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In recent decades, the field of neuroimaging has experienced a surge of popularity and

innovation which has led to significant advancements in the understanding of neurological

disease, if not immediate clinical translation. In the case of Down’s syndrome, a

complex interplay of neurodevelopmental and neurodegenerative processes occur as a

result of the trisomy of chromosome 21. The substantial potential impact of improved

clinical intervention and the limited research under-taken to date make it a prime

candidate for longitudinal neuroimaging-based study. However, as with a multitude of

other multifaceted brain-based disorders, singular utilization of lone modality imaging

has limited interpretability and applicability. Indeed, a present challenge facing the

neuroimaging community as a whole is the methodological integration of multi-modal

imaging to enhance clinical understanding. This review therefore aims to assess the

current literature in Down’s syndrome utilizing a multi-modal approach with regards to

improvement upon consideration of a single modality. Additionally, we discuss potential

avenues of future research that may effectively combine structural, functional and

molecular-based imaging techniques for the significant benefit of the understanding of

Down’s syndrome pathology.
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INTRODUCTION

Down syndrome (DS) is the leading genetic cause of intellectual disability, with an approximate
incidence of 1 in 750 live births (1). The extra copy of chromosome 21 is associated with a 4–5-
fold overexpression of the amyloid precursor protein (APP) gene and increased accumulation of
cerebral beta-amyloid (Aβ) deposition in the brain and subsequent neurofibrillary tau formation,
metabolic changes and neurodegeneration (2). The processing of APP generates Aβ, the abnormal
accumulation of which leads to the formation of amyloid plaques and the clinical manifestation
of early onset (in the forties) Alzheimer’s disease (AD) and progressive cognitive decline among
individuals with DS. As our understanding of DS has increased and clinical care has improved, the
lifespan of individuals with DS in developed countries has improved dramatically (3). However,
there are limited and only symptomatic treatments available for AD dementia. Nevertheless, the
near ubiquity of AD progression in DS means that multi-modal neuroimaging studies in DS
may help delineate the natural history of biomarker changes, and in the process identify early
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neural substrates of AD pathogenesis. In addition, a multi-modal
neuroimaging approach would be especially beneficial due to
the genetics of DS and an expected predictable trajectory of
development of disease and disorder.

Advances in our understanding in both the some aspects of
the molecular basis and the pathogenesis of AD have resulted
in novel opportunities to study potential therapeutic targets
(4). Neuroimaging contributes to these rising developments
by providing biomarkers that could improve comorbid AD
diagnosis, inform prognosis, aid in deep phenotyping, allow
for risk stratification, and track therapeutic efficacy in future
clinical trials for people with DS. Models of AD pathophysiology
propose a sequential progression of brain changes that are
reflected by neuroimaging abnormalities, beginning with an
early increase in Aβ PET tracer binding, followed by a gradual
progression of neurofibrillary tau tangles, deficits in cerebral
glucose metabolism (i.e., [18F]-fluorodeoxyglucose-PET (FDG-
PET) and gray matter atrophy and white matter dysfunction as
seen with structural T1-weighted MRI, resting-state connectivity
differences (5) and diffusion imaging (6). Indeed, as we will
summarize in the next section, these stereotypical AD biomarker
changes have often been recapitulated in the small but growing
number of neuroimaging studies in DS.

However, there is still a considerable gap between research
findings and translatability into clinical practice for DS. Much
progress is still needed to understand the optimal use of these
imaging markers and how they could be jointly evaluated
during the different stages of the disease. The majority of
the literature has hitherto relied on single-modality designs to
study pathological processes in isolation, despite the growing
appreciation that dementia and DS is a multifactorial disease
that likely emerges as a phenotypic spectrum from the dynamics
between multiple pathological processes. Further studies that
are able to integrate other biomarkers known to play a role
in the physiopathology of AD (tau, inflammation, etc.) within
a longitudinal design would be useful to unravel their relative
roles, sequence, and causal relationships in the context of DS.
To this end, large-scale initiatives such has ABC-DS have begun
and the research community would be to synthesize the vast
amounts of data meaningfully to help us understand better the
neuropathological processes and clinical manifestations.

