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Non-invasive low-intensity transcranial electrical stimulation (tES) of the brain is an

evolving field that has brought remarkable attention in the past few decades for its

ability to directly modulate specific brain functions. Neurobiological after-effects of tES

seems to be related to changes in neuronal and synaptic excitability and plasticity,

however mechanisms are still far from being elucidated. We aim to review recent

results from in vitro and in vivo studies that highlight molecular and cellular mechanisms

of transcranial direct (tDCS) and alternating (tACS) current stimulation. Changes in

membrane potential and neural synchronization explain the ongoing and short-lasting

effects of tES, while changes induced in existing proteins and new protein synthesis is

required for long-lasting plastic changes (LTP/LTD). Glial cells, for decades supporting

elements, are now considered constitutive part of the synapse and might contribute to

the mechanisms of synaptic plasticity. This review brings into focus the neurobiological

mechanisms and after-effects of tDCS and tACS from in vitro and in vivo studies, in both

animals and humans, highlighting possible pathways for the development of targeted

therapeutic applications.

Keywords: transcranial direct current stimulation, transcranial alternating current stimulation, neurobiological

after-effects, synaptic plasiticty, non-invasive brain stimulation

INTRODUCTION

In the last two decades, therapeutic efficacy of non-invasive transcranial brain stimulation
techniques through low-intensity electrical fields has been demonstrated by a number of works
and clinical trials providing promising results for many neurological disorders, including stroke (1)
and epilepsy (2, 3), movement disorders/Parkinson’s (PD) (4) and Alzheimer’s (AD) (5, 6). Due to
non-invasiveness and transient side effects (7), transcranial electrical stimulation (tES) has found
progressively a wide field of applications. Moreover, acquisition of recent experimental data has
extended our knowledge of the cellular and molecular mechanisms involved in the after-effects
of tES, thus supporting its therapeutic potential for brain disorders based on impaired synaptic
plasticity (2).
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The basic principle of tES is very simple and based on the
negative (anodal) and positive (cathodal) currents and their
flow into the brain (8). However, neurobiological mechanisms
and after-effects are not yet fully understood. Experimental
evidence has demonstrated that weak low-intensity ES (at an
intensity lower than that needed for triggering action potentials)
induces polarity-specific changes in spontaneous and evoked
neuronal activity (9, 10): anodal polarization increases neuronal
activity, whereas cathodal polarization decreases it (11–14).
Accordingly, transcranial direct current stimulation (tDCS)
has been shown to induce long-lasting and polarity-specific
changes of human motor cortex excitability (15–17) related to
modifications of synaptic efficacy similar to those underlying
long-term potentiation (LTP) and long-term depression (LTD)
of synaptic activity (18, 19). Studies of the effects of direct current
stimulation (DCS) in slices of mouse primary motor cortex
have shown that anodal DCS, in the absence of simultaneous
synaptic activation, does not induce LTP/LTD like changes but
it can modulate LTP induction (20). In contrast, by coupling
DCS with low frequency stimulation (at 0.1Hz), a long-lasting
polarity- (anodal DCS) and frequency- specific LTP is obtained,
mainly depending on N-methyl-D- aspartate (NMDA) receptor
activation and secretion of brain-derived neurotrophic factor
(BDNF) (21). In summary, these studies highlight the complex
nature of tDCS effects, characterized by the capability of inducing
and modulating LTP/LTD. However, while the immediate effects
of tES can be explained by changes in transmembrane potential
influencing neuronal firing, it is plausible that the long-term
after-effects are likely due to modifications of intracellular
calcium dynamics and mechanisms of synaptic plasticity, based
on LTP/LTD processes (18, 22, 23) and/or induction of
metaplasticity, the activity-dependent physiological changes that
modulate neural plasticity (24). Anodal tDCS, for example,
induces neurotrophic BDNF-mediated priming after-effects on
synaptic plasticity and memory, making synapses susceptible to
LTP induction in the rat hippocampus (25).

This work aims to comprehensively summarize the
neurobiological mechanisms of tES and discuss future clinical
applications. In particular, we first analyzed the technical aspects
of electrical stimulation techniques, and then the neurobiological
after-effects of tES on the constituents of the synaptic structure,
distinguishing those on membrane polarity, neural transmission,
synaptic plasticity, neuronal network and connectivity, and
finally the effects on glial cells and neuroinflammation.

We believe that understanding the basis of the modulatory
effect of tES would be particularly relevant for its clinical
application in humans, where it could be used to shape the plastic
properties of the brain.

TECHNICAL ASPECTS: TRANSCRANIAL
CURRENT AND MAGNETIC STIMULATION

According to whether direct or alternating current is applied
to the brain, the method is referred to as either transcranial

Abbreviations: tES, transcranial electrical stimulation.

direct current stimulation (tDCS) or transcranial alternating
current stimulation (tACS). Both techniques produce effects
on cortical excitability outlasting the stimulation, up to 3 h
with tDCS (26) and up to 1 h with high-frequency tACS (27–
29). TDCS acts in a polarity-dependent fashion, with anodal
stimulation increasing and cathodal stimulation decreasing
neuronal excitability, whereas tACS consists in the application
of a sinusoidal waveform current that alternates between the
anode and the cathode (switching polarity) and modulates the
power of oscillatory rhythms in a frequency-dependent manner
by synchronizing or desynchronizing neuronal networks (30).
For example, in studies that coupled transcranial magnetic
stimulation (TMS) with ES, tACS was found to synchronize
cortical networks bursting at frequencies higher than 300Hz (31).

