as juxtacortical and periventricular lesions (19). FLAIR
is considered to be superior to T2-weighted images in the context
of the detection of MS brain lesions (20).

In this study, we aim to develop a deep learning model
based on brain FLAIR MRIs and elementary clinical information
to differentiate NMOSD from MS. Further, we evaluated the
clinical applicability of the proposed model by comparing its
performance with that of two neurologists.

MATERIALS AND METHODS

Participants
We retrospectively reviewed the medical records of patients
with MS and NMOSD who visited the Asan Medical Center,
Seoul, Korea, between February 2009 and February 2020.
Patients with MS who fulfilled the 2010 McDonald criteria and
those with NMOSD with AQP4 immunoglobulin G (AQP4-
IgG) seropositivity, in accordance with the 2015 International
Consensus of NMOSD, were included in this study. The
AQP4-IgG-seropositive status was confirmed via a commercial
fixed cell-based assay (Euroimmun, Lubeck, Germany). Patients
without available brain MRI data were excluded from the study.
As a representative MRI of each patient, the last MRI was
examined to use the latest data. All images were deidentified prior
to being transferred to the study investigators.

MRI Acquisition
2D FLAIR sequences were acquired using 1.5 T or 3.0 T scanners
at the AsanMedical Center or other centers that referred patients
and transferred images to the Asan Medical Center. The MRI
protocol at the Asan Medical center is a fast spin-echo sequence
with inversion recovery with the following scanning parameters:
field of view= 220× 200mm; voxel size= 0.65mm× 0.82mm;
a 336 × 231 acquisition matrix; time of repetition = 11,000ms;
time of echo= 125ms; inversion time= 2,500ms; slice thickness
= 5mm; slice gap= 2mm; and number of acquisitions= 2.

NMOSD and MS Classification by
Neurologists
Two board-certified neurologists (H.W. Kim and Y.J. Oh)
who have completed a 1-year clinical fellowship in neuro-
immunology participated in this study as the human raters.
They binarily diagnosed MS and NMOSD independently of each
other by reviewing the FLAIR images alongside the following
clinical information of each patient: age at disease onset, age
at the time of MRI, sex, disease duration, and duration from
last relapse. We considered these five variables to be essential
to adequately capture the elementary information required for
differential diagnoses in clinical practice.

NMOSD and MS Classification via Deep
Learning-Based Model
All methods were implemented using Python and PyTorch for
deep learning. The algorithm was executed on the Intel Core i7-
8700K 3.70 GHz processor with two Nvidia GeForce RTX 2080
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FIGURE 1 | Steps of data preprocessing. The diagram depicts the

preprocessing of data before it was input into the deep learning model. Firstly,

the whole dataset was split into training, validation, and test sets.

Subsequently, clinical information and fluid-attenuated inversion recovery

(FLAIR) images were preprocessed separately. The details regarding the

preprocessing procedure have been described in the Methods section.

Ti graphics processing units. Figure 1 depicts the preprocessing
steps whose details have been described below.

Subdivision of the Dataset Into Training, Validation,

and Test Sets
We first split the dataset into training (45%, n = 152), validation
(15%, n= 51), and test (40%, n= 135) datasets.We used stratified
random sampling to ensure identical class ratios for every set.

Scaling Clinical Information
Four pieces of clinical information—age at disease onset, age
at the time of MRI, disease duration, and duration from last
relapse—were scaled to exhibit a median of 0 and an interquartile
range of 1. As this scaling method uses statistics that are robust

to outliers, the features can be transformed to exhibit nearly
identical scales while being minimally affected by outliers.

