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The robustness of brain structural networks, estimated from diffusion MRI data, may be

relevant to cognition. We investigate whether measures of network robustness, such as

Ollivier-Ricci curvature, can explain cognitive impairment in multiple sclerosis (MS). We

assessed whether local (i.e., cortical area) and/or global (i.e., whole brain) robustness,

differs between cognitively impaired (MSCI) and non-impaired (MSNI) MS patients. Fifty

patients, with Expanded Disability Status Scale mean (m): 3.2, disease duration m: 12

years, and age m: 40 years, were enrolled. Cognitive impairment scores were estimated

from the Minimal Assessment of Cognitive Function in Multiple Sclerosis. Images were

obtained in a 3T MRI using a diffusion protocol with a 2min acquisition time. Brain

structural networks were created using 333 cortical areas. Local and global robustness

was estimated for each individual, and comparisons were performed between MSCI

and MSNI patients. 31 MSCI and 10 MSNI patients were included in the analyses.

Brain structural network robustness and centrality showed significant correlations with

cognitive impairment. Measures of network robustness and centrality identified specific

cortical areas relevant to MS-related cognitive impairment. These measures can be

obtained on clinical scanners and are succinct yet accurate potential biomarkers of

cognitive impairment.

Keywords: cognitive impairment, multiple sclerosis, diffusion MRI, brain networks, imaging bio-markers, Ollivier-

Ricci curvature, brain networks robustness

INTRODUCTION

The robustness of brain networks is defined as the “degree to which the topological properties of
a network are resilient to lesions such as the removal of nodes or edges” (1). Removal of nodes
(e.g., cortical or subcortical areas) and edges (e.g., white matter pathways) from such a network
are computational constructs that model the disruptive effects of lesions or degeneration caused
by trauma or disease. Brain functionality is often remarkably robust (via brain plasticity) to such
lesions, as it adapts to the damage. However, it may be fragile and unable to adapt when the damage
takes place at certain vulnerable locations in a specific amount, resulting in dysfunction or cognitive
impairment (CI). Studies quantifying brain robustness, as it relates to impairment and dysfunction,
can be broadly divided into two categories. First, those that use structure-to-function relationships
to predict functional resilience to lesions in a given location (2). Second, those applying recently
proposed geometric methods, based on the concept of graph Ollivier-Ricci curvature (referred to as
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curvature here onwards), which can quantify brain robustness
and relate it to changes caused by healthy aging or brain
disorders (3).

CI is observed in 40–65% of MS patients (4), affecting their
quality of life and professional performance. CI in MS has been
associated with structural disconnection due to demyelination
and axonal damage (5). Diffusion MRI (dMRI), an effective
imaging modality to study such neurodegeneration, can be
used to build structural networks and describe connectivity
changes during the course of the disease. In line with other
brain robustness studies, several investigations of MS-related CI
have used structural networks to explain cognitive dysfunction
(5–8). Global and local network metrics show that in MS,
information flow between brain regions is reduced (5, 6) causing
dysfunction. At the whole brain level, global network metrics
like network density and global efficiency capture topological
changes related to impairment and provide valuable information
complementary to clinical and atrophy measures (7). Changes
in global efficiency of the structural network associated to the
default mode network (DMN) by resting-state fMRI, were also
related to CI in MS (9).

In order to improve the ability to detect differences
between structural networks from healthy controls (HC) and
MS patients, some studies have combined network metrics
with machine learning approaches (10, 11). They use a wide
range of global and local network metrics as inputs to train
classifiers. However, the accuracy of these classifiers remains
relatively low at 60–65% (10, 11), which can be mainly
attributed to the low discriminatory power of many networks’
metrics. Furthermore, a recent study on the effects of “edge
deletion” in brain networks (modeling disconnection due to
lesions) concluded that such networks tend to be robust to
damages caused by MS lesions, and thus do not provide
sensitive markers (8). Therefore, it is currently challenging to
accurately categorize brain structural networks from healthy
individuals or from people with MS. Consequently, there is
a crucial need to improve these networks’ analysis techniques
in order to (1) better characterize the effects of MS on brain
networks, and (2) develop potential biomarkers for future
clinical trials.

