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Objective: Changes in the normal asymmetry of the human brain often mean pathology.

Current studies on the correlation between asymmetry and cognitive impairment have

focused on Alzheimer’s disease (AD) and AD-related mild cognitive impairment (MCI).

The purpose of this study was to investigate changes in gray matter asymmetry and

their relationship with cognitive impairment in patients with subcortical ischemic vascular

disease (SIVD) by using voxel-based morphological measurements.

Methods: Fifty-nine SIVD patients with (subcortical vascular cognitive impairment, SVCI,

N= 30) andwithout (pre-SVCI,N= 29) cognitive impairment and 30 normal controls (NC,

N = 30) underwent high-resolution structural MRI and neuropsychological examinations.

The differences in gray matter asymmetry among the three groups were estimated by

using one-way ANOVA. Moreover, partial correlation analysis was performed to explore

the relationships between the asymmetry index (AI) values and cognitive assessments

controlled for age, sex, and education.

Results: The gray matter asymmetries in the fusiform and parahippocampal gyruses of

the SVCI group were significantly different from those of the NC group and the pre-SVCI

group, while no differences were found between the NC group and the pre-SVCI group

in the same areas. More specifically, in the fusiform and parahippocampal gyruses, the

SVCI group displayed a dramatic rightward asymmetry, whereas the NC group and pre-

SVCI group exhibited amarked leftward asymmetry. The results of the correlation analysis

showed that the “mean AI” in significant cluster was strongly correlated with the changes

in cognitive outcomes.

Conclusion: This study demonstrated different lateralization in the fusiform and

parahippocampal gyruses of SIVD patients with cognitive impairment compared to

healthy subjects and SIVD patients without cognitive decline. Our findings may contribute

to better understanding the possible mechanism of cognitive impairment in patients with
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SIVD, and they suggest the possibility of using gray matter asymmetry as a biomarker

for disease progression.

Keywords: subcortical ischemic vascular disease, vascular cognitive impairment, gray matter asymmetry, MRI,

voxel-based morphometry

INTRODUCTION

Vascular cognitive impairment (VCI) is a heterogeneous group
of disorders caused by multiple vascular factors, including
mild vascular cognitive impairment and vascular dementia
(VaD) (1). Mild vascular cognitive impairment is considered
to be the prodromal stage of VaD (2, 3), and VaD is the
second most common type of dementia after Alzheimer’s disease
(AD) (4). Characterized by lacunar infarcts and profound
white matter changes, subcortical ischemic vascular disease
(SIVD), which is driven by small vessel disease, is the primary
cause of VCI (5, 6). The prodromal stages of SIVD include
subcortical ischemic vascular cognitive impairment without
dementia and subcortical vascular mild cognitive impairment
(7), in which individuals exhibit evidence of relevant vascular
risk factors. In the early stage of SIVD, there may be no
decline in cognitive function (2), and its mild cognitive
impairment features include memory deficits that show a
trend of gradual worsening. Therefore, early diagnosis and
intervention in the prodromal stage are of great significance for
clinical outcomes.

There are functional and structural asymmetries between
the right and left hemispheres of the human brain (8, 9).
Normal asymmetry is often the basis of functional coupling
in the human brain (10). Changes in the normal asymmetry
of the brain often mean pathological changes have taken
place. For example, changes in the normal asymmetry of
the brain have been found in patients with mental disorders
(11). Numerous studies have previously reported various
regional abnormalities of hemispheric asymmetry of the
brain in AD and mild cognitive impairment (MCI), including
changes in the cortical thickness (8), gray matter volume
(12), white matter signaling (13), functional connectivity
(14–18), and metabolism (19). It is generally accepted
that a change of cortical asymmetry is closely related to
alterations of human cognitive function (20, 21). However,
previous studies on asymmetry of the brain have mostly
focused on AD and AD-related MCI patients, and few
studies have been conducted on patients with vascular
cognitive impairment.

More recently, Kurth et al. (22) have provided a novel
voxel-based morphological method for assessing gray matter
asymmetry. Through spatial normalization into a symmetric
space using the Diffeomorphic Anatomical Registration Through
Exponentiated Lie (DARTEL) tool, this method can establish
an accurate voxel-wise correspondence across individuals and
across both hemispheres of the brain, distinct from the traditional
direct left-right comparison, and obtain both the direction
and magnitude of asymmetry. This method has been used in
several studies (23–26). In this study, the method was used to

evaluate whether there was a change in gray matter asymmetry
in SIVD patients and to further explore its relationship with
cognitive impairment.