Image Pre-processing
Brain mask data for each FLAIR sequence were obtained using
a previously reported brain extraction algorithm (21). The brain
mask data are presented as binary data, wherein only the voxels
corresponding to brain parts are coded to correspond to 1.
The FLAIR images were bias-corrected via the lesion prediction
algorithm (22), as implemented in lesion segmentation toolbox
(LST) version 2.0.15 (www.statistical-modeling.de/lst.html), for
statistical parametric mapping (SPM, www.fil.ion.ucl.ac.uk/
spm/). Following bias-correction, we obtained a file containing
deformation parameters for each image; the parameters were
capable of registering the image from its native space to the
Montreal Neurological Institute (MNI) space with a resolution
of 2mm × 2mm × 2mm (23). Using these deformation
parameters, we registered the MRIs belonging to the training
set to the MNI space. Furthermore, using functional MRI of
the brain software library (FSL) functions (24), these registered
images were made to undergo 3D intensity normalization and
were then averaged into one image, which was used as a template
in this study. After creating the template, all the FLAIR images
and brain masks were registered to the template and intensity
normalization with Z-scoring was conducted.

Model Architecture
Deep learning, particularly convolutional neural networks
(CNNs), has been widely used in computer vision (25). Among
the different variants of CNNs, ResNet has exhibited remarkable
performance in image classification (26). Additionally, although
most imaging studies have used 2D CNNs as their model
architecture, some recent studies have proposed the use of 3D
CNNs to fully utilize the spatial features of MRI and achieve
better performance (27–30). Therefore, we constructed a 3D
CNN architecture based on the idea of ResNeXt (31), which
is a more developed model based on ResNet (Figure 2A). To
use both clinical information and FLAIR data simultaneously,
we concatenated the clinical information at the end of CNN
architecture and propagated the information through two fully
connected layers (Figure 2B).

Modeling
We trained and validated several models that differ from each
other in terms of learning rate scheduling strategies, dropout
rates, loss functions, and data augmentation strategies. After
validating them using the validation set, we selected the best
model. Stochastic gradient descent with a momentum of 0.9
and a weight decay of 10−6 was used as the optimizer. The
initial learning rate of 0.025 was decayed using cosine annealing,
and the pre-defined minimal learning rate, 0.015, was reached
after 20 epochs. This cycle was repeated throughout the whole
training process. This training strategy is called stochastic
gradient descent with warm restarts (32). A batch size of 16
was selected and focal loss was used as a loss function for
the best model, in which gamma and alpha were 1 and 0.25,
respectively. Focal loss is often used when the class ratio of data
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FIGURE 2 | Schema of the model architecture. (A) The 3D convolutional neural network architecture used in our study. (B) The entire structure of the proposed

model. The preprocessed fluid-attenuated inversion recovery (FLAIR) image was transmitted through the 3D convolutional neural network (CNN) and its feature vector

was extracted and concatenated with the preprocessed clinical information. AvgPool, average-pooling; BN, batch normalization; Conv, convolution; FC, fully

connected; MaxPool, max-pooling; ReLU, rectified linear unit.

is imbalanced (33). We expected the model to focus more on
the NMOSD class by training it using focal loss. To prevent
overfitting, rotation or translation was randomly applied to

augment the FLAIR data immediately before they were input
into the model. Further, the dropout strategy was used with a
rate of 0.5. Both augmentation and dropout were conducted only
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TABLE 1 | Baseline characteristics.

MS NMOSD P-value

No. 213 125

Male, n (%) 55 (25.8) 13 (10.4) 0.001

Age at onset, mean ± SD (years) 33.1 ± 12.3 41.7 ± 13.7 < 0.001

Age at imaging, mean ± SD (years) 37.1 ± 12.0 45.9 ± 13.2 <0.001

Disease duration, mean ± SD (years) 7.6 ± 6.6 5.3 ± 5.6 0.001

Duration from last relapse, mean ±

SD (years)

3.6 ± 4.3 1.2 ± 2.1 <0.001

EDSS score, mean ± SD 2.4 ± 1.8 3.3 ± 1.8 <0.001

MRI performed at AMC, n (%) 192 (90.1) 105 (83.3) 0.095

MRI performed with 3 T scanner, n (%) 172 (80.8) 91 (72.2) 0.089

AMC, Asan medical center; EDSS, Expanded Disability Status Scale; NMOSD,

neuromyelitis optica spectrum disorder; MS, multiple sclerosis; SD, standard deviation.

during the training of the model and neither were applied during
the validation or evaluation process. The final performance
of the model was evaluated using the test set that had been
split beforehand.