The association between the type of stimulation and neural
response depends on many physical properties including the
electrode type, length, strength, and frequency of stimulation
(32). Low-intensity, constant, or non-constant currents are
used for tDCS and delivered in rectangular or sinusoidal
waves with pulses of unidirectional current, whilst non-constant
current is used for tACS (33). TDCS flows into the brain
from a battery-powered generator through a couple of sponge
electrodes, with one or both the electrodes fixed over the
scalp. It has been demonstrated that current density (i.e.,
current intensity/electrode size), duration, polarity, and location
of stimulating electrodes have important implications in the
modulatory outcome of stimulation (34). Generally, tDCS does
not involve synaptic effects but polarity changes of the membrane
resting potential, does not induce neuronal firing but rather
modulates spontaneous neuronal network activity, polarizing
brain tissue (35–37). The two types of stimulation, anodal and
cathodal, do not contrast each other in terms of after-effects
and modulation of their intensity dramatically produces different
results. Generally, the cortical excitability is increased by anodal
tDCS while it is decreased by the cathodal tDCS over the same
area (site specificity).

TACS is a non-constant current which alternates its pulses
with the opposite amplitude (38, 39). Despite site specificity, its
effects are not site limited as tACS influences other areas of the
brain through interneuronal circuits (33) and directly interferes
with ongoing brain oscillations (40). TACS shares the same setup
of tDCS: it is applied between electrodes placed over the target
scalp sites, with intensity in the same range of 1–2mA. The
physiological bases of tACS are less explored than tDCS. The
main biophysical (electric field strength and spatial distribution)
and polarizing properties of tDCS should also apply to tACS,
with the main difference that the polarity (i.e., the direction of
current flow) changes of 180◦ during each cycle of the sinusoidal
waveform of tACS and that the maximum current flow is present
only at the peak of the alternating current.

The advantage of tACS is that it allows the manipulation
of amplitude, frequency, and coherence of intrinsic neuronal
oscillations (41, 42). In addition, the effects of tACS could be
translated into whole larger brain-network activity through five
different neuronal mechanisms (43, 44): (1) stochastic resonance,
consisting in the stochastic response of tACS-affected neurons
to be either polarized or hyperpolarized; (2) rhythm resonance,
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synchronizing tACS frequency with the endogenous oscillations;
(3) temporal biasing of spikes, a synergistically excitation of
the same groups of neurons during each cycle of stimulation;
(4) network entrainment of an endogenous irregular neuronal
activity that necessitates an external current with sufficiently
stronger amplitude; (5) imposed pattern, tACS overcomes
endogenous regular oscillations and introduce a new oscillation.
These mechanisms attribute the large-scale effects of tACS to
two synergistic phenomena: entrainment and neuroplasticity,
respectively. The first takes place when an external rhythmic
system affects another one, forcing it to follow its own oscillating
frequency and phase; the second, through LTP/LTD phenomena,
elicits offline tACS effects by increasing or decreasing neural
synchronization, as confirmed by many studies (29, 45–47).

TACS has diverse modes of administration in terms of
frequency: the beta (20Hz), alpha (10–12Hz), and gamma
range (40Hz), each producing diverse neurobiological effects for
modulation of different bands of neural oscillations (42). The
effects of alpha and gamma stimulation have been studied on
attention with gamma stimulation demonstrating to facilitate
endogenous attention (48).

Experimental and clinical applications of transcranial
magnetic stimulation (TMS) is widely and progressively
increased over the past two decades. In particular, several
repetitive TMS (rTMS) protocols have been proved to modulate
brain functions (from the molecular to the network scale) and
human behavior (49, 50). For example, application of simple
rTMS to a target cortical area for several minutes induces
after-effects in a frequency- dependent manner (low frequency,
≤1Hz, reduces cortical excitability whereas high-frequency,
>5Hz, does the opposite) (51) while theta-burst stimulation
(TBS), a patterned protocol, induces longer-lasting effects with
shorter application time (continuous TBS has primarily an
inhibitory effect on corticospinal excitability, while intermittent
TBS has an excitatory effect) (52).

TMS shares fundamental similarities with tES as both share
neurobiological modulations at similar levels and involve rapid
changes in magnetic fields (53). While TMS requires passing
of current through coils to generate a magnetic field that in
turn generates an electric field and a current density, in tES the
electric field and the current density are proportional to injected
current (54).

NEUROBIOLOGICAL AFTER-EFFECTS OF
CURRENT STIMULATION OF CENTRAL
NERVOUS SYSTEM

Effects on Membrane Polarity
Table 1 summarizes the results of the studies that analyzed the
effects of tES on membrane polarity. Evidence has demonstrated
that tDCS can modify neuronal membrane polarity and
therefore the action potential generation (15, 19, 55) through
activation of voltage-gated pre and postsynaptic Na+ and Ca2+

channels thus causing increased presynaptic release of excitatory
neurotransmitters and postsynaptic calcium influx, respectively

TABLE 1 | tES after-effects on membrane polarity.

