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Objectives: This study aims to investigate whether the machine learning algorithms

could provide an optimal early mortality prediction method compared with other scoring

systems for patients with cerebral hemorrhage in intensive care units in clinical practice.

Methods: Between 2008 and 2012, from Intensive Care III (MIMIC-III) database, all

cerebral hemorrhage patients monitored with the MetaVision system and admitted to

intensive care units were enrolled in this study. The calibration, discrimination, and

risk classification of predicted hospital mortality based on machine learning algorithms

were assessed. The primary outcome was hospital mortality. Model performance was

assessed with accuracy and receiver operating characteristic curve analysis.

Results: Of 760 cerebral hemorrhage patients enrolled from MIMIC database [mean

age, 68.2 years (SD, ±15.5)], 383 (50.4%) patients died in hospital, and 377 (49.6%)

patients survived. The area under the receiver operating characteristic curve (AUC) of

six machine learning algorithms was 0.600 (nearest neighbors), 0.617 (decision tree),

0.655 (neural net), 0.671(AdaBoost), 0.819 (random forest), and 0.725 (gcForest). The

AUC was 0.423 for Acute Physiology and Chronic Health Evaluation II score. The random

forest had the highest specificity and accuracy, as well as the greatest AUC, showing the

best ability to predict in-hospital mortality.

Conclusions: Compared with conventional scoring system and the other five machine

learning algorithms in this study, random forest algorithm had better performance in

predicting in-hospital mortality for cerebral hemorrhage patients in intensive care units,

and thus further research should be conducted on random forest algorithm.
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INTRODUCTION

Intracerebral hemorrhage (ICH) is a common neurological emergency, accounts for ∼6.5–19.6%
of all strokes, and is associated with higher morbidity and mortality rates compared with ischemic
strokes (1). It affects∼2 million people in the world every year (2, 3).

ICH is characterized by high mortality rate, and previous studies reported that ∼35% patients
die within 7 days, and 50% would die within 30 days (3, 4). The global burden of care for ICH
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patients is huge, especially for patients in intensive care units
(ICUs). Early prediction of mortality in ICH patients is crucial
for the assessment of severity of illness and adjudication of the
value of novel treatments, interventions, and healthcare policies.

Several scores have been developed with the objective
of predicting hospital mortality from baseline ICH patient
characteristics. ICH score is one of the most commonly used
scores for predicting the mortality of ICH patients (5). The
score ranges from 0 to 6 and includes both clinical and
radiological factors, such as Glasgow Coma Scale (GCS) score,
age, infratentorial origin, ICH volume, and intraventricular
hemorrhage. However, the ICH score has some limitations when
used in clinical practice. The image part of ICH score needs
to be assessed by experienced radiologists and neurologists;
thus, it could be tricky, time consuming, and tedious for
non-professional users. Acute Physiology and Chronic Health
Evaluation (APACHE) II system is a widely used disease
classification system in the ICU (6). It has been proven that
the APACHE II can effectively predict the mortality of general
ICU patients (7–10), and limited data showed that, for the ICH
patients, the area under the receiver operating characteristic
curve (AUC) is∼0.8 (11, 12).

Same as other clinical modules, these scores use conventional
statistical analysis to identify the most relevant covariates from
a set of features preselected by domain experts (13). However,
in order to make it more convenient for clinical manual
calculation, these models are usually simplified, which means
that the weight of the model is discretized, and the number of
covariates is artificially reduced, leading to the deterioration of
the model performance.

By contrast, machine learning method allows the discovery
of important variables and empirical patterns in data through
automatic algorithms. Starting from the observation of the
patient, the algorithm selects a large number of variables to
identify the combination that can reliably predict the outcomes
(14).With a variety of algorithms, machine learning can deal with
variables with complex interactions without linear assumptions.
In addition, another highlight of machine learning is that it
can process a large number of predicted values, which enables
the exploration of big data in a more comprehensive and in-
depth way.

