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In order to evaluate brain changes in young children with Pierre Robin sequence (PRs)

using machine learning based on apparent diffusion coefficient (ADC) features, we

retrospectively enrolled a total of 60 cases (42 in the training dataset and 18 in the testing

dataset) which included 30 PRs and 30 controls from the Children’s Hospital Affiliated to

the Nanjing Medical University from January 2017–December 2019. There were 21 and

nine PRs cases in each dataset, with the remainder belonging to the control group in the

same age range. A total of 105 ADC features were extracted from magnetic resonance

imaging (MRI) data. Features were pruned using least absolute shrinkage and selection

operator (LASSO) regression and seven ADC features were developed as the optimal

signatures for training machine learning models. Support vector machine (SVM) achieved

an area under the receiver operating characteristic curve (AUC) of 0.99 for the training

set and 0.85 for the testing set. The AUC of the multivariable logistic regression (MLR)

and the AdaBoost for the training and validation dataset were 0.98/0.84 and 0.94/0.69,

respectively. Based on the ADC features, the two groups of cases (i.e., the PRs group and

the control group) could be well-distinguished by the machine learning models, indicating

that there is a significant difference in brain development between children with PRs and

normal controls.
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INTRODUCTION

Pierre Robin sequence (PRs) is a congenital condition characterized by an abnormal development
of craniofacial features. The incidence of PRs is as high as 1/8,500–1/14,000 (1). The characteristics
of PRs include: micrognathia, glossoptosis, and cleft palate. These defects can lead to airway
obstruction and feeding difficulties (2), even life-threatening obstructive apnea and obstructive
sleep apnea in neonates (3).Moreover, these structural abnormalities seriously affect the growth and
development of children (4), placing a burden on their families as well as society. At present, most
PRs research has focused on its pathogenesis (5), prenatal diagnosis (6), surgical treatment plans,
and post-operative nursing and feeding (7), as well as cognitive and neurological development
(8). Little attention has been paid to the quantitative evaluation of brain development based on
MRI in children with PRs, which limits the ability to fully understand the inherent neurological
function impairment.

Diffusion-weighted imaging (DWI) has features such as greater sensitivity for ischemia and
water molecule diffusion compared to other MR imaging techniques. However, a strong T2 shine-
through effect limits its application in the quantitative evaluation of neonates. ADCmaps have been
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proposed to evaluate neonatal hypoxic-ischemic brain injury,
tumor and brain development, etc. (9, 10), which has been used as
an important imaging modality. Therefore, the ADC features are
an important sequence for exploring development in children.
Previous studies have revealed that pre-existing hypoxia may
cause damage to the brain. However, some hypoxic damage does
not typically lead to structural changes that cannot be detected by
a radiologist based on conventional MRI.

Machine learning, however, can uncover important
information that is undetected by routine clinical medical
imaging, thus revealing potential biological information (11–13).
Given its compelling advantages in the implementation of
classification and prediction (14, 15), machine learning has
become a common method of scientific research (16, 17).
In this study, we analyzed ADC features combined with
several machine learning models to effectively evaluate brain
development differences between children with PRs and normal
controls as well as the validity of the model. To the best of
our knowledge, this is the first study to quantitatively evaluate
the brain development of PRs based on MRI with machine
learning models.

Our research group focuses on studying the brain
development of congenital heart disease (CHD) and
cerebral palsy (CP) based on ADC. To date, there are few
other studies on this subject, and most previous research
on ADC has focused on adults or positive lesions. In
these instances ADC is only used for diagnosis, without
extracting its inherent imaging features. Based on this, our
research combines them and can also reveal methodological
advantages to studying the brain development of children
with PRs. We think that this study could also be applied to
conventional “lesion negative” MRIs in the future, such as
pediatric epilepsy, Autism, and Attention Deficit Hyperactivity
Disorder (ADHD).

MATERIALS AND METHODS

Enrolled Patients
A retrospective comparative dataset study was conducted,
ultimately consisting of 30 children diagnosed with PRs
and 30 healthy controls (Figure 1). A ratio of 7:3 was
used to randomly assign these cases to the training and
validation datasets (18). Therefore, 42 cases were assigned
to the training dataset, of which, 21 were PRs cases. The
remaining 18 cases, including nince cases in the PRs group,
were assigned to the testing dataset. Patients in the PRs
group were hospitalized in the plastic surgery department
of the Children’s Hospital of Nanjing Medical University
from January 2017 to December 2019 and were clinically
diagnosed with PRs. The mean age of the PRs group was
39.3 ± 19 days (range: 3–84 days) and consisted of 12 males
and 18 females. The inclusive criteria of this group were:
(1) clinically-confirmed PRs; (2) age <3 months; and (3)
no clinical operation. Exclusion criteria: the images included
respiratory motion artifacts, brain malformation, neonatal
hypoxic-ischemic encephalopathy (HIE), hyperbilirubinemia, or

other encephalopathy, such as ventricular septal defect (VSD),
atrial septal defect (ASD).

