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Mitochondria are important places for eukaryotes to carry out energy metabolism

and participate in the processes of cell differentiation, cell information transmission,

and cell apoptosis. Autophagy is a programmed intracellular degradation process.

Mitophagy, as a selective autophagy, is an evolutionarily conserved cellular process to

eliminate dysfunctional or redundant mitochondria, thereby fine-tuning the number of

mitochondria andmaintaining energy metabolism. Many stimuli could activate mitophagy

to regulate related physiological processes, which could ultimately reduce or aggravate

the damage caused by stimulation. Stroke is a common disease that seriously affects

the health and lives of people around the world, and ischemic stroke, which is caused

by cerebral vascular stenosis or obstruction, accounts for the vast majority of stroke.

Abnormal mitophagy is closely related to the occurrence, development and pathological

mechanism of ischemic stroke. However, the exact mechanism of mitophagy involved

in ischemic stroke has not been fully elucidated. In this review, we discuss the process

and signal pathways of mitophagy, the potential role of mitophagy in ischemic stroke

and the possible signal transduction pathways. It will help deepen the understanding of

mitophagy and provide new ideas for the treatment of ischemic stroke.
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INTRODUCTION

Stroke refers to a group of diseases that cause brain tissue damage due to the sudden rupture of
blood vessels or the blockage of blood flow into the brain, including hemorrhagic and ischemic
stroke. It has the characteristics of high morbidity and high mortality. Ischemic stroke accounts for
∼87% of the total number of stroke patients (1). Ischemic stroke refers to a type of disease in which
brain tissue necrosis is caused by a narrowing or occlusion of the blood supply arteries (carotid and
vertebral arteries) of the brain and insufficient blood supply to the brain. At present, thrombolysis
is considered to be the most important method for the treatment of ischemic stroke (2). However,
due to the limitations of current thrombolytic therapy such as an optimal treatment time window of
only 4.5 h (3), enhancing the self-resistance and protection of neurons has become the focus which
has attracted more researchers (4).

Mitochondria are where the oxidative metabolism of eukaryotes takes place, and the major
producers of intracellular reactive oxygen species (ROS). They can also regulate membrane
potential and control programmed cell death (5). Based on the complex structure and important
functions of mitochondria, they are closely related to many diseases including ischemic stroke.
When ischemic stroke occurs, the dynamic balance maintained by mitochondria is broken, and
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related signaling pathways are activated, which lead to cascade
damage to nerve cells (6). In the ischemic period of ischemic
stroke, mitochondria cannot synthesize enough ATP or cause
energy disorders due to lack of oxygen and energy substances.
During the reperfusion period, the increase of ROS and
mitochondrial membrane lipid peroxidation lead to oxidative
stress damage. Increased ROS also disrupts the calcium pump on
the mitochondrial membrane, which induces calcium overload
and inflammatory response. In addition to these pathological
changes, cell death in ischemic stroke including apoptosis and
autophagy are all related to the loss of mitochondrial function (7).
Therefore, the research on the correlation between mitochondria
and ischemic stroke can not only fully explain the mechanism
of the occurrence and development of ischemic stroke, but also
provide potential guidance and help for the innovative treatment
of ischemic stroke.

Autophagy is a biological process in which organelles and
proteins are degraded by lysosomes in eukaryotic cells (8).
One of the main functions of autophagy is to keep cells alive
when they are threatened by stressful death (9). This is an
important evolutionary conservation mechanism for eukaryotic
cells to maintain homeostasis and achieve renewal (10).
Although autophagy in a broad sense includes macroautophagy,
microautophagy and chapeon-mediated autophagy (11), it is
commonly referred to as macroautophagy. Mitophagy is a type
of macroautophagy by which cells selectively clear impaired
or dysfunctional mitochondria through the mechanism of
autophagy (12). It plays an important role in mitochondrial
quality control and cell survival (13). More and more studies
have shown that mitophagy is associated with neurodegenerative
diseases such as Parkinson’s disease (PD), Alzheimer disease
(AD) and Huntington’s (HD) and brain injury (14). Although
there have been studies showing that mitophagy is closely related
to ischemic stroke (4, 15), the exact roles of mitophagy still
need to be studied further. In this review, we focus on the
research progress in the occurrence and regulation of mitophagy
in ischemic stroke.