This study leverages various brain networks measures,
including the application of curvature (3) for the first time,
to present a simple framework for identifying critical brain
areas in MS related CI. Curvature positively correlates with
the robustness of a network (3) and quantifies the overall
brain functionality impact due to MS related lesions, which is
not captured by traditional network analysis (3). At a global
level, higher curvature (showing relative network stability)
should indicate less CI. The idea is to use standard resolution
clinical scans for generating dMRI-based macro networks, and
instead of seeding in affected areas, randomly seed the entire
brain for tractography. Also, for robustness analysis, instead
of edge deletion modeling (8), we use curvature and network
robustness/centrality measures to identify areas related to CI in
MS. This makes our proposed approach more general, which
can be readily applied across different scanners using diverse
scanning protocols.

MATERIALS AND METHODS

50MS patients, 10 cognitively non-impaired (MSNI) and 31
cognitively impaired (MSCI) participated in this study. Out of
the excluded 9 patients, 5 were borderline CI and 5 were not
scanned for dMRI and/or had missing clinical data. Detailed
demographics of the cohort (given as Supplementary Note 1)
and exclusion criteria can be found in our previous work
(12). Written informed consent was obtained from each subject
following University of Texas, Houston, TX, Institutional Review
Board approval of the research protocol (12).

Cognitive Assessment
To quantify cognitive function with psychometric testing, the
Minimal Assessment of Cognitive Function in Multiple Sclerosis
(MACFIMS) was used (13). Twenty MACFIMS parameters
related to MS cognitive deficits were identified, and an overall
CI index was derived. Patients were classified as MSNI if their
performance wasmore than 1 standard deviation below themean
for 8 out of 20 parameters (40%), which corresponds to an CI
index <0.2. Similarly, patients were classified as MSCI if they
performedmore than one standard deviation on 40% parameters,
which corresponds to an CI index >0.35. Patients with score
between 0.2 and 0.35 were considered as borderline and excluded
from analysis.

Diffusion MRI Data Acquisition and
Pre-processing
MRI data were acquired on a Philips 3.0 T Intera scanner using
a SENSE receive head coil as previously described (12). The
dMRI data were acquired axially using a single-shot multi-slice
2-dimensional spin-echo diffusion sensitized and fat-suppressed
echo planar imaging (EPI) sequence, with the balanced Icosa21
tensor encoding scheme (21 unique directions). The b-factor was
1,000 s mm−2, TR/TE = 7,100/65ms, FOV = 256 × 256mm,
and slice thickness/gap/number of slices = 3 mm/0 mm/44. The
EPI phase encoding used a SENSE k-space under-sampling factor
of 2, with an effective k-space matrix of 128 × 128, and an
image matrix after zero-filling of 256 × 256. The reconstructed
image spatial resolution was 1× 1× 3mm. Acquisition time was
∼2 min.

Scanner images (in DICOM format) were converted to NIFTI
using dcm2nii (14) software. Eddy current distortion correction
was applied using FSL eddy_correct (15) and the Brain Extraction
Toolbox was used to mask out the brain (15).

Brain Structural Networks
In previous studies, the following three types of structural
networks have been used to analyze MS-related changes:

Tractography-Based Networks (7, 10)
These are region of interest (ROI) based connectivity maps of
the entire brain. A diffusion tensor or multi-fiber model is fit to
the diffusion data at each voxel to estimate the principal fiber
orientation(s). Tractography is subsequently performed using
these directions, and the connectivity (the network’s edges) of
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cortical/subcortical ROIs (the network’s nodes) is estimated as the
number of fiber tracts between each pair of ROIs.

Fractional Anisotropy (FA)-Based Correlation

Matrices (5, 6, 8)
The average FA values are estimated for each ROI. The values
for all the participants in a cohort are then used to calculate the
Pearson correlation coefficient between ROIs. The correlations
values form a graph on a group level (e.g., MSNI).