Statistical Analysis
In this study, descriptive summaries were represented as
frequencies and percentages for categorical variables and as
mean ± standard deviation for continuous variables. In
order to compare pairs of groups, Student’s t-tests were used
for continuous variables and Chi-squared tests were used
for categorical variables. The diagnostic performances of the
proposed model and the human raters (i.e., raters A and B)
were measured in terms of sensitivity (i.e., correct ratio for the
NMOSD group), specificity (correct ratio for the MS group),
and accuracy (i.e., correct ratio regardless of the group) of their
decisions related to the test set. Regarding sensitivity, specificity,
and accuracy, a two-sided 95% exact confidence interval (CI) was
calculated using the Clopper–Pearson method (34). McNemar’s
test was used to compare the decision performances of the deep
learning-based model and the human raters. The diagnostic
performance of the deep learning-based model was assessed
using area under the receiver operating characteristic curve
(AUC). The 95% CI of AUC was calculated following DeLong’s
method (35). Cohen’s kappa (κ) test was adopted to evaluate
the intra-rater reliability of the human raters between the first
and second decisions on randomly duplicated 10% of identical
samples in the test set; moreover, the aforementioned test was
also performed to test the inter-rater agreement (on the test set)
between the decisions of the two human raters and between the
decisions of the human raters and those of the deep learning-
based model. The strength of agreement based on κ was judged
according to the following guidelines: <0.2 = slight; 0.2–0.4 =

fair; 0.4–0.6 = moderate; 0.6–0.8 = substantial; and >0.8 =

almost perfect (36). Two-sided P-values of <0.05 were indicative
of statistical significance. All statistical analyses were performed
using SAS version 9.4 (SAS Institute Inc., Cary, NC).

FIGURE 3 | Diagnostic performance of the deep learning-based model and

the neurologists. Performance on an independent test set with n = 135. The

area under the receiver operating characteristic (AUC) of the proposed model

(represented by the violet line) was 0.82 (95% CI, 0.75–0.89). The points

correspond to the performance of the neurologists.

RESULTS

Baseline Characteristics of the
Participants
We included 338 participants (213 patients with MS and 125
patients with NMOSD) in the study. The baseline characteristics
of all participants have been presented in Table 1. The mean age
at onset was lower for the MS group than that for the NMOSD
group (33.1 ± 12.3 vs. 41.7 ± 13.7 years, P < 0.001). Fifty-
five (25.8%) patients in the RRMS group and 13 (10.4%) in
the NMOSD group were male. The mean disease duration and
duration from last relapse were observed to be longer for the MS
group. The percentages of MRIs performed at the Asan Medical
Center (vs. other centers) and those of MRIs performed with a
3 T scanner (vs. 1.5 T scanner) were comparable between the two
groups. Further, 30% (37/125) of brain MRIs from patients with
NMOSD did not exhibit any T2 hyperintense lesions (≥3mm).
In contrast, all brain MRIs from patients with MS exhibited more
than one T2 hyperintense lesion.

Diagnostic Performance
Figure 3 depicts the receiver operating characteristic curve of the
model when it is evaluated using the test set (AUC, 0.82 [95%
CI, 0.75–0.89]). The classification results of the human raters and
deep learning-based model have been presented in Table 2. The
accuracy of the deep learning model in differentiating NMOSD
fromMSwas 71.1%, with a sensitivity of 87.8% and a specificity of
61.6%, all of which were comparable to those of the human raters.
The intra-rater reliability of each human rater was moderate (κ of
rater A = 0.471, κ of rater B = 0.500); the inter-rater agreement
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TABLE 2 | Classification results.

Accuracy, % P-value Sensitivity, % P-value Specificity, % P-value

Deep learning-based model 71.1 (62.7–78.6) - 87.8 (75.2–95.4) - 61.6 (50.5–71.9) -

Rater A 65.9 (57.3–73.9) 0.382 83.7 (70.3–92.7) 0.754 55.8 (44.7–66.5) 0.511

Rater B 60.7 (52.0–69.0) 0.081 75.5 (61.1–86.7) 0.180 52.3 (41.3–63.2) 0.280

Data have been presented with a 95% confidence interval. P-value for comparison with the deep learning-based model.

between the human raters was moderate (κ = 0.437); and the
inter-rater agreements between the deep learning-based model
and each human rater were fair and slight, respectively (κ= 0.288
between the deep learning-based model and rater A; κ = 0.154
between the deep learning-based model and rater B).