MITOCHONDRIAL DYNAMICS AND
MITOPHAGY

The Molecular Mechanism of
Mitochondrial Dynamics
Mitochondria are highly dynamic organelles that adapt to
various stress conditions to meet the energy metabolism and
other biological needs through continuous fusion and fission
to change their shape (16). This biological process is called
mitochondrial dynamics, which is an important basis for
maintaining cell homeostasis (17). Mitochondrial fusion is
a multi-step process in a certain order: (1) mitochondrial
trans-tethering; (2) mitochondrial outer membrane fusion;
(3) mitochondrial inner membrane fusion (16). The fusion
process of mitochondria is mainly completed by activating
three GTPases: mitofusins 1(Mfn1), mitofusins 2 (Mfn2) and
optic atrophy 1 (OPA1) (18). Among them, Mfn1 and Mfn2
mainly mediate mitochondrial outer membrane fusion, and

OPA1 mainly participates in the mitochondrial inner membrane
fusion process (19). The fission process is mainly mediated by
dynamin-related protein 1 (Drp1) and fission protein 1 (Fis1)
(18). Under the stimulus, Fis1 mediates the translocation of Drp1
in the cytoplasm to the outer mitochondrial membrane. Drp1
accumulates at the mitochondrial fission site to form a “ring”
structure and then combines with Fis1 to form a complex, which
is gradually compressed until the mitochondria ruptures. Finally,
two independent mitochondria are produced (20) (Figure 1).

Disturbance of mitochondrial dynamics is an important
phenomenon in cerebral ischemia/reperfusion injury.
Studies have found that there is a loss of OPA1 complex
during reperfusion (21). In the rat model of cerebral
ischemia/reperfusion injury, the expression of Mfn2 in
the cerebral cortex is significantly reduced (22). Research
has indicated that activating Mfn1 could reduce cerebral
ischemia/reperfusion injury (23). In addition, the fission of
mitochondria in the hippocampus is found to be activated, and
the mitochondria become more and more fragmented with
time (24). Previous studies have shown that inhibiting Drp1-
dependent mitochondrial fission could protect against cerebral
ischemia/reperfusion injury (25). Similarly, the inhibition of Fis1
could also achieve the protective effect (26).

Interplay Between Mitochondrial Dynamics
and Mitophagy
Mitochondrial fusion could repair slightly damaged
mitochondria. And mitochondrial fission could not only
achieve normal number of proliferation, but also selectively
distribute the damaged components of mitochondria to the
offspring, which result in healthy mitochondria and severely
damaged mitochondria (27). The membrane potential of
severely damaged mitochondria cannot be restored. Therefore,
the severely damaged mitochondria are unable to participate
in fusion, which will be cleared through mitophagy (28). The
interaction and mutual regulation between mitochondrial
dynamics and mitophagy are important mechanisms for
maintaining mitochondrial homeostasis and ensuring
mitochondrial quality. In the early stage of ischemia, Drp1-
dependent mitophagy is found to contribute to the clearance
of damaged mitochondria (29). Studies have shown that
mitochondrial fragmentation could regulate mitophagy and
apoptosis in cerebral ischemia/reperfusion injury (30). It is also
found that OPA1 and Mfn2 are reduced in cerebral ischemia,
thereby inducing mitophagy (31). These findings indicate that
mitochondrial dynamics is closely related to mitophagy in
cerebral ischemia/reperfusion injury.

Mechanisms and Regulatory Pathways of
Mitophagy
The Process of Mitophagy
The process of mitophagy is similar to ordinary autophagy.
First, permeability changes occur after mitochondria are
damaged, which leads to mitochondrial depolarization, and
induces the activation of mitophagy-related proteins. Then,
the isolation membrane wraps the damaged mitochondria and
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FIGURE 1 | Pattern diagram of mitochondrial fusion and fission. (A) Mitochondrial fusion. The Mfn1/2 interaction causes the outer membrane to fuse, and then the

Opa1 interaction causes the inner membrane to fuse. It could repair slightly damaged mitochondria. (B) Mitochondrial fission. Fis1 on the mitochondria recruits Drp1

to the mitochondria to form a finger ring structure, which squeezes and ruptures the mitochondria. It could distribute the damaged components of mitochondria to the

offspring. The severely damaged mitochondria will be cleared by mitophagy.

forms mitophagosomes. After the formation of mitophagosomes,
fusion with lysosomes to form mitolysosomes results in the
degradation of damaged mitochondria. This process requires
the participation of microtubule-associated protein light chain
3 (LC3) and the linker proteins p62, NBR1 and optineurin
connecting mitochondria and LC3. In addition, Nix/BNIP3,
FUNDC1 also play an important role in this process (32).