References/Study Methodology

tES

Targets Main results

Nitsche and

Paulus (15);

Liebetanz (19);

Stagg and Nitsche

(55)

tDCS Pre/post

synaptic Na+

and Ca2+

channels

tDCS generates action

potential via Na+ and

Ca2+ channels by

increasing presynaptic

release of excitatory

transmitters and Ca2+

influx

Zaghi et al. (33);

Bikson et al. (56)

tDCS Hippocampal

neurons

Somatic polarization

was obtained with

electric field parallel to

somato-dendritic axis

in hippocampal

neurons

Bikson et al. (56);

Arlotti et al. (57);

Rahman et al. (58);

Pelletier and

Cicchetti (32); Seo

and Jun (59)

tDCS

- aDCS

- cDCS

Structural

components

of neurons

Components at the

cathode depolarize

while those at the

anode hyperpolarize

Francis et al. (60);

Deans et al. (61);

Reato et al. (62)

tACS Neuronal

resonance

tACS can induce

cumulative effects over

multiple cycles that can

shift in spike timing.

Bindman et al.

(11); Bikson et al.

(56); Antal and

Herrmann (63)

tDCS

- aDCS

- cDCS

Transmembrane

potentials

Constant electric field

shifts neuronal

transmembrane

potential to less

negative in cDCS and

more negative in aDCS

which makes it more

prone to generate

action potential.

tES, transcranial electrical stimulation; tDCS, transcranial direct current stimulation;

tACS, transcranial alternating current stimulation; a/c tDCS, anodal/cathodal transcranial

direct current stimulation.

(15). Moderate but prolonged intracellular Ca2+ increase causes
LTD while short but large Ca2+ increase causes LTP (64).

The polarity-dependent effect of tDCS is strictly dependent on
the orientation of axons and dendrites (33). Specifically, when the
effect of polarity was studied in vitro on hippocampal neurons
(56), somatic polarization was obtained with the electric field
parallel to the somato-dendritic axis, while an effect on afferents
without somatic polarization was produced by the electric
field perpendicular to the apical-dendritic axis. Moreover, the
structural components of the cell at the cathode depolarize while
the elements facing the anode are subject to hyperpolarization
(32, 56–59). On the other hand, tACS, matching resonant
neuronal properties, can induce cumulative effects over multiple
cycles that may cause shift in spike timing (60–62).

However, these biophysical propertiesmight produce complex
modulatory effects when tES is applied to circuits of the
human brain with no uniform spatial orientations. Based on
experimental studies (11, 56), the applied constant electric
field shifts the transmembrane potential of neurons toward less
negative (anodal stimulation) or more negative values (cathodal
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stimulation), thus increasing or decreasing the likelihood of
generation of action potentials (63), thus influencing both
spontaneous and evoked neuronal firing.

Effects on Neural Transmissions
Many studies have shown that tACS interferes with several
neurotransmitter systems. The balance between cholinergic
and adrenergic system after administration of reserpine (an
anti-adrenergic drug that irreversibly blocks the H+-coupled
vesicular monoamine transporters—VMAT) and physostigmine
(a parasympathomimetic reversible cholinesterase inhibitor)
occurred much faster while applying tACS: it was observed that
the quantity of presynaptic vesicles first declined, then increased
after 5min and then returned to baseline levels after tACS
(65). Evidence suggested that this type of stimulation might
modulate the serotoninergic raphe nuclei, the noradrenergic
locus coeruleus, the cholinergic latero-dorsal tegmental, and
pedunculopontine nuclei in the brainstem (66). Additionally,
tACS was found to modulate the levels of endorphins into
the cerebrospinal fluid (67) and naloxone, a pure opioid
antagonist, was reported to reduce tACS analgesic effects (67),
prompting to hypothesize a tACS-induced modulation of the
neurotransmitters’ release.

The blockage of serotonin reuptake increases LTP in
the motor cortex by anodal tDCS and shifts LTD to LTP
after cathodal tDCS (68). In addition, anodal tDCS was
demonstrated to reduce γ-aminobutyric acid (GABA)
concentration in the stimulated cerebral cortex while cathodal
tDCS impaired glutamatergic neuronal activity and reduced
GABA concentration (2, 69). Authors argue that these protocols
might be used therapeutically to reduce the imbalance between
excitatory and inhibitory transmitters (70, 71). These results were
also confirmed in humans by magnetic resonance spectroscopy
(MRS) studies examining the effects of tDCS on the hand area
of the primary motor cortex. Accordingly, authors reported
that anodal tDCS causes GABA decrease while cathodal tDCS
decreases both the levels of glutamate and GABA (70). Upon
administration of GABA antagonists, anodal tDCS produces
delayed but enhanced excitability increase in cortical or
subcortical areas (72). See Table 2 for a summary of the studies
that analyzed the effects of tES on neural transmissions.

Effects on Synaptic Plasticity
Experimental and human studies suggest that the after-effects
of tES might originate from persistent modifications of synaptic
efficacy similar to those underlying LTP and LTD of synaptic
activity (18, 19, 73). Synaptic plasticity usually involves short-
and long-term modifications of existing synapses (formation,
removal, and remodeling of synapses and dendritic spines)
that in turn modify the activity of brain networks in which
they are interposed (50). Mechanisms of synaptic plasticity
occur at different levels, from ultrastructural to synapse:
calcium dynamics, neurotransmitter release, proteins (receptors,
transporters, and ion channels) and gene expression (74). Table 3
summarizes the main results of the studies that analyzed the tES
after-effects on synaptic plasticity.

TABLE 2 | tES after-effects on neural transmission.