The control group, which had a mean age of 45.2 ± 18 days
(range: 7–74 days), consisted of 12 males and 18 females. There
were 45 cases in the control group initially. After screening,
30 cases were selected. The inclusive criteria of this group
were: (1) normal brain MRI of brain, as confirmed by two
experienced pediatric radiologists. The admission history of these
patients included pneumonia, trauma, brachial plexus injury,
and facial hemangioma; and (2) age <3 months; (3) No definite
brain developmental diseases were found during follow-up; (4)
MRI images meet the diagnostic requirements (no obvious
motion artifacts). The exclusion criteria include: (1) suspected or
confirmed neurologic disease in labor; (2) children with known
genetic abnormalities (e.g., Down syndrome) or other congenital
diseases (e.g., congenital heart disease); and (3) other serious
diseases that may have substantial effects on the brain; (4) MRI
images cannot be diagnosed (there are obvious motion artifacts).

This study was approved by the hospital ethics committee.
Before the MRI scan, parents were informed of the precautions
before the examination, read and signed the informed consent
form, and explained the examination method and process to
children. As a retrospective study, each participant was followed
up by telephone, informed of the significance of participating in
this study, and agreed to participate. On follow up each patient
was informed of the significance of the study for the child’s future
brain development, and their consent was obtained.

Imaging Protocol
MR imaging of the brain was performed using a 3-Tesla (T)
whole-body clinical MRI scanner (Ingenia; Philips Healthcare,
Best, The Netherlands), with a digital head coil. The patients were
sedated with 5% chloral hydrate (1 mL/kg) 20min before the
scan, and the MR examination was performed while the patients
were asleep. An SE-EPI sequence was used in the DWI scan,
and axial DWI sequences were generated at b values of 0 and
1,000 s/mm2 at TR/TE = 2,408/82ms. The layer thickness was
4-mm, and the layer spacing was 1-mm. The field of view =

180 × 180mm. There were three orthogonal diffusion gradient
directions and two excitations. The phase encoding direction was
anterior to posterior (AP).

Image Acquisition and Retrieval
The ADC images were exported from a PACS workstation in
DICOM format, and single ADC map slices were selected at the
level of the thalamus/basal ganglia, the most sensitive injury site
for children, as previously illustrated (19).

Feature Extraction and Pre-processing
A single-layer ADC map of the lateral ventricle at the anterior
and posterior horn level was selected using the ImgJ software.
Single ADC images were imported into the image processing
software (MRIcron), after which the complete brain area (remove
the extracerebral space) was sketched (with the extracerebral
space removed) as the region of interest (ROI), and saved
in NIFTI format. In addition, ADC feature extraction was
implemented using an open source Python software package
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FIGURE 1 | Flow diagram of enrolled patients. HIE, neonatal hypoxic-ischemic encephalopathy; VSD, ventricular septal defect; ASD, atrial septal defect.

(www.python.org). Importing Feature Analysis module as well
as library functions included numpy, pre-process to realize the
feature extraction in the python code (the original code was
provided in the Supplementary Materials with PDF form). A
total of 104 features were extracted from the ADC images,
including density histograms (features 1–27), textures (28–33),
and wavelets (34–104). In order to guarantee the normalization
of the results, z-score normalization was utilized to pre-process
these images and data. After z-score normalization, 103 features
were retained (the 33rd feature was excluded because it feature
represents the correlation in the texture feature. All values in the
two groups were 1, which was meaningless for classification).

DATA ANALYSIS

Dimension Reduction and Feature
Selection
To avoid dimensional disaster, enhance features robustness, and
prevent the model from overfitting, it was necessary to reduce
the dimensions of the features. The dimensionality reduction
process was roughly divided into the following steps: first, the
features were tested for normality and homogeneity of variance,
after which the p > 0.05 results were preserved. Next, either
the independent sample t-test or rank sum test (Mann Whitney
U-test) was used based on the feature distribution. Finally,
LASSO regression was performed for dimensionality reduction
and feature selection. Parameter adjustment could then improve
the prediction accuracy and credibility of the machine learning
model. After optimization, the minimum deviance criterion was
implemented in our study to adjust the regularization parameter

(λ), and 10-fold cross-validation was used to enhance feature
robustness. Because principal component analysis (PCA) is a
type of unsupervised learning, LASSO ismore universally applied
than either PCA or SVD (singular value decomposition), and the
model complexity can be adjusted by the parameter λ (lambda)
to avoid overfitting (20).