Mitophagy Signaling Pathway
The mechanisms of mitophagy in cells mainly include Parkin-
dependent pathways and Parkin-independent pathways. There
are multiple signals involved in the regulation of mitophagy,
as showed in Figure 2. The current review focuses on
PINK1/Parkin, BNIP3/NIX, and FUNDC1 pathway.

Parkin-Dependent Mitophagy Pathway
At the beginning of the 21st century, the laboratory of
Richard Youle found that Parkin, an E3 ubiquitin ligase, could
mediate mitochondria to be wrapped by autophagosomes, which
creates a new breakthrough for the study of mitophagy (33).
Then, subsequent research found that PINK1 (phosphatase
and tensin homolog (PTEN)-induced putative protein kinase
(1), a serine/threonine kinase, is located upstream of Parkin
(34–36). PINK1 can phosphorylate Parkin and promote the
translocation of Parkin from cytoplasm to mitochondria

(37). PINK1/Parkin is the clearest pathway for the research
of mitophagy.

In healthy mitochondria, the PINK1 protein exists on the
outer mitochondrial membrane. It can be introduced into the
mitochondrial membrane space and degraded by proteases
on the inner mitochondrial membrane to maintain the basic
level (38). However, when mitochondria are damaged and
depolarized, their ability to degrade PINK1 is weakened,
and PINK1 can stably exist on the outer mitochondrial
membrane (39). Then, it can phosphorylate both ubiquitin
and Parkin to recruit Parkin from the cytoplasm to the outer
mitochondrial membrane (40). The stability of PINK1 on
the outer mitochondrial membrane is necessary for Parkin
to be recruited to damaged mitochondria and to stimulate
mitophagy. Activated Parkin can ubiquitinate the voltage-
dependent anion channels 1 (VDAC1) of damagedmitochondria.
Then, Parkin is recognized and bound by the signal adaptor
protein p62/SQSTM1. P62 could recruit ubiquitinated substances
into autophagosomes by binding to LC3, which ultimately
leads to mitochondria degraded by lysosome (41–43). In
the penumbra of rat cortex, fluorescence results show that
PINK1 accumulates on the outer mitochondrial membrane and
Parkin mitochondrial translocation occurs following ischemia
and reperfusion, and the levels of other related autophagy
proteins such as LC3 and Beclin1 are elevated. These results
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FIGURE 2 | Summary of the mitophagy signaling pathway. When the cell is stimulated, the mitochondria will be damaged. Then the mitochondrial transmembrane

potential (19m) drops, and mitophagy will be activated. PINK1 accumulates on the outer mitochondrial membrane, phosphorylates Parkin and recruits Parkin from

the cytoplasm to the mitochondria. Activated Parkin can ubiquitinate the voltage-dependent anion channels 1 (VDAC1) of damaged mitochondria, Then, Parkin is

recognized and bound by the signal adaptor protein p62/SQSTM1. P62 could recruit ubiquitinated substances into autophagosomes by binding to

microtubule-associated protein light chain 3 (LC3). Bnip3, Nix and phosphorylated FUNDC1 can also connect to LC3 to promote mitophagy. Subsequent

mitophagosomes are formed, which bind to lysosomes, and finally lyse damaged mitochondria.

may demonstrate that mitophagy is activated in ischemic
stroke (44).

Parkin-Independent Mitophagy Pathway
Different from PINK1/Parkin-mediated mitophagy, some
proteins on the outer mitochondrial membrane can directly
recognize and bind LC3. Then, targeted mitochondria are
connected with autophagic vesicles, which directly induces
mitophagy (45). In this review, we focus on the Nix/Bnip3 and
FUNDC1 signaling pathways. They are the most important
pathways in Parkin-independent mitophagy.