Cortical Thickness-Based Correlation Matrices (16)
The average cortical thickness is calculated for each ROI. Instead
of FA values as described above, correlations are calculated
between each pair of ROIs to construct a graph on a group level.

We note that methods 2.3.2 and 2.3.3 above do not
yield connectivity networks per se, but rather graphs/matrices
which encode macro/microstructural similarities of brain areas.
Therefore, we only compute tractography-based connectivity
networks due to the following reasons: (1) The clustering
coefficient, an important measure of graph robustness, can lead
to incorrect inferences (17) in correlation networks and (2) Both
FA and cortical thickness correlation matrices are inherently
obtained at group level, which does not explicitly allow individual
level statistical analysis within each cohort.

Structural Connectivity Networks
Construction
To generate connectivity matrices, diffusion tensors were
estimated to perform tractography. In order to capture
connectivity alterations induced by MS pathology at the network
level, we chose to seed tractography randomly throughout
the whole brain, contrary to Solana et al. (10). DSI Studio
(18) was used to generate the connectivity matrices with the
following settings: FA threshold = 0.1, angular threshold =

60◦, tractography method: Runge–Kutta, total number of
streamlines: 500,000. A total of 333 cortical areas (nodes)
were automatically segmented via non-linear registration of
the Gordon cortical template (19) available in DSI Studio.
Connectivity matrices were constructed with weights defined
as the number of streamlines connecting each pair of cortical
areas. Node numbers (IDs), centroid and functional community
(group) for each of the 333 cortical areas obtained from
resting-state fMRI can be downloaded from https://sites.wustl.
edu/petersenschlaggarlab/parcels-19cwpgu/. Local (node level)
and global network measures were calculated using the Brain
Connectivity Toolbox (https://sites.google.com/site/bctnet/),
except for curvature which was calculated using our code,
available at https://www.cmrr.umn.edu/downloads/gcurve/.

Network Nodal Measures
From our previous work (3), we selected four local measures of
network robustness: curvature, strength, betweenness centrality,
and clustering coefficient. A brief description of these measures
is given below, more details can be found in Farooq et al. (3).

Curvature
It is a direct measure of network robustness. A large curvature
means a fast return to the original state after perturbation,
while a small curvature corresponds to a slow return (fragility).
Curvature is a local property that explains the contribution of
each individual node to the overall brain network robustness (3).

Strength
Strength is the number of edges connecting a node to the rest of
the network. It is the total weight of connections coming in and
out of a node. Generally, the more connected a node is, the more
central it is in the network. However, more connectedness may
not always make a node more central, if it is not involved in the
most efficient paths in the network.

Betweenness Centrality
It is a measure of centrality based on the number of shortest paths
routing through the node (20). In a network, central nodes tend
to be part of shortest paths.

Clustering Coefficient
It is the probability, for a given node, that all its neighboring
nodes are also connected to each other. The clustering coefficient
of a node ranges between 0 and 1. Clustering coefficient is helpful
in assessing small-worldness of networks (17).

A brief description of the global measures of
network robustness used in this study is provided in
Supplementary Note 2.

Statistical and Correlation Analysis of
Network Measures and CI Scores
For comparisons between MSCI and MSNI structural networks
at the cortical areas (nodes) level, corrections for multiple
comparisons and family-wise error rate was controlled using
the Holm–Sidak method with α = 0.05. The correction was
performed using GraphPad Prism (https://www.graphpad.com/),
with homoscedasticity assumption that is, data was sampled
from normal distributions with identical standard deviations,
while computing two-tailed unpaired p-values. The number of
unpaired t-tests to correct for was equal to the number of nodes
i.e., 333 for the Gordon atlas.

At global (whole brain) level, we hypothesize that network
robustness measures will be higher in MSNI as compared to
MSCI. For comparison, we perform un-paired one-tailed t-test
corrected for multiple comparisons with α = 0.05.