Machine Learning Model Construction
Machine learning models, including multivariate logistic
regression (MLR), support vector machine (SVM), and
AdaBoost, were introduced to investigate whether the ADC
features of the two groups (PRs patients and healthy controls)
were linearly separable, which would provide conclusive evidence
of the brain development differences. SVM with Gaussian kernel
function was constructed as the non-linear classifier. The ranges
of the optimal kernel function γ(gamma) and hyperparameter
C(cost) were 10∧(-3:0) and 10∧(0:3), respectively. These best
performing signatures were realized by10-fold cross-validation,
which enhanced model robustness. Logistic regression was
then used with backward elimination to construct a linear
classifier model. Newton’s method was employed to determine
the maximum point of the logistic log-likelihood function. The
number of iterations was set to 10. In addition, the AdaBoost
algorithm was introduced. By plotting the error line chart, it was
revealed that when the number of weak classifiers was two, the
minimum error value was achieved (Figure 2). Finally, the AUC
curve, classification accuracy, positive predictive value (PPV),
negative predictive value (NPV), sensitivity, and specificity were
also calculated in order to assess the discrimination capability.
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Statistics
SPSS25 statistical software was utilized. The t-test and chi-
square-test were used to analyze the age and gender to ensure
that there was no difference between the two groups.

R language (version 3.4.1, https://www.r-project.org/) was
employed to analyze the ADC characteristic values. Zero-
mean normalization was applied to eliminate the impacts
of dimensions and value range differences, and 70% of the
cases were randomly selected as the training dataset without
replacement (18). Univariate analysis was performed on the
values of the training dataset. Independent sample t-tests
were implemented on values that satisfied normality and
variance uniformity. The remainder were subjected to the
Wilcoxon rank sum test. LASSO regression and coefficient
curves were generated using the “glmnet” and “ggplot2” software
packages. The SVM classifier was executed by the “e1071”
package, while the “adabag” package was utilized for the
AdaBoost algorithm, and the “caret,” “lattice,” and “for each”
packages were also applied. ROC curves were realized with the
“pROC” package.

FIGURE 2 | AdaBoost error line chart. When the number of basic classifiers

was 2, the error reached the minimum value.

RESULTS

Features Change Between Two Groups
For ADC histogram characteristics, except for ADCmax,
Skewness, Kurtosis, Entropy, and variance, the ADC histogram
characteristics of the PRs group are lower than the normal group,
and the differences are statistically significant (P < 0.05). For
texture features, the values of contrast and dissimilarity in the
PRs group are lower than those in the normal group. However,
for the values of homogeneity, ASM, and energy, the PRs are
higher than the normal group, and the differences are statistically
significant. [See the Supplementary Material in the table, which
lists all ADC characteristic values (histogram, texture, wavelet)
and the t-value and p-value after t-test.]

Dimension Reduction and Feature
Selection
A total of 39 features were preserved using a Gaussian
distribution with variance homogeneity, all of which were
performed using independent sample t-tests. Of the remaining
65 features, 60 features were found to be significant by mean
of the Mann-Whitney U-test. Therefore, LASSO regression was
performed on these 99 features (i.e., 39 that passed the t-test
and that 60 passed the rank sum-test). Furthermore, the optimal
signatures were revealed when the binomial deviance achieved its
minimum values. Finally, the seven features (the 29th, 30th, 39th,
56th, 62th, 92th, and 96th) were pruned using LASSO regression,
with the optimal regularization parameter λ of 0.0627 under the
minimum norm tuned by 10-fold cross validation (Figure 3).

Performance of machine learning
The SVM was verified to exhibit the most optimal performance
for the training dataset, with an AUC of 0.998 (95% CI: 0.991–
1), a discrimination accuracy of 98% by the tuned best kernel
function (Gaussian kernel γ) of 0.1, and a hyperparameter (C)
of 10. The AUC of the multivariate logistic regression model
was confirmed to be 0.980 (95% CI: 0.942–1) for the training

FIGURE 3 | Feature selection by LASSO regression. (A) LASSO coefficient sketch of 99 features. With increasing lambda, the coefficient of unimportant features

gradually tended to 0. (B) The deviance profile was made by adjusting the optimal regularization parameters (λ) based on 10-fold cross-validation. The left dashed line

delineates the minimum norm and the right indicates 1-standard error norm (1-SE). This study utilized the minimum norm.
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TABLE 1 | Performance of machine learning models for training datasets and testing datasets.

AUC Accuracy Sensitivity (%) Specificity (%) PPV (%) NPV (%)

The training datasets SVM 99.8 97.6 100 95.2 95.5 100

MLR 98.0 92.9 95.2 90.5 90.9 95.0

ADA 94.0 85.7 90.5 81.0 82.6 89.5

The testing datasets SVM 85.2 77.8 66.7 88.9 85.7 72.7

MLR 84.0 72.2 66.7 77.8 75.0 70.0

ADA 68.5 66.7 66.7 66.7 66.7 66.7

SVM, support vector machine; MLR, multivariate logistic regression; ADA, AdaBoost; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4 | The features importance measurement indicator.

dataset, the discrimination accuracy of the MLR was 93%. The
performance of the AdaBoost algorithm was confirmed to have
an AUC of 0.94 (95% CI: 0.872–1) and a discrimination accuracy
of 86.0% for the training dataset. The testing dataset also achieved
good performance using all of the machine learning models,
although not as good as the training group (Table 1).