MATERIALS AND METHODS

Participants
In this study, 89 participants, including 59 SIVD patients with
(subcortical vascular cognitive impairment, SVCI, N = 30) and
without (pre-SVCI, N = 29) cognitive impairment and normal
controls matched for age, sex and education (NC, N = 30), were
recruited between 2018 and 2020 at the First AffiliatedHospital of
Chongqing Medical University. Informed consent was obtained
from each subject. Furthermore, the study was approved by the
ethics committee of the institution.

The inclusion criteria for the patients with SIVD were as
follows (27): (1) white matter hyperintensities extending into the
deep white matter; periventricular abnormalities, extending caps
(> 10mm as measured parallel to the ventricle) or an irregular
halo (> 10mm with irregular margins and extending into the
deep white matter); and diffusely confluent hyperintensities
(> 25mm with an irregular shape) or extensive white matter
impairment; (2) multiple lacunar lesions (> 5) in the deep gray
matter and at least moderate white matter lesions; and (3) lack
of hemorrhages, cortical and/or territorial infarcts and watershed
infarcts, signs of normal pressure hydrocephalus, and definite
causes of the white matter lesions.

The criteria for the SVCI group were as follows (28): (1)
subjective cognitive complaints reported by the participant or
his/her caregiver; (2) cognitive impairment that does not meet
the standard of the Diagnostic and Statistical Manual of Mental
Disorders, fifth edition (DSM-V) criteria for dementia; (3) a
Clinical Dementia Rating Scale (CDR) score = 0.5; and (4) a
Mini-Mental State Examination (MMSE) score ≥ 24.

The pre-SVCI group met the following criteria: (1) absence
of any impairment of daily life activities and cognitive
assessments; (2) a CDR score = 0 and (3) a MMSE
score ≥ 27.

The criteria for the NC included: (1) a lack of neurological
and psychiatric disorders; (2) a lack of abnormal findings on
conventional brain MR imaging and (3) no cognitive complaints.

Subjects were excluded if they showed one or more
of the following: (1) abnormal metabolic conditions, such
as hypothyroidism or folic acid deficiencies; (2) depression,
schizophrenia, or any other psychiatric disorders; or (3)
Parkinson’s syndrome, epilepsy, or other nervous system diseases
that influence cognitive function. Subjects with a relevant
MR scanning contraindication or metallic foreign body were
excluded from the study.
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Neuropsychological Assessment
All participants were administered a comprehensive
neuropsychological assessment battery including the following
aspects: Mini-Mental Status Examination (MMSE) for global
cognition, Auditory Verbal Learning Test (AVLT) for episodic
memory, Boston Naming Test (BNT) for language function,
Clock Drawing Test (CDT) for visuospatial perception, Trail
Making Tests A and B (TMT-A and TMT-B) for executive
functions, Rey-Osterrieth Complex Figure Test (CFT) for visual
memory, Stroop Color Word Test (Stroop1 and Stroop2) for
working memory. Each participant’s raw neuropsychological
data were transformed into z-scores.

MRI Acquisition
All the MRI data were acquired on a GE Signa Hdxt 3.0T scanner
with an eight-channel phased-array head coil. High-resolution
3D-T1 images were obtained with the following parameters:
TR = 8.3ms, TE = 3.3ms, flip angle = 15◦, thickness/gap =

1.0/0mm, field of view (FOV) = 240 × 240mm, matrix = 240
× 240, voxel = 1 × 1× 1 mm3, and scanning time = 6.45min.
The scan parameters of the T2-FLAIR-weighted images were
acquired as follows: TR = 8000ms, TE = 126ms, TI = 1500ms,
thickness/gap = 5.0/1.5mm, FOV = 240 × 240mm, and matrix
= 256× 192. The subjects were told to keep their eyes closed and
to remain awake throughout the scanning session.