To associate cognitive ability with network measures, we did
not perform stepwise regression as done in some previous studies
(7, 21). It is important to note that stepwise regression may be
accurate when the number of “true” predictor variables is roughly
equal to the number of “nuisance” variables (22), which is not
the case while relating many network (or clinical) measures to
cognitive ability/score. Resultant stepwise regression models may
fit the data well for the samples under study, but perform poorly
on independent datasets or out-of-sample validation (22).
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RESULTS

Local Brain Network Measures
Local measures identified significant structural connectivity
differences between MSCI and MSNI patients in six cortical
areas. We noted a left asymmetry for these areas, as can be seen
in Figure 1. The areas include parts of the ventral attention,
cingulo-opercular, default mode, temporal and visual networks
in the left hemisphere, and somato-motor (hand) network in
the right hemisphere (Supplementary Note 3). Figure 2 shows
the overall change in local measures between MSCI and MSNI.
Betweenness centrality is found to be increased in cortical areas
that are part of the ventral attention and cingulo-opercular
networks in MSCI, compared to MSNI, and decreased in cortical
areas that are part of the visual network. Curvature and strength
show similar results of overall decrease in parts of the default
mode and somato-motor networks inMSCI patients. In temporal
areas, the clustering coefficient is decreased in MSCI patients.

Global Brain Network Measures
At the global network level, clustering coefficient, curvature,
density, diameter, efficiency, characteristic path length, and
small worldness were compared. As expected, MSNI cohort
showed statistically significant higher curvature. However, no
other global measure captured any significant difference between
the groups.

DISCUSSION

In this pilot study, we provide curvature-based brain networks
analysis of structural changes between MSNI and MSCI patients,
to evaluate their potential as imaging biomarkers for CI. We
used network centrality and robustness measures to detect
areas related to CI and present a simple framework which
is clinically feasible from scanning time and computational
efficiency’s stand points.

Local Brain Network Measures
Left Hemispheric Asymmetry of Differences Related

to CI
In MS, the dominant hemisphere may have increased
vulnerability to the pathological processes, and thus an
asymmetric interhemispheric lesion distribution (23) as well as
structural damage (24). Further, a longitudinal study focusing
on regional patterns of focal lesions accumulation and tissue
atrophy progression (24) associates left-lateralized pattern of
gray matter and white matter atrophy to cognitive and clinical
deterioration. We found a consistently asymmetric pattern using
local network measures as shown in Figure 1.

Ventral Attention Areas
Functional connectivity studies show that, in MS patients, there
is a likelihood of increased activation in the left ventrolateral
pre-frontal cortex inducing increased activation of the ventral
attention network as compared to HC (25). In our study,
MSCI patients, showed increased betweenness centrality for the
structural connectivity of left ventral attention areas, compared

to MSNI, which may be related to the reported increased
activation of those areas. In MSCI, those ventral attention areas
route more “information” and become more central in overall
brain functionality.

Cingulo-Opercular Areas
The cingulo-opercular functional network is thought to support
stable maintenance of task and strategy during cognitive
processes (26). It forms part of the cognitive control network
and functions to maintain tonic alertness (27). In MSCI patients,
increased centrality in the anterior insula/frontal operculum
(part of the salience network) was found (Figure 1). Similar to the
ventral attention areas, this may be explained as a compensatory
mechanism/brain plasticity, making the region structurally more
pivotal. This conforms to findings of increased functional activity
in MS patients in the frontoparietal network and the thalamus
(part of the cingulo-opercular network) (28).

Visual Areas
Visual impairment is an important manifestation of MS, found in
both structural and resting-state fMRI analysis (29). In addition
to an overall decrease in the activation of the primary visual
cortex, a specific decrease in the functional connectivity of left
hemisphere visual areas in MS patients (30) is known, based on
resting-state fMRI analysis. Consistent with these studies, we find
decreased betweenness centrality of structural connectivity in the
visual areas of MSCI patients, which may be related to damaged
pathways modifying the overall visual structural network despite
adequate visual acuity of all patients enrolled.

