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Introduction: In recent years, a growing body of literature has investigated the use of

non-invasive brain stimulation (NIBS) techniques as a putative treatment in Huntington’s

Disease (HD). Our aim was to evaluate the effects of cerebellar transcranial Direct Current

Simulation (ctDCS) on the motor outcome in patients affected by HD, encompassing

at the same time the current knowledge about the effects of NIBS both on motor and

non-motor dysfunctions in HD.

Materials and Methods: Four patients (two females) were enrolled and underwent

ctDCS (both anodal or sham, elapsed by at least 3 months: 2.0mA, 20min per day, 5

days a week). Clinical scores were assessed by using the Unified Huntington’s Disease

Rating Scale – part I (UHDRS-I), immediately before ctDCS (T0), at the end of the 5-days

treatment (T1) and 4 weeks later (T2).

Results: Anodal ctDCS improved motor scores compared to baseline (p = 0.0046),

whereas sham stimulation left them unchanged (p = 0.33, Friedman test). In particular,

following anodal ctDCS, UHDRS-I score significantly improved, especially regarding the

subitem “dystonia,” both at T1 and T2 compared to sham condition (p < 0.05; Wilcoxon

matched-pairs signed test).

Conclusions: ctDCS improved motor scores in HD, with effects lasting for about 4

weeks after tDCS completion. This is the first study discussing the putative role of

cerebellar non-invasive simulation for the treatment of HD.

Keywords: Huntington’s disease, neurodegenerative diseases, cerebellum, tDCS, rTMS, non-invasive brain

stimulation

INTRODUCTION

Huntington’s disease (HD) is a neurodegenerative, progressive and fatal disorder,
clinically characterized by cognitive impairment, behavioral dysfunctions and hyperkinetic
movements. Its prevalence is higher than previously thought, geographically variable and
increasing worldwide (1, 2). The disease is caused by an expanded CAG trinucleotide
repeat (of variable length) in HTT, the gene encoding the protein huntingtin;
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it is inherited in an autosomal dominant manner, with age-
dependent penetrance, where longer CAG repeats predicting
earlier onset (3). HD belongs to the so-called “poly-glutamine
disorders,” a heterogeneous group of diseases caused by an
abnormal expansion of a glutamine encoding CAG repeat in
the affected genes. To date, disease modifying therapies are
not yet available and the pharmacological treatment is only
symptomatic. Also non-invasive brain stimulation techniques
(NIBS), as repetitive Transcranial Magnetic Stimulation (rTMS)
and transcranial Direct Current Stimulation (tDCS), have
reported conflicting results in the treatment of severe choreic
and dystonic movements, failing to provide a significant, possibly
long-lasting, clinical improvement in HD patients (4–8).

The multisystem character of HD is emphasized by a
distribution pattern of neurodegeneration which includes not
only the striatum, but also the cerebral neo-and allocortex,
thalamus, pallidum, brainstem and the cerebellum, thus sharing
more similarities with polyglutamine spinocerebellar ataxias than
previously described (9). A possible clinical and pathogenetic
overlap has been recently supported also by neurophysiological
findings (10, 11).

Recently, a growing attention has been focused on the
cerebellar involvement in the pathogenesis of HD (12–14).
Clinically, several symptoms of HD could be attributed
to cerebellar damage, comprising dysarthria, ataxia, gait
disturbances and abnormal oculomotor function. Moreover,
animal studies have strengthened the possibility of a key
cerebellar involvement in HD models (15–17). Magnetic
resonance imaging (MRI) studies have further corroborated
these data in humans, showing that aberrant cerebellar diffusion
and smaller cerebellar volumes are associated both with a worst
motor performance and increased psychiatric symptoms at early
stages (12).

To date, only few papers have investigated the role of
non-invasive brain stimulation in HD and no studies targeted
the cerebellum. In this pilot trial, our purpose was to assess
the possibility to improve motor symptoms with cerebellar
transcranial Direct Current Stimulation (ctDCS) in clinical
manifest HD, encompassing the current literature about the use
of cerebellar NIBS for the treatment of HD. Patients underwent
anodal and sham (placebo) ctDCS; although there are different
factors driving the direction of ctDCS after-effects, as the
electrode size and the montage, anodal stimulation is known to
exert an overall excitatory effect on cerebellar functions, both
motor and non-motor (18–21).