Nix/Bnip3-Mediated Mitophagy Pathway
Bnip3 and Nix (BNIP3L) have about 56% amino acid sequence
identity, and both are located in mitochondria (46). Bnip3 is a
pro-apoptotic mitochondrial protein. And it is also an important
participant in the process of autophagy and even mitophagy (47,
48). Bnip3 is the target gene of HIF1α (hypoxia inducible factor
1α). Under hypoxic conditions, Bnip3 could activate autophagy
(49). Similarly, in ischemia and reperfusion, Bnip3 could clear
damaged mitochondria by activating mitophagy (49, 50). In
the process of red blood cell maturation and development, Nix
is essential for the removal of mitochondria. Mitochondrial
depolarization, increased production of ROS and hypoxia can

induce Nix to regulate mitophagy (51, 52). Bnip3 and Nix
could competitively bind to the anti-apoptotic Bc1-2, dissociate
the Bc1-Beclin1 complex and release Beclin1, and then activate
autophagy and mitophagy (53). In cerebral ischemia/reperfusion
injury, Bnip3 and Nix could participate in the induction of
mitophagy (54). However, Studies have found that the up-
regulation of Nix cannot restore the mitophagy defect caused
by Bnip3 deletion in stroke (55). This may indicate that Bnip3
could activate excessive mitophagy leading to cell death, whereas
Nix may only regulate basal levels of mitophagy in physiological
conditions. Therefore, Bnip3 may be a potential target for the
treatment of ischemic stroke in the future.

FUNDC1-Mediated Mitophagy Pathway
FUNDC1 is a tertiary transmembrane protein on the outer
mitochondrial membrane. The FUNDC1 protein contains a N-
terminal LC3 interaction region motif, which plays an important
role in mitophagy (56). Under normal conditions, FUNDC1
can stably exist on the outer mitochondrial membrane without
mediating mitophagy. When mitochondria are damaged or
dysfunctional, the affinity of FUNDC1 and LC3 will increase.
Then FUNDC1 can be dephosphorylated to activate, which
will induce mitophagy (57). In myocardial ischemia/reperfusion,
studies have found that hypoxic preconditioning could induce

Frontiers in Neurology | www.frontiersin.org 4 December 2020 | Volume 11 | Article 608610

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Shao et al. Mitophagy in Ischemic Stroke

FUNDC1-dependent mitophagy to resist ischemia/reperfusion
injury (58). However, some studies have shown that inhibition of
mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway
can protect myocardium from ischemia/reperfusion injury
(59). This indicates that similar mechanisms may exist in
cerebral ischemia/reperfusion.

Roles of Mitophagy in Ischemic Stroke
The brain is the main organ of energy metabolism, and the
content of mitochondria in the brain is much higher than other
tissues (60). Even if short-term ischemia and hypoxia may cause
serious injury to the brain, overproduction of free radicals and
calcium overload after reperfusion also cause more extensive
damage to cells and tissues of the brain. Current research
suggests that cerebral ischemia/reperfusion injury is related to
the production of free radicals, excitatory amino acid toxicity,
mitochondrial dysfunction, and activation of apoptosis-related
genes (7, 61–63). Mitochondrial dysfunction is an important
part of cerebral ischemia/reperfusion injury, andmitophagy plays
a significant role in it. Elimination of abnormal mitochondria
through mitophagy is essential for maintaining normal cell
function in ischemic stroke.

More than 50 years ago, transmission electron microscopy
first discovered the existence of autophagosomes (64–66). As
the research on autophagy gets deeper, research methods on
autophagy are becomingmore andmore abundant. Accumulated
evidence indicated that autophagy is activated in brain tissue
in many nervous system diseases including ischemic stroke
(67–70). And mitophagy, as a special type of autophagy, is
also found to be activated in ischemic stroke (44). In cerebral
ischemia/reperfusion injury, early ischemia and hypoxia damage
the structure and function of mitochondria in brain cells.
After the oxygen supply and energy supply are restored,
the mitochondrial permeability transition pore opens (mPTP)
and the mitochondrial membrane potential (MMP) decreases,
and then mitochondrial damage is followed by activation of
mitochondrial autophagy (71).