To continue advancement of understanding in the field
of Down’s syndrome neurodegeneration, it is key that recent
innovations in neuroimaging technology are harnessed. As
integration of more than one imaging modality leverages
significantly more pathology-relevant information that standard
methodologies, it is of importance that approaches for doing so
are put forward and discussed. In this brief review, we highlight
prominent existing research that utilizes such multimodal
neuroimaging methods and consider future directions in a
methodological context.

SUMMARY OF LITERATURE

Amyloid and Tau
Post-mortem studies have indicated that virtually all persons with
DS over age 40 harbor abnormal degrees of Aβ accumulation
(7). This post-mortem evidence has since been borne out by in

vivo evidence using [11C]-PiB PET imaging (8, 9). In addition,
several reports have highlighted the striatum as a possible nidus
of amyloid accumulation, as it is commonly associated with the
earliest and most prominent signal retention (8, 10), similar to
that observed in a [11C]-PiB PET study of presenilin-1 (PS1)
mutation carriers (11). The clinical relevance of Aβ in DS has
been highlighted through its associations with brain atrophy (12)
and mild cognitive impairment in DS (13). While longitudinal
data is scarce, Aβ accumulation in DS rates are similar to that
observed in late-onset AD (14), despite an earlier onset by ∼15–
20 years (8, 10). More recently, tau accumulation in adults with
DS has been studied using the PET tracer [18F]-AV-1451. The
well-documented coupling between tau and amyloid has also led
to proposals that elevated tau, particularly its propagation beyond
the medial temporal cortices, is predicated upon Aβ positivity
(15), consistent with that noted in late onset AD (16). Further
studies to investigate the extent to which tau is associated with
downstream brain atrophy (17) and cognitive decline is a subject
of future research.

Metabolic Function
Glucose metabolism is one of the most robust biomarkers of
AD, and [18F]-FDG PET is widely recognized as a sensitive tool
to measure neuronal activity on glucose metabolism. In DS,
the spatial distribution of hypometabolism appears to resemble
that of sporadic AD, encompassing key regions such as the
posterior cingulate and other regions that are key nodes of the
default mode network (18, 19). Decreased metabolic activity has
also been related to elevated Aβ burden and cognitive function
(9, 20–23). Recently, the relative tracer delivery (R1) from [11C]-
PiB PET imaging has been validated by Mak et al. (24) as a
surrogate index of cerebral perfusion, showing marked deficits
that were associated with amyloid deposition and longitudinal
cognitive decline.

Structural MRI
The cortical signature of DS has been a subject of extensive
investigations using T1-weighted MRI (9, 12, 19, 25). A
common finding in the literature points is that of Aβ-
associated atrophy in temporo-parietal cortices and subcortical
atrophy, hallmarks of atrophy patterns in sporadic AD (26).
Interestingly, there are also several reports of increased cortical
thickness in DS individuals without amyloid burden (25).
Taken together, atrophy appears to be predicated on the
presence of amyloid, a notion that is supported by a previous
study demonstrating a correlation between Aβ and atrophy in
DS (15).

Diffusion Tensor Imaging
Diffusion tensor imaging (DTI) is a non-invasive in vivo
technique for characterizing the microstructural properties of
white matter tracts by quantifying changes in both the rate
and directionality of water molecules (27). However, this
topic has received relatively little attention compared to gray
matter analyses. One study showed that persons with DS and
dementia have decreased white matter integrity compared to
non-demented DS subjects in a similar topography seen in AD
(28, 29). Given that the role of amyloid and tau accumulation
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underpinning white matter dysfunction is still unclear, our group
is pursuing this topic via a joint-analysis of [11C]-PiB, [18F]-
AV1451 and DTI datasets.

Methodological Future Directions
The intersection of the clinical understanding of brain pathology
and technological innovation in neuroimaging has yielded
significant progress in the fields of psychiatry and neurology.
However, single modality imaging is inherently limited in the
information it can reveal, restricting the understanding of
complex and multifaceted disease processes. The complexity
problem of neuroimaging datasets in neurological study and the
dynamic nature of pathology is difficult to address. The successful
and meaningful integration, therefore, of multiple brain imaging
modalities is key to clinical progress, whether that be rooted in
biomarker identification or translation to therapeutics.