MATERIALS AND METHODS

Patients
Four HD patients were enrolled in a timeline ranging from April
2016 to November 2018. They had undergone genetic testing,
which was diagnostic in all (CAG number > 40). The mean
duration of symptoms was about 2 year (23.3 ± 7.8 months).
Inclusion criteria for the early manifest HD patients were a
CAG repeat > 40, with a UHDRS motor score > 5, and a total
functional capacity (TFC) score > 7. Demographic and clinical

TABLE 1 | Demographic and clinical features of HD patients.

Patient 1 2 3 4

Age 45 50 43 48

Sex F F M M

MMSE 26/30 27/30 27/30 28/30

CAG-length 44 41 41 45

UHDRS-I (motor

score)

24 22 16 23

Onset of motor

symptoms

4.0 years 3.5 years 3.5 years 4.5 years

Pharmacological

therapy

Tetrabenazine

75 mg/day

Tetrabenazine

37.5 mg/day

Tetrabenazine

37.5 mg/day

Tetrabenazine

50.0 mg/day

Timeline of

intervention

Anodal/sham Sham/anodal Anodal/sham Sham/anodal

MMSE, Mini-Mental State Examination; UHDRS-I, Unified Huntington’s Disease Rating

Scale part 1; CAG-length, mutational load expressed as the number of CAG repetitions

in the target gene.

data are summarized in Table 1. The pharmacological therapy
remained the same during the whole experimental protocol.

The patients were enrolled and the experimental procedures
performed at the Section of Neurophysiopathology, University
of Pisa.

Experimental Protocol
In a crossover, double-blind, sham-controlled design, each
patient underwent sham and anodal ctDCS. All patients carried
out the two experimental conditions, held at least 3 months apart
to avoid carry-over effects. Each session, either anodal or sham,
lasted 5 days a week (Monday to Friday, 30min a day).

Clinical scores were assessed at baseline (T0), immediately at
the end of the stimulation week (T1), 4 weeks (T2) later.

Patients were enrolled by a physician with expertise
in movement disorder medicine (F.S.); clinical scores were
administered by a neurologist (T.B.), blinded to the ctDCS
condition. A third neurologist with expertise in movement
disorders (A.P.) served as blinded video-rater and confirmed the
motor outcome.

Informed consent was obtained from all individual
participants included in the study. The study was approved
by the local ethical committee at the University of Pisa (formally
named “Comitato Etico di Area Vasta Nord Ovest della
Toscana”), in accordance with the tenets of Helsinki.

Transcranial Direct Current Stimulation
Cerebellar transcutaneous direct current stimulation (ctDCS)
was applied using a battery-driven constant current stimulator
(HDCStim, Newronika R©, Italy) and a pair of electrode in two
saline-soaked synthetic sponges with a surface area of 35 cm2.
Direct current was transcranially applied for 20min with an
intensity of 2.0mA and constant current flowwasmeasured by an
ampere meter (current density ∼0.08 mA/cm2). At the offset of
tDCS, the current was decreased in a ramp-likemanner, amethod
shown to achieve a high level of blinding between sessions (18).
For anodal ctDCS, the anode was applied on the median line,
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2 cm below the inion, with lateral borders about 1 cm medially to
the mastoid apophysis, and the cathode over the right shoulder
(19, 21–25). For sham ctDCS, the current was turned on for 5 s
and then turned off in a ramp-shaped fashion, thus inducing skin
sensations similar to those produced by real ctDCS.

We stimulated the cerebellum bilaterally, as previous studies
have shown that varying the position of the active electrode
with ∼1 cm induced negligible changes in the electrical field
distribution (26).

Patients were blinded to the tsDCS protocol and did not
discriminate between anodal and sham condition. In order to
report possible adverse effects, the questionnaire developed by
Brunoni et al. was administered to each patient (27).

Clinical Outcome and Statistical Analysis
The clinical outcome was assessed by evaluating the Unified
Huntington Disease Rating Scale-part I (UHDRS-I) score,
particularly its “dystonia” (cumulative values for trunk and
extremities) and “chorea” (face, mouth, trunk and extremities)
subscores, at the different time points (T0, T1, and T2) (28).
ctDCS-induced changes in UHDRS-I score and related sub-items
were assessed with a Friedman test (non-parametric analysis
on paired data) with the main factor “time” (three levels: T0,
T1, and T2). In order to disclose significant changes at each
time point between anodal and sham ctDCS (T0, T1, T2,), a
Wilcoxon matched-pairs signed test was then applied. Statistical
significance was set at P < 0.05. The data were analyzed using
SPSS v. 21.0 for Windows (SPSS Inc.). Raw data are shown as
mean values± 1 standard error (S.E.).