The current study was conducted in order to compare the
results of multiple machine learning algorithms and conventional
clinical scores for early prediction of mortality after ICH, based
on initial clinical parameters, and attempts to optimize the model
by improving algorithms.

MATERIALS AND METHODS

Data Resources, Patient Selection, and
Variables
A retrospective multicenter study was conducted using a high-
quality intensive care database, Medical Information Mart
for Intensive Care (MIMIC-III) (15). MIMIC-III is a large,
multicenter database containing data on patients admitted to
critical care units at large tertiary care hospitals, including vital

signs, medications, laboratory measurements, observations and
notes charted by care providers, fluid balance, procedure codes,
diagnostic codes, imaging reports, hospital length of stay, survival
data, etc. Part of the MIMIC-III database is extracted from
the MetaVision system, and the other part is extracted from
the CareVue system. The current analysis using data recorded
within the first 24 h after ICU admission from the database
was performed for the part extracted from the MetaVision
system only so as to enhance data comparability. The study
included patients aged ≥18 years and treated for ICH in the
ICU during 2008–2012. The patients were identified by their ICU
admission diagnosis as ICH, one of the diagnostic classifications
used in the MIMIC database. Additionally, data on in-hospital
mortality were obtained from the variables in the database.
More details about the database can be found on the MIMIC-III
website (https://mimic.physionet.org/).

Scores
In order to determine the performance of the proposed machine
learning method, APACHE II score was used as the benchmark,
which provides a general measure of disease severity based on 12
conventional physiological measurements, age, and initial values
of previous health conditions. APACHE II scores were collected
when the database was established.

Machine Learning Algorithms
Navicat for MySQL was used for description and visualization
of MIMIC III database. A method that combines automatic
algorithms and artificial selection aimed at dimension reduction
was used for feature extraction from thousands of variables in this
analysis. All features were selected by clinicians based on their
experience in diagnosis before automatic analysis. The random
forest algorithm was used for final extraction. According to the
descending order of importance, the feature score higher than
0.0005 was selected for final analysis.

Multiple algorithms were chosen to improve the probability of
good discrimination performance. This study used the following
classifiers: nearest neighbors (NN), decision tree, neural net,
AdaBoost, random forest, and gcForest, as they are the most
successful and widely used models for clinical data.

Nearest Neighbors
NN classifier classifies unlabeled observations by assigning them
to the most similar labeled sample class. Both the training data
set and the test data set collected the characteristics of the
observation data (16). In the feature space, if most of the k nearest
(i.e., the nearest) samples near a sample belonged to a certain
category, then the sample would be classified to that category.
When it is impossible to determine which category the current
point to be classified should belong to, after taking a look at
its location characteristics according to the theory of statistics
and measuring the weight of its neighbors, the researchers would
classify (or assign) it to the category with greater weight.

Random Forest
Random forest algorithm is a machine learning method widely
used in classification and regression, especially when the

Frontiers in Neurology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 610531

https://mimic.physionet.org/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Nie et al. Mortality Prediction in ICH

TABLE 1 | Baseline characteristics of participants.

Characteristics Overall population (n = 760) Dead at hospital

discharge (n = 383)

Alive at hospital

discharge (n = 377)

P-value

Age, mean ± SD (years) 68.2 ± 15.5 68.0 ± 15.4 68.4 ± 15.5 0.67

Male, n (%) 430 (56.6) 209 (54.6) 221 (58.7) 0.26

GCS score, median (IQR) 8 (4-14) 8 (4-15) 12 (7-14) <0.01

Eye opening 2 (1-4) 1 (1-4) 3 (1-4) <0.01

Verbal response 1 (1-5) 1 (1–3.5) 4 (1-5) <0.01

Motor response 5 (2-6) 4 (1-6) 6 (4-6) <0.01

APACHE II score, median (IQR) 27 (21-33) 25 (19-32) 29 (23-34) <0.01

Baseline systolic blood pressure, mean ± SD (mm Hg) 123.1 ± 53.7 120.5 ± 54.1 125.8 ± 53.1 0.25