References/Study Methodology

tES

Targets Main results

Kirsch and Nichols

(65)

tACS Cholinergic

and

adrenergic

neural

transmission

After administration of

reserpine and

physostigmine and

administration of tACS,

the quantity of

presynaptic vesicles

declines and then

increased

Nitsche et al. (68) tDCS

- aDCS

- cDCS

Motor cortex Blockage of serotonin

reuptake increases LTP

via aDCS and shifts

LTD to LTP after cDCS

Stagg et al. (70);

Nitsche et al. (72)

tDCS

- aDCS

- cDCS

GABA and

glutamate in

cortical and

subcortical

areas

aDCS reduces GABA

while cDCS reduces

both glutamate and

GABA. With GABA

antagonists, aDCS

produced enhanced

excitability in cortical

and subcortical areas

tES, transcranial electrical stimulation; tDCS, transcranial direct current stimulation;

tACS, transcranial alternating current stimulation; a/c tDCS, anodal/cathodal transcranial

direct current stimulation; LTP, long-term potentiation; LTD, long-term depression;

GABA, gamma amino butirric acid.

Experimental evidence using a high frequency pre-synaptic
stimulation protocol has showed a polarity-specificity of tDCS
in the modulation of LTP induction, with anodal stimulation
increasing and cathodal stimulation decreasing the amount of
LTP (20). These data suggest that tDCS alone is not capable of
changing synaptic strength (i.e., inducing LTP), but rather that
tDCS changes the propensity of the synapse to undergo LTP.
Accordingly, in the study by Fritsch and colleagues, LTP was
obtained after a conditioning anodal tDCS protocol but only in
the presence of concomitant synaptic activation by presynaptic
inputs (21).

Neurotrophins (BDNF, NGF, NT-3, and NT-4/5) are a large
family of complex proteins that regulate several functions,
including neuronal survival, differentiation, synaptic function,
and plasticity but also neuronal death through interaction with
two types of receptors, the tyrosine kinase receptors (TrkA, TrkB,
and TrkC) and the common p75NTR receptor (82). Most of
neurotrophins, including BDNF, is secreted in an immature form
and then converted into the mature, active form by a complex
fine-regulated system of proteases (83–85). With this premise,
it has been demonstrated that tDCS might increase BDNF
concentration when combined with presynaptic stimulation (21)
inducing LTP via BDNF/TrkB signaling (25). TrkB stimulation
by BDNF also promotes long-lasting synaptic potentiation and
late phase LTP requires the conversion of pro-BDNF into mature
BDNF in the hippocampus (21). Moreover, enhanced LTP in
animals undergoing continuous tDCS can be reduced by TrkB
antagonist (86) and anodal tDCS enhances hippocampal LTP and
memory via chromatin remodeling of the Bdnf gene regulatory
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TABLE 3 | tES after-effects on synaptic plasticity.

References/Study Methodology

tES

Targets Main results

Ranieri et al. (20) tDCS

- cDCS

- aDCS

Neuronal LTP aDCS increased LTP while cDCS decreased LTP

Fritsch et al. (21); Yu et al.

(25)

tDCS BDNF/TrkB signaling tDCS increases BDNF concentration which induces LTP. TrkB

stimulation by BDNF promotes late phase LTP

Lanté et al. (75); Luscher

and Malenka (76)

tDCS NMDA/AMPA receptors High frequency stimulation induced LTP in active NMDA

receptors, expression of AMPA receptors in postsynaptic

neuron and Ca2+ rise. Low frequency stimulation induces

small rise in Ca2+ and presynaptic internalization of AMPA by

phosphatase activation and LTD generation

Mycielska and Djamgoz

(77); McCaig et al. (78)

tDCS Cellular migration tDCS modified the speed and direction of cell migration by

shifting intracellular Ca2+ and modifying expression of EGFR

due to electrostatic effects

Monte-Silva et al. (79); Kuo

et al. (80)

tDCS

- cDCS

- aDCS

L-DOPA induced plastic

changes

Anodal L-DOPA suppressed plasticity induced by atDCS

while prolonged the reduction of excitability by cDCS

Hurley and Machado (6) tDCS Neuronal polarity When synaptic activity is preconditioned by tDCS, continuous

tDCS after interval will modulate polarity

Carvalho et al. (81) tDCS

- aDCS

- cDCS

Working memory Continuous aDCS facilitates performance and cDCS

enhances working memory

Zaehle et al. (45) tACS Rhythmic patterns and

natural pattern

tACS modulates neural synchronization by increasing or

decreasing it and induces LTP and LTD

tES, transcranial electrical stimulation; tDCS, transcranial direct current stimulation; tACS, transcranial alternating current stimulation; a/c tDCS, anodal/cathodal transcranial direct

current stimulation; LTP, long-term potentiation; LTD, long-term depression; BDNF, brain-derived neurotrophic factor; TrkB, tyrosine kinase receptor B; NMDA, N-methyl-D- aspartate;

AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid.

sequence, increasing the expression of this gene (87). In addition,
through TrkB/Fyn signaling, BDNF induces a phosphorylation-
dependent enhancement of NMDA receptor activity that further
enhances effects of tDCS on LTP (88, 89).

The most prominent phenomena mediating LTP/LTD are
the functional state of the synapse, Ca2+ signals and activity
of NMDA glutamate receptors (74) (Figure 1). High-frequency
current stimulation, in fact, induces LTP only in active synapses,
which express active/open NMDA receptors, rapid expression
of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors in the postsynaptic neuron, and fast
intracellular Ca2+ increase (90). In contrast, low-frequency,
long-lasting stimulation induces small and slow rise in Ca2+

concentration, presynaptic internalization of AMPA receptors by
phosphatase activation (that reduces glutamate sensitivity), and
LTD generation (75, 76).