DISCUSSION

In this study, we demonstrated that the proposed deep learning-
based model is capable of differentiating NMOSD from MS with
an accuracy of 71.1% (sensitivity = 87.8%, specificity = 61.6%),
which was comparable to that achieved by the neurologists.
Although the diagnostic accuracies were comparable, the deep
learning-based model offers some advantages over human
evaluation, including greater consistency in classification (intra-
rater reliability κ = 1.0) and prompt reporting of results. The
intra-rater reliability of the human raters was only moderate
(κ = 0.47–0.50).

The definition of a brain lesion distribution as “at least one
lesion adjacent to the body of the lateral ventricle and in the
inferior temporal lobe or the presence of a subcortical U-fiber
lesion or a Dawson’s finger-type lesion” has been suggested
as a criterion; this can be employed to distinguish patients
with MS from those with NMOSD with 92% sensitivity and
96% specificity (37). In addition, the same criterion was used
to distinguish MS from myelin oligodendrocyte glycoprotein
antibody-associated diseases with a sensitivity of 90.9% and
a specificity of 95.2% (38). However, the aforementioned
studies did not include brain MRIs without T2 hyperintense
lesions in their investigations, and the criterion included
subjective definitions such as Dawson’s fingers, which could
be difficult to apply for clinicians who have little experience
with CNS inflammatory diseases. In the current study, we
included all MRIs with or without brain lesions and did
not designate any specific lesion criteria. Instead, the deep
learning-based model learned the most predictive features
directly from the images. Therefore, we suggest that the
proposed deep learning-based model is capable of overcoming
the low practicability of the previously published brain lesion
distribution criteria.

Two machine learning-based and one deep learning-based
methods using brain MRI data had previously been developed
to distinguish NMOSD from MS (13, 14, 39). The studies had
adopted various methods, including multimodal data fusion,
random forest classification, and hierarchical multimodal fusion,
and achieved accuracies ranging from 74 to 88%. However,
the applicability of the developed methods in clinical practice
was uncertain owing to the lack of their comparison to

assessments by clinicians. In our study, we demonstrated that
the proposed model exhibits a performance comparable to
that of trained clinicians, demonstrating its potential clinical
applicability. Recent systematic reviews of studies on the
comparison between performances of artificial intelligence and
clinicians have reported that the performance of artificial
intelligence was comparable to that of clinicians (40, 41).

Several limitations should be noted for the current study.
Firstly, we conducted this study in a retrospective manner
without external validation, which entails the risk of bias
and lack of generalizability. Further, the study participants
were of a single ethnicity (Korean), which implies that our
result might not be applicable to patients from other ethnic
backgrounds (42). Future prospective studies that incorporate
data from other international centers and larger data samples
can overcome this limitation. Secondly, spinal MRI and CSF
findings, other important diagnostic clues (7, 43), may strengthen
the performance of the deep learning-based model. In the
present study, we have tried to develop a model based on
minimal information, but we may add these variables when
developing a model in the future. Lastly, the proposed deep
learning-based model was trained for binary classification.
Hence, this model is not an automatic brain MRI interpreter.
Our results provide evidence that deep learning can support
the objective differential diagnosis of MS and NMOSD. In
the future, we may attempt to include other CNS diseases
using this deep learning-based model to solve multiclass
classification problems.

In conclusion, the proposed deep learning-based model was
verified to be capable of differentiating NMOSD fromMSwith an
accuracy comparable to that of neurologists, exhibiting distinct
advantages in terms of the consistency of classification. The
proposed model has the potential to aid differential diagnosis of
two important CNS inflammatory diseases in clinical practice.
Further research is necessary to determine the applicability of
this model in clinical settings and to determine whether the
utilization of the model can lead to improved patient care
and prognoses.
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