In the ML (machine learning) models, the features selected
after dimension reduction all played an important role in the
discrimination of PRs from controls. Among them, the 29th
represents dissimilarity, the 30th represents homogeneity, the
39th and 56th represents the first order wavelet, the 62nd
represents the second order wavelet, and the 92nd and 96th
represent the third order wavelet. The histogram was made to
show the importance about each feature (Figure 4). For the
histogram, it can be seen that the 29th, 30th, and 56th are the
top three important features.

DISCUSSION

At present, ADC features have been widely used in tumor
research and show good repeatability (21). However, this method
is not widely used in neonatal non-tumor lesions. Little attention
has been paid to ADC features of MRI based on machine

learning on infant’s brain changes for previous studies. Previous
studies have proved that diffusion-weighted imaging (DWI)
is most sensitive for water molecules, ischemia, and hypoxia,
and the ADC map, as post-processing sequence of DWI, is
especially suitable for infant brain development researches, such
as HIE (Neonatal hypoxic–ischemic encephalopathy), PLIC (the
posterior limb of the internal capsule) (22). There are also a
few related studies on the brain development of PRs. We found
that the ADC histogram characteristics of the PRs group were
relatively lower than that of the normal group, which may be
related to hypoxia and abnormal brain development (19, 23).
The texture characteristics and wavelet characteristics were also
significantly different in our two groups.

As an effective tool for data classification and prediction,
machine learning has been widely used in medical imaging,
especially in the research of radiomics. Based on features of
the ADC, machine learning was utilized, which was simpler
and more accurate than traditional statistical methods (12,
24), especially for cases involving multidimensional features.
In this study, the parameters were optimized to ensure
the accuracy and credibility of the research results. LASSO
regression was employed for feature selection, ensuring that the
important and independent features conformed to the models.
After 10-fold cross-validation, the robustness of the features
was ensured.

In our research, the SVM and MLS models were found
to exhibit better classification accuracy and performance than
the AdaBoost models, which was consistent with previous
research on the performance of machine learning models (25).
The SVM model achieved the most optimal performance with
an AUC of 0.998 and a discrimination accuracy of 98.0%
for the training dataset. An AUC of MLR was confirmed
to 0.980 and a discrimination accuracy of 93.0% for the
training dataset. These good performance results revealed that
the two groups of cases (PRs patients and normal controls)
were clearly distinguished by the machine learning models,
indicating that there are significant differences in the brain
development of these children. In total, the three machine
learning models all achieved a good overall performance.
For the testing cohort, the SVM model also achieved the
most optimal performance with an AUC of 0.852, and good
discrimination accuracy of 77.8%, and a specificity of 88.9%.
An AUC of MLR was confirmed to 0.840, and a discrimination
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accuracy of 72.2% and specificity of 77.8% for the testing
dataset. However, the AUC, sensitivity, and specificity of the
AdaBoost in the testing dataset relative dropper are 68.5, 66.7,
and 66.7% (26–28).

The reasons for the relatively weak results of the validation set
may be as follows:

• As infants are still young, it is more difficult to perform
magnetic resonance examinations. Therefore, it is difficult to
collect the normal control group. This leads to a small amount
of data being entered into the group, resulting in relatively
weak results for the validation set.

• When using cross-validation to divide the data set, the
parameter setting of the random seed makes the random
allocation of data biased.

At the same time, this research had some limitations.
Firstly, due to limited resources, the data were acquired
from a single medical center and the same type of MRI
scanner. It will be more convincing to acquire images from
multiple institutions or MRI models. Multivariate clinical
case information would also be an improvement. Secondly,
to facilitate clinical operations, only one level of ADC map
was evaluated, which may not be comprehensive. Thirdly,
the control group may have included children with abnormal
brain development simply due to a lack of totally healthy
volunteers. Fourthly, no scale was used to evaluate the
development of neurological function in PRs patients. Finally,
although this study achieved good discrimination based on
ADC features, there were no specific predicted results to
explain the prediction trends due to a lack of follow up
research data.

In conclusion, in this study, we focused on ADC
features in the pediatric brain, confirming that the
two groups of cases, which included PRs patients and
normal controls, were well-distinguished by machine
learning models, indicating that there was significant brain
development abnormality in PRs children. Compared
with other statistical methods, machine learning models
are simple and clear, with effective operability and
high accuracy.
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