Heart rate, mean ± SD (bpm) 72.1 ± 30.6 72.5 ± 30.6 71.6 ± 30.6 0.85

Respiratory rate, mean ± SD (bpm) 15.4 ± 7.1 15.7 ± 7.3 15.2 ± 7.0 0.44

Temperature, mean ± SD (F) 85.7 ± 32.6 84.9 ± 33.4 86.4 ± 31.9 0.06

WBC, mean ± SD (K/µL) 10.7 ± 5.7 10.6 ± 4.3 10.8 ± 6.8 0.31

Hematocrit, mean ± SD (%) 33.5 ± 10.0 31.0 ± 12.2 36.0 ± 6.1 <0.01

Hemoglobin, mean ± SD (mg/dL) 11.3 ± 3.5 10.5 ± 4.3 12.2 ± 2.2 <0.01

Chloride, mean ± SD (mEq/L) 98.2 ± 25.2 93.1 ± 33.2 103.4 ± 10.3 0.02

BUN, mean ± SD (mg/dL) 18.6 ± 15.2 20.1 ± 18.8 17.1 ± 10.2 0.01

Creatinine, mean ± SD (mg/dL) 1.1 ± 1.5 1.1 ± 1.9 1.0 ± 0.6 0.80

Glucose, mean ± SD (mg/dL) 138.1 ± 68.4 137.7 ± 72.6 138.4 ± 63.9 0.04

Sodium, mean ± SD (mEq/L) 131.0 ± 33.1 124.2 ± 43.8 138.0 ± 12.9 0.01

Potassium, mean ± SD (mEq/L) 3.7 ± 1.2 3.5 ± 1.4 3.9 ± 0.8 0.32

Troponin-T, mean ± SD (ng/mL) 0.1 ± 0.4 0.1 ± 0.5 0.1 ± 0.2 0.64

CK-MB, mean ± SD (ng/mL) 3.8 ± 10.8 4.3 ± 13.3 3.2 ± 7.5 0.41

CK, mean ± SD (IU/L) 242.1 ± 970.2 275.6 ± 1,180.2 208.2 ± 694.8 0.06

APACHE, Acute Physiology and Chronic Health Evaluation; GCS, Glasgow Coma Scale; WBC, white blood cell; BUN, blood urea nitrogen; CK, creatine kinase; SD, standard deviation.

number of potential explanatory variables is far more than
the observed values (17, 18). The decision tree was built by
using the method in the second section, and the set of these
decision trees was random forest. Each tree would get the
result of classification when predicting the data, P_i = {A_1,
A_2, A_3,. . . , A_i (i = A)}. The prediction results of each
decision tree in I would be voted, and the one with the largest
number of results would be selected as the random forest
prediction value.

AdaBoost
AdaBoost algorithm is a popular ensemble method, which
combines several weak learners to improve the generalization
performance (19). The mechanism is to first train a base
learner from the training set and then to adjust the sample
distribution according to the performance of the base
learner so that more attention is paid to the previously
divided samples and, at last, to train the next base learner
based on the adjusted distribution. This process would be
repeated until the number of learners reached the specified
number, or the generalized error rate reaches certain
requirements. Finally, the T learners were weighted and
combined. The generation of the T + 1 learner depends
on the T learner; thus, it is a serialization method of
serial generation.

Decision Tree
Decision tree is a kind of tree structure, in which each internal
node represents a judgment on an attribute, each branch
represents the output of a judgment result, and each leaf node
represents a classification result (20, 21). Decision tree is a top-
down, no backtracking, and continuous search for important
split variables of inductive learning algorithm. Its basic goal is
to construct a concise and intuitive tree structure from a group
of unordered and irregular cases under the guidance of specific
learning tasks.