Data Preprocessing
To ensure the accuracy of the segmentation of the gray and
white matter, lesions were first segmented by the lesion growth
algorithm (29) as implemented in the LST toolbox version
1.2.3 (https://www.applied-statistics.de/lst.html) of the Statistical
Parametric Mapping software (SPM, http://www.fil.ion.ucl.ac.
uk/spm). Following the automated steps of the LST pipeline,
the algorithm first segmented the T1 images into cerebrospinal
fluid, gray matter and white matter. This information was
combined with the coregistered FLAIR intensities to calculate
lesion belief maps. Twenty values of the original initial threshold
(κ, in the range of 0.05 to 1.0 with an interval of 0.05) were
set, and an optimal κ value (κ = 0.35) was selected after
visual inspection to ensure that the algorithm captured most
lesions without segmenting nonlesion areas. By thresholding
these maps with the selected optimal κ value, initial binary
lesion maps were obtained that were subsequently grown along
voxels that appeared hyperintense in the FLAIR images. Then,
lesion probability maps were garnered and used to perform
lesions filling in the high-resolution T1 images and lesions
volume calculations.

The gray matter asymmetry analysis of the high-resolution
3D-T1 images after white matter lesion filling followed an
established protocol for voxel-wise asymmetry analyses using the
VBM8 toolbox (http://dbm.neuro.uni-jena.de/wordpress/vbm/)
implemented in SPM8. Briefly, this procedure first segmented T1
images into separate gray and white matter and registered them
into MNI space by applying 12 affine parameter transformations.
Then, the affine registered gray and white matter segments
were flipped at the midline in the sagittal plane, and a
DARTEL template was created using the original and flipped

affine registered segments. Next, the registered flipped and
original gray matter segments were normalized to the symmetric
DARTEL template. Subsequently, the asymmetry index (AI)
on each voxel was calculated as AI = ([right–left]/[0.5 ×

[right+left]]). Ultimately, the left hemispheres were discarded,
and a Gaussian kernel of 8mm full-width-at-half-maximum was
used to smooth the right hemispheres. The resulting smoothed
right-hemispheric AI images established the input data for
subsequent statistical analysis. The positive AI values of the
remaining right hemisphere indicated a rightward asymmetry,
while negative AI values indicated leftward asymmetry.

Statistical Analyses
All the clinical and demographic data were evaluated among the
groups using SPSS version 23. One-way ANOVA and post hoc
multiple comparisons tests were used to assess the differences
in continuous variables and cognitive assessment values after z-
scores transformation across the three groups, and theχ

2 test was
used for the sex proportions.

The voxel-wise gray matter asymmetry differences among
the three groups were examined via a general linear model
with the covariates of interest, including age, sex, years of
education, and volume of white matter hyperintensities (WMH).
Post hoc tests were further used to detect specific differences
between every two groups. All findings resulting from the group
comparisons were corrected for multiple comparisons using
nonparametric threshold-free cluster enhancement (TFCE) with
5,000 permutations and while controlling the family-wise error
(FWE) rate at p< 0.05. Partial correlation analysis was performed
to explore the relationships between the AI values extracted
from the significantly different gray matter regions and thirteen
cognitive assessments controlled for age, sex, and education (P <

0.05, two-tailed). Furthermore, the P values were adjusted by a
Bonferroni correction due to multiple testing.

RESULTS

Demographic and Cognitive
Characteristics
The demographic and clinical characteristics of all the subjects
are shown in Table 1. There were no significant differences in
age, sex, or education among the different groups. The WMH

TABLE 1 | Demographic characteristics of the participants in the three groups.

NC (N = 30) pre-SVCI (N = 29) SVCI (N = 30) P

Gender (M/F) 16(14) 19(10) 18(12) 0.112

Age (year) 67.36 ± 7.08 70.62 ± 3.81 70.13 ± 5.31 0.058

Education (year) 11.00 ± 2.70 11.34 ± 3.17 9.93 ± 1.76 0.100

WMH −1.11 ± 0.10 0.45 ± 0.67a 0.68 ± 0.79a < 0.001*

The differences of continuous variables across the groups were assessed by one-way

ANOVA and sex proportions by the chi-square test. The data are presented as the mean

± SD for normally distributed variables. *Significant by one-way ANOVA, P < 0.05. WMH,

white matter hyperintensity.
aSignificant compared with NC, P < 0.05.
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volume was significantly different in the SVCI group and pre-
SVCI group than in the NC group, but it was not substantially
different between the SVCI group and the pre-SVCI group.