Studies have showed the tDCS induces changes in the
direction and speed of cell migration which may be related to
the shift of intracellular Ca2+ (77, 78) and to changes in the
expression of the epidermal growth factor receptors’ (EGFR)
due to electrostatic effects of tDCS, ultimately contributing to
long-term modulation (78).

The effects of tES on synaptic plasticity are also modulated
by concomitant administration of drugs acting on neural
transmissions. The dopaminergic, cholinergic, serotonergic
systems all affect tDCS-induced plasticity (91) in a dose-
dependent manner. For example, low dose administration

of the D2/D3 agonist ropinirole abolishes plasticity (91),
medium dosed ropinirole reestablishes facilitatory and inhibitory
plasticity, whilst high dosage decreases facilitatory plasticity (92).
Administration of low dosage or high dosage of anodal L-DOPA
suppressed the plasticity induced by tDCS (79), however L-
DOPA prolonged the reduction of excitability induced by
cathodal tDCS (80).

Induction of plasticity through tES, however, might also arise
from simultaneous stimulation of the different components of
the neural circuit, from the excitatory/inhibitory synapses to
different brain networks, therefore, as a result, it is important
to consider the main excitatory (LTP-like) or inhibitory (LTD-
like) effect of the brain stimulation. Early LTP/LTDmodifications
usually last for 30–60min after induction and reflect post-
transcriptional modifications of pre-existing proteins, such
as protein phosphorylation, in contrast late LTP/LTD could
last hours, days, and even months and require genes and
proteins expression (e.g., glutamate NMDA and metabotropic
receptors) (50).

In order to shed light on the pathways leading to the
synthesis of new proteins, attention has been focused on the
group of immediate early genes (IEGs), that are rapidly induced
following neuronal activation and are thought to be involved
in the maintenance of LTP (93, 94). Among IEGs, zif268 is
likely to be specifically related to LTP, since it is expressed
under virtually all LTP-inducing situations and shows a high
correlation with the duration of LTP (95). After application of
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FIGURE 1 | Schematic representation of neurobiological after-effects of transcranial electrical stimulation (tES). tES induces intracellular Ca2+ increase and activation

of Ca2+-dependent enzymes (CaM-K). Presynaptic mechanisms result in glutamate release that activates AMPA/NMDA receptors, modulates BDNF release and

interaction with TrkB receptor, responsible for a cascade of intracellular events that lead to de novo protein synthesis. Electrical stimulation also modulates activation of

astrocytes and neuroinflammatory response. Altogether, these mechanisms may underlie the establishment of LTP/LTD. CaBP, Ca2+ binding proteins; CaM-K, Ca2+

kinases; glu, glutamate; BDNF, brain-derived neurotrophic factor; TrkB, tyrosine kinase receptor B; LTP/LTD, long term potentiation/depression; GFAP, glial fibrillary

acidic protein; TNFα, tumor necrosis factor α; IL-1β, interleukin 1β; NMDAr, N-methyl-D- aspartate receptor; AMPAr, alpha-amino-3-hydroxy-5-methyl-4-isoxazolep

ropionic acid receptor; GABAA, gamma amino butirric acid A receptor.

both anodal and cathodal DCS to hippocampal rat brain slices,
zif268 expression was increased, pointing to a possible initial role
of zif268 in a cascade of activation of other downstream target
genes (20).

Abnormally high activity and hyperexcitability of some
subcortical pathways, as in the case of after stroke or during
central nervous system (CNS) development, may respond to tES
that modulates homeostatic plasticity of the hyperexcitable tissue
(96–99). The hyperexcitability is maintained because neurons
receive deficient inputs and, in order to compensate, increase
excitatory synaptic strength and intrinsic excitability (100, 101).

In addition, metaplastic changes are observed with the
administration of tES (6). The term metaplasticity refers to a
higher order form of plasticity and reflects the activity-dependent
physiological changes that modulate neural plasticity (102). The
history of synaptic or cellular activity influences the direction
and degree of synaptic plasticity, favoring or inhibiting plasticity
induction, synaptic stabilization, and homeostatic regulation of
cellular activity (103). Therefore, metaplasticity acts to avoid
excessive synaptic strengthening or weakening, to maintain a
relatively stable equilibrium of the neural activity in space and
time (homeostatic synaptic plasticity), adjusting the balance

between synaptic input and neuronal firing, and to prolong the
time-window for associative interactions between neural events
(associative plasticity) (6). Basically, any recent neural synaptic
activity will affect the ongoing activity. For example, if synaptic
activity is preconditioned by applying tDCS, the application
of continuous tDCS after an interval will modulate polarity
which will affect performance (6). Continuous anodal tDCS
has shown to facilitate performances while consecutive sessions
of cathodal tDCS have shown to enhance working memory
(81). Preconditioning neural networks may induce synaptic
homeostatic changes that seems to be related to compensatory
upregulation at post-synaptic membrane receptors due to
inhibition (104, 105). This has been called as the “rebound effect”
where neurons are more excitable due to initial downregulation
induced by cathodal tDCS and reversed by conditioning cathodal
tDCS (13).