Training and Algorithm Optimization
The learning parameter of each algorithm was adjusted
adaptively with the affinity to promote the global search ability.
Accuracy and receiver operating characteristic (ROC) curve
analysis were used to evaluate model identification performance.
The differences were evaluated with mean AUC among the
machine learning models to identify the best algorithm. The off-
the-shelf methods were adopted in the Python module Scikit-
Learn for the implementation of all machine learning algorithms.
In order to train and validate the model, GridSearchCV method
was used to optimize the performance of the model by traversing
the given combination of parameters. The parameter values
within the grid range were selected as the model input, and the k-
fold cross-validation method was adopted to verify the accuracy
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FIGURE 1 | Top 10 variables in feature extraction for dimension reduction.

FIGURE 2 | The ROC curves of the machine learning models and APACHE II

score. The lines show the mean values of the scores.

of the method. The results of K different training groups were
averaged to reduce the variance; therefore, the performance of
the model would be less sensitive to the partition of data. After
training on each training set, the model was tested with the
corresponding test set. The final parameter values were selected
for the optimal model after all steps of GridSearchCV method
were completed. More details of algorithms were described in
Supplementary Material.

RESULTS

Between 2008 and 2012, 760 ICH patients who were treated in
ICU, with a mean age of 68.2 years (SD, ±15.5 years), were
enrolled from MIMIC III database based on the diagnostic
classifications. Among them, 583 (50.4%) patients died in
hospital, and 377 (49.6%) patients survived. The median
APACHE II score was 27. In the group of in-hospital death, the
GCS score and APACHE II score were higher compared with the
alive group. More details of baseline characteristics of the two
groups are shown in Table 1.

TABLE 2 | Comparison of sensitivity, specificity, accuracy, and AUC of each

model.

Model Sensitivity Specificity Accuracy AUC

gcForest 0.544 0.658 0.632 0.725

Nearest neighbors 0.418 0.671 0.539 0.600

Decision tree 0.557 0.712 0.610 0.617

Neural net 0.518 0.644 0.605 0.655

AdaBoost 0.556 0.753 0.645 0.671

Random forest 0.468 0.794 0.704 0.819

AUC, area under the receiver operating characteristic curve.

Feature Extraction of the Machine
Learning Models
There were more than 10,000 variables in MIMIC III database.
After selection by two ICU physicians, 2,023 variables were
analyzed in feature extraction for machine learning. At
last, 72 variables within the first 24 h after ICU admission
were used for the training of the model. The top 10
most important variables for in-hospital mortality prediction
are shown in Figure 1. The most important factor for
prediction was serum hematocrit level. In addition, the
top eight important variables were laboratory test results
of blood biochemistry and routine blood examination of
patients, including white blood cell, chloride, creatinine, glucose,
magnesium, sodium, and pH. The GCS–Eye Opening score and
heart rate were also affective predicting factors in the machine
learning models.

Comparison Between the Models and
APACHE II Score
Figure 2 shows ROC curves for hospital mortality prediction
in external validation. The AUC for each modified model
was as follows: 0.600 (nearest neighbors), 0.617 (decision
tree), 0.655 (neural net), 0.671 (AdaBoost), 0.819 (random
forest), and 0.725 (gcForest). However, the AUC was 0.423
for APACHE II score in the study population, which was
much lower than that for machine learning models. All
the machine learning algorithms showed better prediction
efficiency compared with APACHE II score in the study
population.

Table 2 shows the details of sensitivity, specificity,
accuracy, and AUC of each model. Among the six machine
learning algorithms, the random forest had the highest
specificity and accuracy and the greatest AUC, showing
the best ability to discriminate in-hospital mortality and
survival.

DISCUSSION

The current study showed that compared with APCACHE
II score, all machine learning algorithms used for prediction
showed much better prediction efficiency for ICU hospital
mortality in this ICH population. Among the six machine
learning algorithms used in this study, the random forest
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was the best model for predicting the mortality of ICH
patients treated in ICU. In addition, all the other five
models showed moderate classification ability (ranging
from 0.60 to 0.71). The current study could be considered
an entirely novel exploration on the modified machine
learning approach for hospital mortality prediction in
ICH patients.