RESULTS

No patient reported adverse effect during stimulation or the
follow-up period.

Figures 1A,B shows changes in UHDRS motor score
(UHDRS-I) following either sham (gray columns) or anodal
ctDCS (red columns).

Overall, compared to baseline (T0), anodal ctDCS improved
motor scores (UHDRS-I: T0 = 22.0 ± 1.9; T1 = 14.5 ± 1.2;
T2 = 15.5 ± 1.1: p = 0.0046), whereas sham stimulation left
them unchanged (T0 = 21.7 ± 1.7; T1 = 22.1 ± 1.7; T2 =

22.5 ± 2.6: p = 0.33, Friedman test). In particular, following
anodal polarization, UHDRS-I score significantly improved both
at T1 and T2 compared to sham tDCS (p = 0.46 and p = 0.48,
respectively; Wilcoxon matched-pairs signed test).

As regards UHDRS-1 subscores, anodal ctDCS significantly
improved dystonia over time (T0 = 8.0 ± 0.7; T1 = 3.7 ± 0.5;
T2 = 4.5 ± 0.4: p = 0.037), whereas sham stimulation had no
significant effects (T0 = 8.0± 0.9; T1 = 7.5± 0.9; T2 = 8.3± 0.7:
p= 0.29, Friedman test; Figure 2). In particular, following anodal
polarization, dystonia was reduced both at T1 and T2 compared
to sham tDCS (p = 0.46 and p = 0.48, respectively; Wilcoxon
matched-pairs signed test).

Conversely, both active and sham ctDCS left chorea scores
unchanged over time, whereas a trend to improve was shown
following the anodal stimulation (anodal ctDCS: T0 = 6.7 ± 0.6;

FIGURE 1 | (A) ctDCS montage. The active electrode was placed over the

cerebellar area, while the return electrode was positioned over the right

shoulder. (B) Motor score changes. The histogram shows UHDRS-I values at

different time intervals (T0, T1, and T2), following either sham (gray columns) or

anodal ctDCS (red columns). Note that real (anodal) stimulation significantly

reduced motor impairment, both at T1 and T2. Data are shown as mean

values ± 1S.E. (*p < 0.05).

T1 = 5.5± 0.3; T2 = 5.5± 0.6: p= 0.074; sham ctDCS: T0 = 7.3
± 0.6; T1 = 7.3± 0.3; T2 = 7.5± 0.3: p= 0.8).

DISCUSSION AND A REAPPRAISAL OF
THE CURRENT LITERATURE

Cerebellar direct current polarization improved motor scores
in HD patients, especially dystonia, with the effects lasting
for 1 month after the end of stimulation. To the best of our
knowledge, this is the first report showing a significant effect
of cerebellar stimulation on motor scores in HD. Only few
papers have evaluated NIBS techniques for the treatment of
both motor and non-motor symptoms in HD patients (Table 2).
Among these, Brusa and colleagues found an improvement
of choreic movements by 1Hz rTMS, when applied over the
supplementary motor area (SMA) (6); conversely, Shukla and
co-workers showed that bilateral low-frequency rTMS over the
SMA did not reduce choreiform movements in severe HD (5). A
third, single-case study has recently proposed the use of “deep”
TMS (dTMS, at 1Hz and 120% of the motor threshold) for the
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FIGURE 2 | Motor scores changes in the subitems “dystonia” (left) and “chorea” (right). The histogram shows UHDRS-I subscores at different time intervals (T0, T1,
and T2), following either sham (gray columns) or anodal ctDCS (red columns). Note that real (anodal) stimulation significantly reduced dystonia, with a smaller effect on

choreic movements. Data are shown as mean values ± 1S.E. (*p < 0.05).

TABLE 2 | Non Invasive Brain Stimulation (NIBS) for the treatment of HD: current literature.

Author, date Sample Methods Follow-up period Primary

outcome

Main results

tDCS

Eddy et al. (4) 20 Sham vs. 1.5mA anodal tDCS

on the left DLPC

Immediately

post-rTMS

Working memory Anodal tDCS improves working

memory, especially in patients

with more severe motor

symptoms.

rTMS

Brusa et al. (6) 8 1Hz rTMS on SMA Immediately

post-rTMS (30′)

Choreic

movements

1Hz rTMS improves choreic

movements.