Machine learning is emerging as a significantly useful
technique which can both reduce and utilize the high
dimensionality of neuroimaging data (30). Thus, supervised
machine learning approaches are excellent candidates for the
integration of multiple imaging modalities and data types. The
basis of machine learning is that a data-driven methodology is
applied to predictively model either a discrete or continuous
outcome variable. For instance, a well-performing model based
on medically non-invasive data, such as structural or functional
MRI, which effectively predicts a variable only identifiable to
date in an invasive or costly manner, such as amyloid burden
in Alzheimer’s disease, is of considerable use in clinical practice.
In Down’s syndrome, such advances are particularly warranted
given the need for careful ethical considerations of patient
vulnerability and burden. It should be noted however, that
unbiased and large datasets are required for such machine
learning approaches, as smaller data with sample bias may risk
models that are ungeneralizable to the wider population.

Supervised machine learning algorithms are commonly
applied using either a classification or regression approach,
where the outcome variable of interest is either binary or
continuous, respectively (31, 32). These methodologies allow for
a tailored hypothesis-driven approach to the data. In Down’s
syndrome, an important example of the utility of a classifier
would be using brain MRI data to define a patient as positive
or negative for amyloid burden, thus removing the need for
expensive and potentially distressing PET scanning. Given that
amyloid positive status is an early indicator of the definitive
development of Alzheimer’s pathology, this methodology may
be utilized as a biomarker for the indication of need for
therapeutic intervention. Similarly, the training of regression
machine learning algorithms on multimodal brain imaging
data may infer accurate predictions of CSF-based biomarkers
without the need for invasive procedures and laboratory cost.
Importantly, machine learning represents a significantly useful
technique for the integration of different types of brain imaging
modalities, which among other benefits, such as predictive power,
provides a wider and more accurate insight into brain pathology,
leveraging multiple data types meaningful to underlying biology
(33). Additionally, such implementation of machine learning
for multimodal neuroimaging datasets would allow for the

assessment of models for predicting pertinent clinical states
and, where longitudinal training data is available, prognostic
value. The limitations of machine learning techniques however
should also be acknowledged, such as to-date minimal uptake
of published algorithmic diagnostic approaches into clinical
communities and the necessity of large and generalizable
datasets for training. DS-AD is a promising candidate for such
methodology as on the whole, very high disease penetrance
means that the clinical population is relatively homogenous
compared to other psychiatric disorders and dementias. To
address the issue of translation into the clinic, neuroimaging
research employing machine learning tools should carefully
consider both the representative nature of the dataset and test
hypotheses that address significant clinical need.

Additionally, when considering brain structure and
connectivity, statistically integrating multiple MRI techniques
can also be advantageous in understanding fundamental
biological mechanisms. Two of the most commonly acquired
types of structural data are T1-weighted and diffusion-weighted
images, which rely on the time taken for the proton spin to
realign with the static B0 magnetic field and the anisotropy of
water diffusion along multiple magnetic gradient b-vectors,
respectively (34). Therefore, the combination of T1-weighted
and diffusion-weighted imaging allows for tissue macrostructure
and the tissue integrity to be analyzed in tandem. One example
of such an approach is the using statistical covariance of regional
brain structural metrics and diffusivity metrics like fractional
anisotropy to produce a morphometry similarity index, which
has been previously used to demonstrate significant underlying
pathology in disorders such as psychosis (35). Application of
such integration between structural modalities gives enhanced
understanding of alterations to brain tissue during disease states
and would be particularly useful in mapping AD development in
Down’s syndrome.

When considering PET modalities, atlas-based parcellations
of T1-weighted structural images are routinely used to label
anatomical brain regions for the extraction of degree of tracer
binding. However, other modalities may be leveraged in this
approach to assess neuropathology in tandem with other metrics,
such as functional connectivity, as demonstrated by Franzmeier
et al. (36). Through the application of linear regression, with the
vectorized functional connectivity matrix serving as a predictor
for degree of longitudinal tau change as measured by AV1451,
the results showed a functional connectivity and tau-spread
coupling, which supports the hypothesis of trans-neuronal tau
propagation in sporadic AD. Hence, the multimodal approach
to data analysis in this case yielded important results for
understanding the pathological development mechanisms of AD.
In the case of DS-AD, connectomic approaches may be used
in a similar way, in tandem with PET-based neuropathology
data, for example to assess tau propagation with respect to white
matter structural density. The outline of such a methodological
approach is summarized in Figure 1.