Like macroautophagy, we are not sure whether mitophagy
is beneficial or harmful in ischemic stroke. The degree of
mitochondrial permeability transition (MPT) may play an
important role in it (72). Under mild starvation or hypoxia,
limited MPT can only damage a small part of mitochondria
and then activate mitophagy. At this time, mitophagy not
only provides energy by degrading proteins, but also removes
damaged mitochondria to protect the cells. In the case of severe
starvation or hypoxia, mitophagy is insufficient to clear the
damaged mitochondria, and then the autophagy system will
be overloaded, which will activate apoptosis-related regulatory
proteins and promote the occurrence of apoptosis. When
excessive stress causes drastic changes in the MPT of all
mitochondria in the cell, cell necrosis will occur.

Neuronal Mitophagy in Ischemic Stroke
Enhancing Mitophagy Reduced Cerebral

Ischemic-Reperfusion Injury
Studies have shown that rapamycin could protect against
cerebral ischemia/reperfusion injury by activatingmitophagy and

reducing mitochondrial dysfunction in transient middle cerebral
artery occlusion (tMCAO) model. And these protective effects
can be reversed by 3-methyladenine, an autophagy inhibitor (73).
There are similar findings in the oxygen-glucose deprivation
model of hippocampal neurons (74). And activating mitophagy
to clear excessively aggregated and damaged mitochondria can
reduce neuronal damage caused by cerebral ischemia/reperfusion
injury (75–79). Knockout of the mitophagy-related gene
Bnip3L could aggravate cerebral ischemia/reperfusion injury,
and overexpression of this gene could rescue (54). Studies
have also found that activating Parkin-dependent mitophagy
could inhibit the activation of NLRP3 inflammasome to reduce
cerebral ischemia/reperfusion injury (80). Activation of PARK2-
mediated mitophagy may be the basis for protecting endoplasmic
reticulum stress in cerebral ischemia/reperfusion injury (81) and
extending the limited reperfusion window (82).

Inhibiting Mitophagy Reduced Cerebral

Ischemic-Reperfusion Injury
However, there are still some studies showing that inhibiting
excessive mitophagy can play a protective role in cerebral
ischemia/reperfusion injury. In the middle cerebral artery
occlusion model (MCAO) of ischemic stroke, studies
have found that inhibiting mitophagy can protect against
cerebral ischemia/reperfusion injury (83). In the oxygen
glucose deprivation model of SH-SY5Y cells, inhibition of
mitochondrial calcium uniporter and the influx of Ca2+ into
mitochondria could inhibit excessive mitophagy and reduce
neuronal damage (84). And inhibiting Peroxynitrite-mediated
mitochondrial activation could reduce neuronal damage in
ischemic stroke (85, 86). In neuronal death caused by chronic
cerebral hypoperfusion, it is also found that inhibiting excessive
mitophagy could exert neuroprotective effects (87). Similarly,
inhibition of AMPK-mediated mitophagy could reduce the
ischemic and hypoxic damage of neurons in ischemic hypoxic
encephalopathy (88).

Although the differences in the above results may be caused
by different ischemia or reperfusion time, different cell types,
or even different experimental environments, it is undeniable
that mitophagy plays an important role in the pathological
mechanism of cerebral ischemia/reperfusion injury. When it is
at the basic level, it may be beneficial to cell homeostasis and
neuron survival. But it can be harmful when it reaches excess or
deficiency. Therefore, the role of mitophagy in ischemic stroke
should be studied more deeply to provide novel ideas and targets
for clinical treatment.

Glial Mitophagy in Ischemic Stroke
Glial cells can not only support, nourish, and protect neurons, but
also receive signals from neurons. Through their own function,
metabolism and morphological changes, glial cells could affect
the function and activity of neurons (89). After cerebral ischemic
injury, glial cells are activated. In the early stage of cerebral
ischemic injury, the activation of glial cells can play a certain
neuroprotective effect, but the excessive activation of glial cells
can produce a series of inflammatory factors or mediators to
mediate neuronal degeneration (90). Previous study has found
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that hypoxia and reoxygenation of astrocytes caused increased
mitochondrial fission and mitophagy (91). In the rat cortex after
cerebral ischemia and reperfusion, the activation of mitophagy in
astrocytes is also found (83). There are many studies on glial cells
autophagy in ischemic stroke whilemitophagy-related reports are
few. More investigations on astrocytes or microglial mitophagy
are needed.