Table 2 displays the results of the cognitive assessments. The
SVCI group exhibited the worst results on all the cognitive
evaluation tests compared with the other two groups, while the
pre-SVCI group was significantly worse on the TMT and the
AVLT than the NC group.

Group Differences in Gray Matter
As shown in Figure 1, we observed significant differences among
the three groups regarding the gray matter asymmetry in the
fusiform and parahippocampal gyruses (Figure 1A) by ANOVA
controlled for age, sex, education, and volume of the WMH (P <

0.05, FWE corrected).
More specifically, the results of the post hoc test demonstrated

that the gray matter asymmetries in the fusiform and
parahippocampal gyruses of the SVCI group were significantly
different from those of the NC group as well as the pre-SVCI
group (Figures 1B,C) (P < 0.05, FWE corrected). Moreover, no
differences were found between the NC group and the pre-SVCI
group concerning the gray matter asymmetry in the areas that
showed differences after ANOVA.

Subsequently, we extracted the voxel-wise AIs and the voxel-
wise gray matter volumes from the cluster with significant
differences to examine the causes of the detected group effect.
Then, the averaged values over the entire significance cluster
were calculated, and the cluster-specific “mean AI” and cluster-
specific gray matter volumes for the left and right hemispheres
were generated.

TABLE 2 | Cognitive characteristics of the participants in the three groups.

NC (N = 30) pre-SVCI (N = 29) SVCI (N = 30) F/P value

MMSE 28.50 ± 1.11 28.10 ± 1.05 24.17 ± 1.90a,b 86.56/<0.001*

AVLT-IR 0.75 ± 0.56 0.09 ± 0.79a −0.84 ± 0.89a,b 33.32/<0.001*

AVLT-DR 0.73 ± 0.59 0.13 ± 0.89a −0.85 ± 0.78a,b 32.81/<0.001*

AVLT-RR 0.74 ± 0.62 0.13 ± 0.89a −0.87 ± 0.76a,b 35.84/<0.001*

BNT 0.35 ± 0.71 0.35 ± 0.89 −0.69 ±1.02a,b 13.90/<0.001*

CDT 0.27 ± 0.74 0.25 ± 1.06 −0.51 ± 1.00a,b 6.60/0.002*

TMT-A −0.67 ± 0.50 −0.10 ± 0.95a 0.79 ± 0.90a,b 24.61/<0.001*

TMT-B −0.85 ± 0.44 0.05 ± 0.76a 0.83 ± 0.89a,b 40.59/<0.001*

Rey CFT-IR 0.40 ± 0.43 0.11 ± 0.86 −0.53 ± 1.31a,b 7.35/0.001*

Rey CFT-DR 0.50 ± 0.93 0.21 ± 0.94 −0.72 ± 0.69a,b 15.602/<0.001*

Stroop-1 0.50 ± 0.36 0.39 ± 0.55 −0.94 ± 1.17a,b 30.48/<0.001*

Stroop-2 0.61 ± 0.67 0.17 ± 0.80 −0.83 ± 0.94a,b 23.11/<0.001*

The differences in continuous variables across the groups were assessed by one-way

ANOVA. The data are presented as the mean ± SD for normally distributed variables.

*Significant by one-way ANOVA, P < 0.05. aSignificant compared with NC, P < 0.05

(Bonferroni corrected). bSignificant compared with pre-SVCI, P < 0.05 (Bonferroni

corrected). MMSE, Mini-Mental State Examination; AVLT-IR & AVLT-DR & AVLT-RR,

Auditory Verbal Learning Test, immediate recall, delayed recall, and recognition recall;

BNT, Boston Naming Test; CDT, Clock Drawing Test; TMT, Trail Making Test; Rey CFT-IR

& DR, Rey complex figure test, immediate recall, and delayed recall. NC, normal controls;

pre-SVCI, subcortical ischemic vascular disease without cognitive impairments; SVCI,

subcortical ischemic vascular disease with cognitive impairments.