DMN
The DMN’s reduced functional connectivity is related to CI in
MS (31). Also, DMN’s structural global efficiency is reduced in CI
(9) and atrophy of the frontal cortex can predict CI in MS (32).
In line with these studies, we find that the frontal areas of the
DMN show reduced node strength and node curvature in MSCI
patients. Reduced node strength indicates loss of tracts to and
from the ventromedial pre-frontal cortex area. Reduced nodal
curvature implies reduced contribution of this area to the overall
stability of the DMN.

Somato-Motor (Hand) Areas
Studies using fMRI have shown decreased functional
connectivity in the sensorimotor network in MS, which
correlates with motor disability (33). In this study, both
node strength and curvature found distinct nodes in
the somato-motor area with decreased values in MSCI,
suggesting decreased structural connectivity. Decreased
local curvature indicates that the area is contributing
to the overall vulnerability of the brain network in
MSCI patients.

Temporal Areas
The temporal lobe is involved in memory function and
information processing speed. In MS, atrophy of the
right temporal lobe has been suggested to correlate with
CI (34). In resting-state functional networks, formation
of hubs in the left temporal lobe are found in MS
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FIGURE 1 | Cortical areas (network nodes) with statistically significant differences (corrected for multiple comparisons using the Holm–Sidak method) between MS

cognitively impaired (MSCI) and non-impaired (MSNI) patients. Brain parcellation with 333 cortical areas was obtained using the Gordon atlas (19) and labeled with the

Brain Analysis Library of Spatial maps and Atlases database https://balsa.wustl.edu/WK71. Adapted from Figure. 10 of Supplementary Data from Gordon et al. (19).

FIGURE 2 | Differences in network (graph) local measures between MS cognitively impaired (MSCI) and non-impaired (MSNI) patients. Betweenness centrality is

increased in nodes from the ventral attention and cingulo-opercular networks in MSCI patients. For the other nodes, MSCI show decrease in all measures.

patients which are not present in HC (35). Here, a
decreased clustering coefficient of structural networks in
the left temporal area of MSCI patients implies that the

community structure is less pronounced, affecting the
temporal lobe functionality and contributing to MS related
impairment (17).
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FIGURE 3 | Correlation plots between cognitive impairment (CI) index and network local measures, for brain areas showing significant differences between MSCI and

MSNI patients. Plots with significant p-values (shown in red) show positive correlation between CI and betweenness centrality in a node from the ventral attention

network. A negative correlation between CI and betweenness centrality in a node from the visual network, and with strength as well as with curvature in nodes from

the somatomotor (hand) network is observed.

Global Results
Global curvature shows significant decrease in MSCI
and can therefore be hypothesized as the most sensitive
measure to CI (Supplementary Figure 1). This result
is expected because brain networks in MSNI patients
may be more robust in functionality. All other
global measures did not show significant differences
between groups.

Correlations of Network Measures and CI
Index
Local cortical areas showing significant differences between
cohorts were investigated for possible correlation between
network measures and CI index as shown in Figure 3.
Betweenness centrality is positively correlated with CI index
in the left ventral attention areas, and negatively correlated
with CI index in the left visual areas. Similarly, both
strength and curvature are negatively correlated with CI
index in the somato-motor areas. Statistically significant
correlation values are shown in red in Figure 3. Only global
curvature significantly correlates (negatively) with CI index
(Supplementary Figure 2).

This study should be considered in view of some limitations.
First, the sample size of MSNI andMSCI cohorts is small and not
ideally balanced in size/power. Second, being cross-sectional, it
cannot accurately describe progressive structural changes due to
CI in MS. Further longitudinal studies with large sample size are
required to study CI in MS using graph-theoretical methods.

CONCLUSION

Brain networks robustness and centrality measures provide
invaluable information about CI in MS patients. Based on this
exploratory study, we conclude that curvature, both at the local
and global level, accurately classifies MSCI/MSNI patients and
correlates with CI index. These measures, shown to be powerful
tools to study network fragility, may be valuable to better
characterize MS related CI, especially in combination with neural
networks/compact prediction models, as compared to the ones
used in previous studies (10). However, studies with larger cohort
sizes, as well as longitudinal studies, are required to further
ascertain the sensitivity of network robustness measures to MS
related CI.
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