Interplay Between Mitophagy and Other
Cellular Processes in Ischemic Stroke
Mitochondria are the most important organelles involved in
energy metabolism in cells. They play a key role in cell signal
transduction, free radical generation and apoptosis induction,
and determine the survival and death of cells. In the occurrence
and development of ischemic stroke, mitophagy is closely related
to many biological processes in the cell, such as apoptosis,
oxidative stress, and inflammation (Figure 3). These biological
processes interact with mitophagy to regulate mitochondrial
quality, which could affect the survival and death of nerve cells.

Mitophagy and Apoptosis
Unlike mitophagy, apoptosis only has a one-way effect on
cell fate. It removes aging and severely damaged cells through
a programmed death regulation mechanism. Mitophagy and
apoptosis have obvious differences in biochemical metabolic
pathways andmorphology, but they are functionally antagonistic,
coordinated, and promote each other, and participate in the
regulation of mitochondrial quality (92–95).

Mitophagy and apoptosis are mostly mutually antagonistic
to achieve mutual regulation. Under stress conditions such as
ischemia and hypoxia, the phosphorylation of the anti-apoptotic
protein Bcl-2 could destroy its binding to autophagy-related
protein Beclin1 and activate mitophagy. At the same time,
Bcl-2 could prevent the release of pro-apoptotic proteins by
maintaining the integrity of the mitochondrial membrane, which
finally inhibits the occurrence of cell apoptosis (96). When the
cell is under continuous and severe stress, apoptosis can inhibit
the occurrence of mitophagy by cleaving the key autophagy
protein Beclin1 by activated Caspase and avoid themitochondrial
dysfunction caused by excessive mitophagy (97, 98). However,
other studies have shown that mitophagy and apoptosis are
functionally coordinated and mutually promoted. Excessive
induction of mitophagy can cause the leakage of cathepsin and
other hydrolytic enzymes in lysosomes or autophagic lysosomes,
and promote the occurrence of apoptosis (99).

Studies have reported that activating mitophagy could inhibit
cell apoptosis in ischemic stroke. During the reperfusion phase,
mitophagy could inhibit neuronal apoptosis by removing
damaged mitochondria (100), and remote ischemic post
conditioning could promote Parkin/DJ-1-mediated mitophagy
to attenuate apoptosis in MCAO rats (101). Similarly, enhancing
Parkin /PINK1-mediated mitophagy could inhibit apoptosis
caused by cerebral ischemia/reperfusion injury in hippocampal
neurons (74). However, there are still some studies indicating
that inhibiting excessive mitophagy can reduce apoptosis.
Mitophagy-related protein Bnip3 and Nix could induce
excessive mitophagy to promote cell apoptosis in ischemic

stroke (55). And inhibition of PINK1/Parkin-mediated
mitophagy could reduce the number of apoptotic cells in
the cortex of the model group in cerebral ischemia/reperfusion
injury (86).

Mitophagy and Oxidative Stress
Oxidative stress is caused by free radicals to produce
oxidative damage to deoxyribonucleic acid (DNA), lipids
and proteins, which leads to aging and neurodegenerative
diseases. The oxidation of proteins, lipids and DNA are
all related to ROS (102). ROS can lead to mitochondrial
lipid peroxidation, membrane potential collapse and ATP
synthesis disorder. Mitochondria are the main source
of ROS production (103). Mitophagy is closely related
to oxidative stress. And it also plays a dual role in
oxidative stress.

Under physiological conditions, low levels of ROS can usually
be degraded by some antioxidant enzymes or substances.
Maintaining the balance between ROS production and
degradation is very important for the normal physiological
functions. If the anti-oxidant substances in the cell cannot
effectively degrade ROS, it will make ROS accumulate in
the cell and then cause oxidative stress (104). Excessive ROS
and other substances can preferentially activate mitophagy,
allowing it to selectively degrade damaged mitochondria,
which could reduce damage to cells (105). There are studies
showing that activating mitophagy could reduce oxidative
stress damage in ischemia/reperfusion injury. In renal
ischemia/reperfusion injury, ischemic preconditioning can
protect mitochondrial function by activating mitophagy
and inhibit the production of ROS (106), and activation of
ROS-dependent autophagy promotes the survival of liver
endothelial cells in liver ischemia/reperfusion injury (107).
Also, in cerebral ischemia/reperfusion injury, enhancing
mitophagy could reduce excessive accumulation of ROS
(74). However, mitophagy also can directly induce the
death of oxidized cells. In myocardial ischemia/reperfusion
injury, inhibiting PINK1/Parkin-mediated mitophagy could
reduce ROS production and protect against neurons damage
(108). Likely, there may be a similar mechanism in cerebral
ischemia/reperfusion injury.