The increasingly common usage of ultra-high field MRI in
clinical research is also a valuable asset for the advancement of
methodologies that integrate multiple brain imaging modalities.
The enhanced signal-to-noise ratio and spatial resolution of
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FIGURE 1 | Theoretic example of how connectomic approaches may be integrated with PET-based neuropathology data. Diffusion-based white matter connectivity

can be statistically modeled with PET ligand binding using matrix methodology.

high field scanners, along with the application of Bayesian
probabilistic approaches to structural data has allowed for
the automated segmentation of small brain structures with
previously unattainable accuracy (37). The hippocampal
subfields (dentate gyrus, cornu ammonis 1–4 and subiculum)
can now be isolated and volumetrically analyzed from T1- and
T2-weighted acquisitions (38, 39), with the potential to provide
valuable insight in Down’s syndrome given the prominent role of
the hippocampus in Alzheimer’s neuropathological development.
However, to gain a fuller understanding of how AD development
affects the hippocampal subfields, a multimodal approach should
be leveraged. The treatment of the subfields as regions of interest
for tau or amyloid PET analysis would yield significant insight if
utilized cross-sectionally across age groups, enabling trajectory-
mapping of AD pathology within the hippocampal structure.
Additionally, the integration of the hippocampal subfields with
structural or functional brain connectivity data as seed regions
of interests would progress past basic whole brain analyses and
demonstrate hippocampal-specific changes in connectivity and
its relevance to clinical phenotypic expression that may further
understanding of the pathological role of these granular regions
during the development of DS-AD.

The statistical joint analysis of multi-modal imaging data
is also a subject of future interest (40). The recently proposed
non-parametric combination (NPC) technique could be
employed to investigate how multiple imaging measurements
are simultaneously associated with dementia or amyloid burden
in DS (i.e., “Is amyloid burden associated with both gray matter
and perfusion deficits in the same regions?”). For instance, it has

been shown that NPC could yield additional information about
patterns of group differences not visible in each modality alone
(41). To the best of our knowledge, no study has applied this
technique to investigate joint changes in multiple modalities and
thus should be an area of future research, particularly in the early
stages such as DS persons who are cognitively normal.

CONCLUSIONS

In conclusion, we present in this review the trajectory of
innovation regarding the integration of multimodal MRI
in the clinical research of DS-AD. Whilst this review is
not a comprehensive review of all neuroimaging-based
methodologies, importantly, we highlight how broad approaches
to neuroimaging should continue to develop how modalities
can be combined to improve current knowledge of AD
pathological development. A benefit of acquiring multimodal
neuroimaging data is that different data types can infer different
biological mechanisms—for example regional brain metabolism
can be inferred from fluorodeoxyglucose (FDG)-PET, broad
neurotransmitter and metabolite levels can be extracted
from spectroscopy methods and brain structural analyses
can examine how regional volumetrics and form associate
with neurocognitive measures. The synergistic advantages
of combination of these techniques mean that longitudinal
imaging studies are valuable for the understanding of pathology
and trajectory of disease. Building the evidence base of the
development of neuropathology in DS-AD is crucial therefore,
not just for more efficient diagnoses, but for identifying pertinent
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disease stages for effective intervention, potentially modifiable
risks and mechanisms or patterns of brain alteration that can be
therapeutically targeted. Gaining such knowledge as the degree
of involvement of the noradrenergic and cholinergic systems
in DS-AD through regional analyses of specialized brain nuclei
is one example of how this may be achieved. In this review,
we also put forward potential methodological approaches for
future research in the field, with the aims of demonstrating that
novel advancements in how data is combined can yield pertinent
insights into neuropathology and begin to translate research
more effectively into patient benefit.
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