Taking the cluster-specific “mean AI” separately for each
group, the SVCI group had a prominent rightward asymmetry,
whereas the NC group and the pre-SVCI group showed a clear
leftward asymmetry (Figure 2A). Moreover, when plotting the
cluster-specific “gray matter volumes,” the pre-SVCI group and
the SVCI group had significantly less gray matter than the NC
group in both the right and left hemispheres, whereas these
two groups had similar gray matter volumes in both regions
(Figures 2B,C).

Correlations With Cognitive Assessment
As shown in Figure 3, when relating the gray matter asymmetry
to the cognitive assessment, an increase in the cluster-specific
“mean AI” was firmly associated with decreases of the scores on
the MMSE test (r = −0.515, P < 0.001), AVLT immediate recall
(r = −0.485, P < 0.001), AVLT delayed recall (r = −0.425, P <

0.001), AVLT recognition recall (r = −0.513, P < 0.001), BNT
(r = −0.406, P < 0.001), CFT delayed recall (r = −0.338, P =

0.002), Stroop1 test (r = −0.410, P < 0.001), and Stroop2 test
(r = −0.476, P < 0.001). There was also a significant positive
correlation between the cluster-specific “mean AI” and TMT,
both for A (r = 0.447, P < 0.001) and B (r = 0.450, P < 0.001).
All the P values were adjusted by Bonferroni correction.

DISCUSSION

This study was conducted to investigate the relationship between
the changes in gray matter asymmetry and the decline of
cognitive function in patients with SIVD. Our analysis revealed
a prominent rightward gray matter asymmetry in the SVCI
group compared with a leftward asymmetry in both the NC and
pre-SVCI group within the specific areas of the fusiform and
parahippocampal gyruses. We also observed that the gray matter
asymmetry was significantly associated with cognitive decline,
consisting of impairments in general cognitive function, episodic
memory, and processing speed.

Asymmetry plays an essential role in the healthy human
brain, and changes in standard asymmetry patterns often mean
pathological changes in the brain. In recent years, increasing
numbers of studies have focused on the relationship between
abnormalities in brain symmetry and changes in the cognitive
condition. These studies have explored the potential of using
asymmetry as a biological marker in the development of cognitive
disorders from all aspects of metabolism, function, and structure
(30–32).

Previous studies have suggested that MCI patients with
low metabolic status in the left hemisphere tend to exhibit
more severe speech memory dysfunction with an increased
risk of eventually being diagnosed with dementia (19).
Liao et al. (31) found that asymmetry of functional brain
activation might be a sensitive neuroimaging biomarker
in the progression of MCI to dementia. Given the volume
asymmetry of the bilateral hippocampus, the researchers
found that the volume asymmetry in the hippocampus of
patients with mild cognitive impairment and Alzheimer’s
disease was significantly different from that of healthy controls,
showing different subpatterns of lateralization (10). Kim
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FIGURE 1 | Differences in gray matter asymmetries among groups. (A) One-way ANOVA showed the differences in the fusiform and parahippocampal gyruses

among groups. (B) The post hoc test indicated differences between the SVCI group and NC group. (C) The post hoc test suggested significant differences in the SVCI

group compared with the pre-SVCI group. No differences were found between the NC group and the pre-SVCI group. The displayed template was generated from all

of the subjects. All the results were corrected for multiple comparisons using a nonparametric threshold-free cluster enhancement with 5,000 permutations while

controlling the family-wise error rate at p < 0.05.

et al. (8) found that the cortex’s asymmetry was significantly
different between healthy people and patients with varying
degrees of cognitive impairment. The asymmetry of the gray
matter between the hemispheres in specific brain regions can
provide more useful information than cortical volume and
thickness measurements in predicting the conversion of MCI to
AD (21).

In the past, most studies on the asymmetry of brain gray
matter in patients with cognitive impairment have focused
on AD and AD-related MCI, but little is known about the
changes in asymmetry related to vascular cognitive impairment.
Our study focused on the asymmetry of gray matter in the
brains of SIVD patients. We found that the asymmetry in
the gray matter volume of the fusiform and parahippocampal
gyruses in the SVCI group accompanied by a decline in
cognitive status was significantly different from that in the
NC group and the pre-SVCI group. The SVCI group showed
a rightward asymmetry in the fusiform and parahippocampal

gyruses, while the NC and the pre-SVCI group showed
a leftward asymmetry. Moreover, the asymmetry index was
correlated with the results of multiple cognitive fields. These
results suggested the possibility of using the gray matter
asymmetry in the fusiform and parahippocampal gyruses as a
new neuroimaging biomarker for tracking the progression of
cognitive decline in patients with SIVD and for studying the
underlying mechanism.