Aberrant plasticity induced by non-invasive brain stimulation
techniques has been demonstrated in many neurological and
neuropsychiatric disorders including PD (106–108), dystonia
(109, 110), multiple sclerosis (111), ischemic stroke (112),
migraine (113), AD (114), schizophrenia (115–117), and drug
addiction (103, 118).
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Regarding tACS, both online and offline effects have
reported to generate entertainment and neuroplasticity (45).
Entertainment is where external rhythmic pattern imposes
itself on the intrinsic natural pattern. Neuroplastic changes
have been reported via LTP and LTD as tACS modulates
neural synchronization by increasing or decreasing it (45). In
summary, tES-induced mechanisms of synaptic plasticity cover
different aspects of the neurobiology and neurophysiology of
CNS, ranging from gene and protein expression, modulation
of neurotrophins activity, and neural transmission and,
finally, metaplasticity.

Effects on Neuronal Networks and
Connectivity
Polarization of the brain tissue can extend beyond the area
under the electrodes (119–121) and it may have a functional
effect also on distant interconnected neural networks (122,
123). Anodal tDCS of the premotor cortex, for example,
increases the excitability of the ipsilateral motor cortex (124)
and stimulation of the primary motor cortex has inhibitory
effects on contralateral motor areas (125). EEG studies support
these findings, showing that stimulation of frontal areas induces
all-brain synchronous changes of the oscillatory activity (126,
127). Altered prefrontal oscillations and brain synchronization
have been reported by magnetoencephalography (MEG) and
EEG study in AD, showing functional disconnection between
prefrontal cortex and hippocampus and changes of network
connectivity (128–130).

Functional connectivity of cortical networks increased within
motor, premotor, and somatosensory areas after anodal tDCS,
inducing significant intra and interhemispheric connectivity
changes, as revealed by analysis of EEG frequency bands (131).

Brain areas interact mutually creating a complex network
that underlie higher brain functions and neural synchronization
represents an essential system to coordinate cortico-cortical
and cortico-subcortical areas (132, 133). A combined tDCS-
fMRI study revealed that after active stimulation functional
connectivity showed an increased synchrony in the anti-
correlated network (that includes DLPFC) and reduced in the
default mode network (DMN) components, thus suggesting a
functional reconfiguration of intrinsic brain networks after tDCS
(134). This could represent a putative mechanism for tDCS-
induced improvement of cognitive functions (134). In addition,
using fMRI, anodal tDCS was also shown to modulate functional
connectivity of cortical (70), cortico-striatal and thalamo-cortical
motor pathway (135). To better grasp the precision of tES,
stochastic resonance should be underlined. The concept of
stochastic resonance attempts to highlight the importance of
wide range of affects due to TES. The electric field can be
considered as noise and when added to non-linear systems may
enhance or disrupt the state of signal and the noise introduced
(136–138). Since the after-effects are not focal but global, the
dynamic interactions will modulate not only particular group
of neurons but also induce global effects thus affecting neurons
near their discharge threshold, thus facilitating or inhibiting a

TABLE 4 | tES after-effects on neuronal networks and connectivity.

References/Study Methodology

tES

Targets Main results

Boros et al. (124);

Vines et al. (125)

tDCS

- aDCS

Motor cortex aDCS of premotor

cortex increases the

excitability in ipsilateral

motor cortex.

Stimulation of primary

motor cortex has

inhibitory effect on

contralateral motor

area

Polanía et al. (131) tDCS Motor/premotor/

somatosensory

areas

Functional connectivity

of cortical networks

increased with aDCS

with

intra/interhemispheric

connectivity changes

Peña-Gómez et al.

(134)

tDCS Default mode

network and

DLPFC

tDCS increased

synchrony in

anti-correlated network

and reduced in default

mode network

Stagg et al. (55) tDCS Cortical/cortico-

striatal/thalamo-

cortical motor

pathways

tDCS modulates

functional connectivity

of cortical,

cortico-striatal and

thalamo-cortical motor

pathways

Fertonani and

Miniussi (138)

tACS/tDCS – tES induces stochastic

resonance which

affects neuronal groups

and induces wide

range of global effects

by facilitating or

inhibiting a

subthreshold signal

tES, transcranial electrical stimulation; tDCS, transcranial direct current stimulation;

tACS, transcranial alternating current stimulation; a/c tDCS, anodal/cathodal transcranial

direct current stimulation; DLPFC, dorsolateral prefrontal cortex.

subthreshold signal which will produce two different polarized
after effects (138).

See Table 4 for a summary of the main tES studies and results
on neuronal networks and connectivity.

Effects on Glial Cells and
Neuroinflammation
The relevance of glial biology cannot be neglected to understand
the complexity of the CNS and the comprehensive mechanisms
and effects of tES. The significance is clinically appealing as
glial cells create a wide neuro-glial network for rapid inter-
cellular long-range signaling (73) and are early affected in
many CNS disorders. Although the glial cells have attracted
limited interest for decades, it is only recently that studies
have focused on their role in maintaining synaptic homeostasis
and modulating synaptic plasticity in health and disease (139).
Astrocytes and microglial cells are in close proximity with
synapses as they directly modulate synapse formation and
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elimination (140). The loss of integrity of these supportive cells
is the trigger of neurodegenerative disorders (141–143). Initially
it was believed that AD was consequentially due to Aβ oligomers
and fibrils that accumulate and inflammation. However, now it
has been demonstrated that glial cells drive the synaptic loss in
AD (144–147). In addition, glial mediated synapse formation
may impair synaptic turnover and homeostasis which disrupts
synaptic plasticity. Reactive gliosis is a process of hypertrophy
and proliferation of glial cells in response to an insult such
infection/trauma/neurodegenerative disorders (140, 148). This is
proceeded by release of chemokines, cytokines and neurotrophic
factors that have both neuroprotective (M2-like microglia) and
neuroinflammatory effect (M1-like microglia) (84). This leads to
a simultaneous process of neural damage and synaptic loss with
tissue remodeling and phagocytosis.