Mitophagy and Inflammation
Inflammation is an important self-defense mechanism of the
body, and mitochondria play a significant role in the occurrence
and development of inflammation (109). After being stimulated
by factors such as infection, trauma, lipopolysaccharide,
high temperature, and hypoxia, the body’s innate immune
cells activate and trigger an inflammatory response. Under
the stimulation of inflammatory factors, ROS and other
inflammatory mediators released by neutrophils can induce
mitochondrial structural and functional damage (110), including
decreased activity of electron transport chain complexes,
decreased membrane potential, ATP depletion, and decreased
mitochondrial DNA. Mitophagy is of great significance
for removing damaged mitochondria and maintaining the
function of cellular mitochondrial network. It can remove

Frontiers in Neurology | www.frontiersin.org 6 December 2020 | Volume 11 | Article 608610

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Shao et al. Mitophagy in Ischemic Stroke

FIGURE 3 | Crosstalk between mitophagy and other cellular processes in ischemic stroke. In ischemic stroke, ischemia and hypoxia can cause energy disorders,

which will damage mitochondria. Mitophagy is activated when mitochondria are damaged. When mitophagy is insufficient or excessive, it can lead to apoptosis.

Mitochondrial damage will also release a large amount of ROS, leading to oxidative stress damage. At the same time, excessive ROS will promote the release of

pro-inflammatory factors, which lead to inflammation. When mitophagy is not enough to clear over-produced ROS, it will aggravate oxidative stress damage and

inflammation, which could promote apoptosis.

damaged mitochondria, promote healthy mitochondrial
proliferation and other processes, improve mitochondrial
homeostasis and function, and exert anti-inflammatory
effects (111).

In recent years, a large number of studies have shown
that autophagy is inhibited or weakened in inflammatory
diseases, and the body is manifested as excessive inflammation
or excessive activation of inflammasomes (112–114). And
the related mechanisms of mitophagy and inflammation
have also been studied in depth (110, 115). In cerebral
ischemia/reperfusion injury, the relationship between NLRP3
inflammasome activation and mitophagy has been the most
studied. In the rat model of ischemic stroke, studies have
found that Parkin-dependent mitophagy could effectively
inhibit the activation of NLRP3 inflammasome (80). And
in myocardial ischemia/reperfusion injury, activation of
PINK1/Parkin-mediated mitophagy could reduce cell
apoptosis and inflammatory response (116). At present, the
interaction and relationship between the specific mechanisms
and pathways of mitophagy and inflammation in ischemic
stroke are not fully understood. Uncovering the complex
regulatory network mechanism between them can provide
a theoretical basis for finding new treatment methods of
ischemic stroke.

CONCLUSION AND PROSPECTS

Obviously, mitophagy plays an important role in ischemic
stroke through many regulatory factors and other related
cellular processes. Although the role of mitophagy has not
been unified yet, most studies have proved that in cerebral
ischemia/reperfusion injury, mitophagy as an early defense
mechanism could clear damaged mitochondria in time, thereby
reducing the further damage to normal mitochondria caused by
stimulation. However, when the process of mitophagy is blocked
or excessive it will aggravate cerebral ischemia/reperfusion
injury. Mitophagy may have different effects on neurons
with changes in different pathological stages of ischemia and
reperfusion, but the reasons for this change have not been clearly
studied. These mechanisms need to be further investigated.

This review summarizes the occurrence and development of

mitophagy, the related regulatory factors and signal pathways of

mitophagy, and the correlation between mitophagy and other
cellular processes after cerebral ischemia/reperfusion, which
could help to discover new treatment targets and strategies
for ischemic stroke. There are still controversies about the
mechanism of mitophagy in cerebral ischemia/reperfusion
injury. Exploring mitophagy and its regulation mechanism
in cerebral ischemia/reperfusion injury will help to
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grasp the relationship between mitophagy and cerebral
ischemia/reperfusion injury and various diseases, and provide
new ideas for clinical treatment. The role of mitophagy in the
different stages and cells of cerebral ischemia/reperfusion and
the reasons for this change, from beneficial to harmful, need to
be further studied.
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