The fusiform gyrus has been shown to play an important
role in facial recognition and in distinguishing facial expressions
(33, 34). Previous studies have shown that patients with mild
cognitive impairment have a reduced ability to handle facial
information stimulation (35). The volume of the left fusiform
gyrus in patients with mild cognitive impairment decreases
with the development of the disease, accompanying the decline
of cognitive function (36–38). This finding is consistent with
the results of a previous study on cortical thickness (39).
Our results showed that patients with SIVD had significant
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FIGURE 2 | (A) The cluster-specific “mean AI” in the fusiform and parahippocampal gyruses among three groups. Positive values represent a rightward asymmetry;

negative values represent a leftward asymmetry. (B) The cluster-specific “gray matter volumes” in the fusiform and parahippocampal gyruses in the right hemisphere.

(C) The cluster-specific “gray matter volumes” in the fusiform and parahippocampal gyruses in the left hemisphere. The P-values indicate the significance of the group

differences. AI, asymmetry index; rGM, The cluster-specific “gray matter volumes” in the right hemisphere; lGM, The cluster-specific “gray matter volumes” in the left

hemisphere.

gray matter volume reductions in both the left and right
fusiform gyruses compared with the NC. More specifically,
SVCI patients showed a significant asymmetry to the right,
while pre-SVCI patients showed a significant asymmetry to
the left, which might indicate that the volume of the left area
decreased more significantly in SVCI patients than in pre-
SVCI patients.

The parahippocampal gyrus is generally considered to
play an essential role in episodic memory, spatial analysis,
and contextual association processing in many previous
neuroimaging studies (40–44). Previous studies have shown
that the gray matter volume of the hippocampus and the
parahippocampus can effectively distinguish AD from
healthy controls (45). Multiple studies have shown that
subjects with MCI have less gray matter volume in the left
parahippocampal gyrus than healthy elderly subjects (38).
In this study, similar to the changes in the fusiform gyrus,
we also found that the gray matter volume of the bilateral
parahippocampal gyrus in patients with SIVD decreased
substantially. These results are supported by outcomes reported
by other researchers (46).

It is worth noting that although we observed a
significant reduction of gray matter volume in the
fusiform and parahippocampal gyruses in patients with

SIVD compared to healthy controls, no differences were
observed between the pre-SVCI and SVCI groups. The
reason for this finding was most likely that the gray
matter we were interested in was confined to regions
with significant differences in asymmetry rather than a
broader range.

Several limitations of this study deserve attention. First,
the sample size of this study was small, which increased
the statistical efficiency. Additional studies are needed to
confirm the current results in a larger sample, which may
also help to exclude differences in outcomes due to innate
differences in the subjects. Second, although we found
a significant correlation between gray matter asymmetry
and cognitive decline, the underlying mechanisms and
development trends of SIVD did not seem to be fully
illustrated, given that this was a cross-sectional study and
that patients with SIVD in this study had a mild degree of
disease. In future studies, patients with more severe cognitive
impairment should be included, and longitudinal observations
should be conducted to explain the mechanism of disease
development better.

In conclusion, our analysis showed that the fusiform and
parahippocampal gyruses exhibited different subpatterns
of asymmetry and lateralization in SVCI patients
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FIGURE 3 | (A–J) Significant partial correlation between the “mean AI” in significant cluster and cognitive assessments controlled for age, sex, and education (P <

0.05, two-tailed). The P values were adjusted by Bonferroni correction. MMSE, Mini-Mental State Examination; AVLT-IR & AVLT-DR & AVLT-RR, Auditory Verbal

Learning Test, immediate recall, delayed recall, and recognition recall; BNT, Boston Naming Test; TMT, Trail Making Test; Rey CFT DR, Rey complex figure test,

delayed recall.

compared to healthy subjects and pre-SVCI patients. More
interestingly, subjects’ cognitive decline was correlated
with the high pathological degree of asymmetry in specific
areas of the fusiform and parahippocampal gyruses,
indicating the possibility of using gray matter asymmetry
as a biomarker for cognitive impairment in patients
with SIVD.
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