Túnez et al. (29) n.a. Murine model: high-frequency

rTMS (60Hz), applied for 4 h a

day

Immediately

post-rTMS

Oxidative stress

markers

rTMS attenuates cell loss,

oxidative and nitrosative damage

in the striatum.

Shukla et al. (5) 2 Seven consecutive sessions of

bilateral 1Hz rTMS on SMA (900

pulses)

Choreic

movements

No effects on choreic

movements in severe HD.

Davies et al. (30) Single case “Deep” rTMS on SMA (1Hz at

120% RMT; 1600 pulse for 49

daily session)

8 months Depression and

Anxiety

Improvement of depression and

anxiety scores following the real

stimulation.

tDCS, transcranial Direct Current Stimulation; SMA, Supplementary Motor Area; RMT, Resting Motor Threshold; DLPC, dorsolateral prefrontal cortex; HD, Huntington’s Disease; n.a.,

not applicable as the paper refers to a murine model.

treatment of depression and anxiety in HD (31). To support
beneficial effects induced by TMS on HD patients, some Authors
have found that Transcranial magnetic stimulation attenuates cell
loss, oxidative and nitrosative damage in the striatum of a murine
HD model (29). More recently, it has been demonstrated that
anodal tDCS enhances working memory in HD, when applied
over the left dorsolateral prefrontal cortex (DLPFC), and this
improvement is greatest in patients with more severe motor
symptoms, thus suggesting that motor scores may help identify
patients who are most likely to benefit from tDCS (4).

The finding that ctDCS significantly improved specific
subscores than others fits with recent data showing a key
cerebellar involvement in the pathophysiology of dystonia (32–
36), especially in inherited disorders (37–41). In particular,
the cerebellum is likely engaged in a hyper-direct, short-delay
cerebello-talamo-striatal pathway, projecting from the dentate
nucleus to the striatum and the external segment of the globus

pallidus (GPe), via the intralaminar nuclei of the thalamus (42,
43). Under pathological conditions, this pathway can bypass the
cerebello-thalamo-cortical stream and drive abnormal activity
within the basal ganglia, thus inducing dystonic movements (43).

Recently, an increasing body of literature has specifically
investigated the relationship between HD pathogenesis and
the cerebellum.

Both autoptic and MRI studies have suggested that cerebellar
abnormalities are present in HD at early stages, mainly involving
the gray matter of the deep cerebellar nuclei, with a relative
preservation of the cerebellar cortex (9, 44–47). The cerebellar
involvement is particularly marked, both from a clinical and
a neuropathological perspective, especially in the Juvenile
Huntington’s Disease (JHD), a rare HD variant arising before
20 years age and characterized by a variable presentation,
including myoclonus, seizures, Parkinsonism, and cognitive
decline (48–51).
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Nonetheless, how these abnormalities play a contributing
role in the pathophysiology of the disease is still a matter
of debate. From a neuropathological point of view, HD is
characterized by a bilateral and symmetrical neuronal loss in the
neostriatum, mainly caused by the extensive demise of GABA-
ergic medium spiny stellate projections neurons (52–57). The
lack of any inhibitory cerebellar effect in patients with dystonia
may contribute to the loss of M1 inhibition and the development
of incorrect motor programs and maladaptive behaviors (58, 59).
Anodal ctDCS may ultimately interfere with cerebello-thalamo-
cortical loops, possibly restoring the physiological inhibition
exerted by cerebellar nuclei on cortical processing.

Moreover, as described above, the cerebellum itself directly
interferes with striatal networks through a disynaptic pathway
leading to the intralaminar nuclei of the thalamus and to the
dorsolateral putamen (42).

LIMITATIONS

Our study has some limitations. First, the small sample, given that
our study has been designed as a pilot research; nonetheless, other
studies have enrolled a similar number of patients, probably due
to the fact that HD is a quite rare disease. Second, other clinical
measures (e.g., quality of life and depression) were not assessed
and included as secondary outcomes. Third, a longer observation
period should be used in further studies, in order to assess how
long the beneficial effects of cerebellar tDCS persist. As a pilot
trial, further studies are needed.

CONCLUSIONS

This is the first pilot trial about the use of cerebellar tDCS for
the treatment of motor symptoms in HD. Further and large-
scale studies are needed, possibly including non-motor features
as secondary outcomes. Moreover, the impact of a combined
cerebello-cortical stimulation may be of interest, in order to
improve therapeutic effects on motor scores.
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