To our best knowledge, there are no reports regarding the
activity of tACS on glial cells. Significant after-effects of tDCS on
glial cells function and plasticity are reported by several groups
in the last years (see Table 5). This is supported by the fact
that astrocytes possess voltage-gated channels and transporters
that are sensitive to changes of membrane potential (152, 153).
Administration of tDCS has shown to cause a surge in Ca2+

in cortical astrocytes that is correlated to an overexpression
of the glutamate NMDA receptor (154). Evidence suggests
that tES modulates the activity of microglia cells but also the
neuroinflammatory response, triggering both pro-inflammatory
and anti-inflammatory reaction (149). Cathodal and anodal tDCS
produce microglial activation as indicated by the increase of
Iba-1, an immunostaining marker of activated microglia (150).
High voltage anodal and cathodal tDCS was demonstrated to
trigger an inflammatory response in the microglial cell line
BV2, showing increase of cyclooxygenase 2 (COX-2) expression,
leukocyte transmigration through blood brain barrier (32, 149).
On the other hand, there was decrease of tumor necrosis factor-
alpha (TNF-α) in rat hippocampus after anodal tDCS of parietal
cortex (151). Modulation of the neuroinflammatory reaction
is relevant because microglia activation can be beneficial as
well as detrimental for neural tissue depending on the time
of activation. This is clinically relevant in the case of ischemic
stroke, because tDCS can activate innate immune response
and attract neural stem cells. In vitro experiments suggest that
cathodal tDCS, delivered for 5 days, can induce cell proliferation
and attract neural crest stem cells (149), forming a reservoir
of neurotrophic factors which improved functional recovery. In
addition, tDCS has also been shown to influence astrocytes by
aligning them perpendicular to the electrical field in both vitro
and in vivo (155–157).

Due to the remarkable connectivity of astrocytes and
their pivotal role in neuronal connectivity, non-invasive brain
modulation may have profound neurobiological effects (158).

POTENTIAL CLINICAL APPLICATIONS OF
CURRENT STIMULATION

Efficacy of tES in the clinical setting has been supported by many
experimental works and clinical reports that has demonstrated

TABLE 5 | tES after-effects on glial cells and inflammation.

References/Study Methodology

tES

Targets Main results

Rueger et al. (149) DCS Microglial

cells

tES produces both

proinflammatory and

anti-inflammatory

reactions

Pikhovych et al.

(150)

tDCS

- cDCS

- aDCS

Microglial

cells and

Iba-1

cDCS and aDCS cause

microglial activation

with increase in Iba-1

markers

Rueger et al. (149);

Pelletier and

Cicchetti (32)

High voltage

DCS

- cDCS

- aDCS

Microglial cell

BV2

High voltage aDCS and

cDCS induces

activation of microglial

cells BV2 with

increased expression of

COX-2

(cyclooxygenase 2) and

leukocyte

transmigration

Spezia Adachi

et al. (151)

DCS

- aDCS

Hippocampal

neurons

aDCS of parietal cortex

decreased tumor

necrosis factor alfa

(TNF-α) in the rat

hippocampus

Rueger et al. (149) DCS Neural crest

stem cells

5-day cDCS induced

cell proliferation and

attracted neural stem

cells

tES, transcranial electrical stimulation; DCS, direct current stimulation; a/c DCS,

anodal/cathodal direct current stimulation.

a long-lasting efficacy in many neurological and psychiatric
conditions (5). Despite neurobiological mechanisms have not
been yet fully understood, it is supposed that tES-induced
modulation of cortical excitability through changes in cell firing
rate could pave the way for future therapeutic applications (159).

Application of tACS in the clinical setting is very limited
and largely implemented in the psychiatric settings (160, 161).
Accordingly, tACS was shown to successfully manipulate
auditory hallucinations in schizophrenia by decoupling
interhemispheric connectivity and, when administered to
schizophrenic patients to the left dorsolateral prefrontal cortex
and posterior parietal region in theta frequency (6Hz), improved
working memory tasks (162). Moreover, 40Hz tACS induced
improvement/remission of symptoms in major depression (163)
and obsessive compulsive disorder (164) by modulation of
EEG-gamma frequency bands. Enhancement of gamma band
power connectivity by tACS was also effective in patients with
AD and mild cognitive impairment (165, 166).

Experimental and clinical research with tDCS has been widely
explored for its ability to suppress neuronal hyperexcitability or
by enhancing inhibition (167). While cathodal tDCS reduces
cortical excitability due to neuronal hyperpolarization, anodal
tDCS causes an increase in cortical excitability and promotes
neuronal depolarization (168). These neurobiological effects
might be the substrate to counteract the temporoparietal
hypoactivity (atrophy, reduced metabolic rate, and perfusion)
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reported in AD, suggesting an innovative therapeutic
strategy (169).