The result showed that all the machine learning algorithms
had better ability to predict the mortality of ICH patients in
this study, which may be explained by the fact that the patients
in this study were treated in ICU and had severe neurological
deficits. In the current study, most of the patients had conscious
disturbance (median GCS, 8), and their condition is usually
complicated and changes rapidly; thus, the traditional scores
that are based on several preselected covariates by domain
experts would be too simple to have enough power to make
the correct mortality prediction (14), whereas the machine
learning allows the analysis on a large number of variables
simultaneously and can process the non-linear relations and
the complex interactions among the variables (22). Another
possible explanation would be that APACHE II is more
suitable for the systemic failure patients, such as those who
suffered from sepsis/septic shock (8, 9, 23), whereas for patients
with abnormal vital signs and metabolic disorders caused by
intracranial lesions, the variables in the scale do not have good
predictive value.

In the current study, the random forest showed the best ability
to discriminate in-hospital mortality and survival. The random
forest had been widely used in the data analysis in neuroscience.
It exhibited great ability to produce the best accuracy in
many diseases and biological information analyses, such as
genomic profiling, the corticospinal tract profile in amyotrophic
lateral sclerosis, or the classification of neuroimaging data
in Alzheimer disease (24–27). One of the merits of random
forest is that it can avoid overfitting in the analysis of small
sample size data (17, 18), which may explain why it had better
performance in the current study. In addition, random forest
has an important advantage that it has an intrinsic feature
selection step applied before the classification task, which reduces
the variable space by assigning an important value to each
feature (28).

The model in the current study included several biochemical
indicators that are considered to be related to prognosis in clinical
practice but are difficult to quantify in traditional models. In
the machine learning algorithm, the interaction among variables
is considered in the selection of the important variables, to
efficiently extract prediction patterns from data. It provides
a solution different from traditional statistical screening of
variables for the establishment of prediction model (17, 18).
In the top 10 variables, most of the factors reflected the blood
biochemistry and blood routine examination indexes, which
was consistent with previous studies that showed electrolyte
disorder, such as hypernatremia, is associated with clinical
prognosis of cerebral hemorrhage (29). However, some of
the important variables found in the current analysis were
not explored in the ICH study before. Therefore, this study

could also provide some insights for further hypothesis-
based research.

One of the highlights of the current research is that,
in the machine learning model, all the selected variables
were initial clinical data and electronic monitoring data
that can be automatically obtained by the monitor or can
be simply evaluated (such as age, gender, GCS score),
which could be automatically and dynamically assessed
after simple operation by users. Although compared with
the ICH scores that include radiological predictors, the
prediction performance in certain aspect may be compromised,
this model can be completed by nurses or assistants,
thereby greatly reducing the burden of clinical work for
doctors. In the future, this can even be completed by
artificial intelligence monitoring instruments, achieving
full automation.

To interpret the findings, it must be admitted that the
current research has certain limitations. Themultiple-imputation
method was used to handle the missing values in the analysis,
which might reduce the authenticity of the data and the
accuracy of both conventional scoring system and machine
learning models. Complete data will be needed in follow-up
studies to improve model accuracy. The data were from the
MIMIC-III database, which is a non-specialist ICU database that
collects data provided by not only neurologists but also other
specialists, leading to the lack of some neurologic evaluation scale
data. However, its simplification is conducive to its extensive
promotion among non-neurologists. In addition, the prediction
model in the current study contained more variables compared
with the traditional scale and showed better predictive value.
In the next step, the further training of the model should be
conducted with expanded sample size and improved algorithm,
with the aim to further improve the prediction efficiency and
reduce the required variables, so as to prepare for the next step
of clinical application.
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