In an experimental rat model of stroke, tDCS induced a
dramatic increase in spine density of cortical neurons at the site
of infarct, indicating that it may promote neural plasticity after
stroke (170). Accordingly, tDCS was found to down-regulate
the elevated hemichannel pannexin-1 mRNA expression after
brain ischemia (thus reducing membrane permeability), but also
increase the expression of MAP-2 and GAP-43 proteins, allowing
axons to regrow at the infarcted site through the glial scar and
redevelop their functions (171). Interestingly, tDCS performed
within 3 days after stroke did not improve motor function, in
contrast when performed 7–14 days after stroke resulted in more
pronounced motor function improvement, thus identifying an
optimal time-window for tDCS therapy after stroke (171).

In patients with multiple sclerosis (MS) that received tDCS,
MRI detected (1) increased cerebral metabolic rate of oxygen
(CMRO2), an indicator of the overall brain/neural activity, and
(2) a reduced neuronal reactivity (172).

Seizures are described as a result of an increased excitability
and inefficient inhibitory control in foci with altered neuronal
homeostasis (72, 173, 174). In the recent years, many works
have reported the efficacy of tES in the treatment of drug-
resistant seizures. Authors observed an enhanced neuronal
plasticity and synaptic reorganization after tES (100). For
example, it has been reported that temporal lobe epilepsy
responded to tES of hippocampus (101) and low frequency
tACS applied over the epileptic foci might reduce interictal
and ictal activities in epileptics (175). Moreover, experimental
evidence in a rat model of focal epilepsy demonstrated
that cathodal tDCS has an anticonvulsant effect through
increase of the localized seizure threshold that outlasted the
stimulation (176). Similar results were confirmed on a refractory
pediatric epileptic patient with focal cortical dysplasia who
was treated with cathodal tDCS and experienced marked
reduction in the frequency of seizures (177). Along with this,
cathodal tDCS was reported to prevent the loss of GABAergic
inhibition, which provokes seizures after pentylenetetrazol
administration, thus proposing a new antiepileptic mechanism
(178). These results, therefore, have posed the basis to the
clinical combination of the cathodal tDCS with GABA-agonist
antiepileptic drugs (AEDs), such as benzodiazepines, valproic
acid, felbamate, topiramate, and barbiturates, in order to increase
the antiepileptic stimulation effect.

Application of tDCS is not limited to the cerebral cortex
and its disorders but also for the modulation of the excitability
in the cerebellum and spinal cord. Since pharmacological
approaches to treat cerebellar diseases are still lacking, tES might
represent a new potential therapeutic approach that is yet to
be explored. The mechanisms behind the neurophysiological
effects of tDCS applied over cerebellum have not been extensively
researched as compared to cerebral cortex. However, it could
be inferred that ionic gradient shifts, cellular activation and
inhibition, modulation of neurotransmission may occur in the
same way (179). Evidence suggests that cerebellar cathodal tDCS
decreases the inhibitory tone of cerebellum on primary motor
cortex while anodal tDCS increases it, likely through a specific

modulation of dentate-thalamo-cortical connections (21). TDCS
also modulates cerebellum-dependent motor learning: anodal
tDCS improved the performance in a locomotor adaptation task
(180). Mechanisms need to be further explored, however it has
been hypothesized that anodal tDCSmay broaden the availability
of Purkinje cells for learning or increase the dynamic range of
these cells, whereas cathodal tDCS may reduce the excitability
of Purkinje cells (181). The effects of tDCS on cerebello-
motor connectivity were studied in 20 patients with ataxia with
administration of cerebello-spinal tDCS (179). Improvement in
ataxia was reported and was associated with restoration of motor
cortex excitability and cerebellar-brain inhibition.

Application of spinal tDCS is very limited but the preliminary
results are extremely interesting. It has been reported that spinal
anodal tDCS reduces the amplitude of laser evoked potentials
of stimulated Aδ fibers (182) and increases cortico-spinal
excitability in a polarity-independent manner (183). While spinal
anodal tDCS inhibits the ascending pathways and enhances the
reflex circuitry, the spinal cathodal tDCS enhances the activity of
ascending pathways and suppresses the reflex circuitry in humans
(181). Since there is involvement of the ascending and descending
pathways, the glutamatergic, GABAergic and glycinergic systems
should be involved in modulating the spinal plasticity (181).
The effects of this kind of stimulation can vary in response to
several factors including intensity, polarity and direction (184)
but also through modulation of the voltage-gated Ca2+channels
in the spinal motor neuron dendrites (185). Altogether, these
preliminary results demonstrate the ability to modulate spinal
plasticity with electrical current stimulation, paving the way
for new therapeutic strategies in neurological disorders with
impaired spinal excitability.

CHALLENGES AND FUTURE DIRECTIONS

To date, despite the undisputed role of tES in experimental
settings in humans as a tool to “switch on/off” specific brain
regions that are supposed to be involved in several higher brain
functions, its translation into clinical settings is still far to be
reached due to the difficulty in producing clinically significant
effects in the majority of subjects/patients. This is largely due
to the lack of a full comprehension of both the neurobiological
bases of tES and the specific neuropathological mechanisms
of disease. There are still few data on the possible clinical
efficacy of prolonged/repeated protocols of stimulation that
might produce persistent changes in synaptic efficacy that cannot
be achieved by a short-lasting intervention. In this context,
successful trials of prolonged tES protocols could eventually
be translated into invasive implants of cortical electrodes for
chronic stimulation. Finally, tDCS shows lack of selectivity
that might influence different cortical circuits and produce side
effects that counteract the effects responsible for the therapeutic
action. Therefore, optimizing protocols, electrode size and
intensity of stimulation should help to overcome these technical
limitations that impedes a tailored approach to the patient
and disease.
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