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Introduction: The degree of disability after stroke needs to be objectively measured

to implement adequate rehabilitation programs. Here, we evaluate the feasibility of a

custom-built software to assess motor status after stroke.

Methods: This is a prospective, case–control pilot study comparing stroke patients with

healthy volunteers. A workout evaluation that included trunk and upper limb movement

was captured with Kinect® and kinematic metrics were extracted with Akira®. Trunk and

joint angles were analyzed and compared between cases and controls. Patients were

evaluated within the first week from stroke onset using the National Institutes of Health

Stroke Scale (NIHSS), Fulg-Meyer Assessment (FMA), and modified Rankin Scale (mRS)

scales; the relationship with kinematic measurements was explored.

Results: Thirty-seven patients and 33 controls were evaluated. Median (IQR) NIHSS

of cases was 2 (0–4). The kinematic metrics that showed better discriminatory capacity

were body sway during walking (less in cases than in controls, p = 0.01) and the drift in

the forearm–trunk angle during shoulder abduction in supination (greater in cases than

in controls, p = 0.01). The body sway during walking was moderately correlated with

NIHSS score (Rho = −0.39; p = 0.01) but better correlated with mRS score (Rho =

−0.52; p < 0.001) and was associated with the absence of disability (mRS 0–1) (OR =

0.64; p = 0.02). The drift in the forearm–trunk angle in supination was associated with

the presence of disability (mRS >1) (OR = 1.27; p = 0.04).

Conclusion: We present a new software that detects even mild motor impairment

in stroke patients underestimated by clinical scales but with an impact on

patient functionality.
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INTRODUCTION

Stroke is the most prevalent cause of disability worldwide. Two
of three stroke survivors will develop deficits that will cause high
healthcare and social costs (1, 2). Apart from speech, visual,
or cognitive deficits, one of the most important components of
stroke-related disability is motor function impairment. Evenmild
deficits that may not be detected in routine clinical evaluation
may significantly reduce patient’s quality of life by interfering
with the activities of daily living and their capacity to return
to work. For these reasons, it is important to reliably measure
these deficits and be able to correlate them with the degree
of disability in order to implement adequate and personalized
rehabilitation programs.

Motion capture systems (MCS) have been used to assessmotor
function in different neurological conditions with promising
results (3–7). The main advantages are their low cost and relative
ease of use. The most commonly used system is Microsoft
Kinect R©, which is a portable and marker-free motion capture
system that uses an infrared light and a deep sensor to create a
three-dimensional reconstruction of the human body and detect
its movements. Kinect R© results are concordant with marker-
based systems which are the gold standard for motion analysis
(8). In combination with specific software, Kinect R© can be used
for rehabilitation purposes (9). Previous studies have evaluated
the feasibility of this system for gait assessment in multiple
sclerosis or Parkinson disease (5, 7, 10) and for upper extremity
motor function evaluation in muscle diseases (3, 4).

The use of kinematic metrics as a reliable measure of
motor function for rehabilitation purposes in stroke patients is
currently recommended (11). However, only few studies evaluate
the usefulness of kinematic measurements to analyze motor
deficit after stroke in order to help physicians to objectively
measure patient’s deficits. One example is the KINARM system
that evaluates upper limb function in stroke patients (12, 13).
Nevertheless, this system is complex and requires an exoskeleton,
making it unsuitable to be used in routine clinical practice.
Recent works suggest that Kinect R© and virtual reality systems can
effectively guide rehabilitation workouts in stroke patients (9, 14),
but few studies analyze the usefulness of the Kinect R© system
for assessing poststroke functional status. One includes gait
assessment (6), while others analyze reaching tasks in poststroke
patients and show good concordance with specific clinical scales
(15, 16). However, to our knowledge, a complete workout design
to test the global function in poststroke patients with Kinect R©

has not been studied, and there is no information available about
the potential relationship between the kinematic measures and
disability after stroke.

Although Kinect R© is becoming widely used, each research
group uses their own software for the kinematic analysis. The
Akira R© software (Akira, System Friend Inc.) is a custom-
built software developed to be used with Kinect R© without
body markers, which reconstructs a three-dimensional avatar
of the human body and obtains kinematic metrics from body
movement records.

Our main aim is to evaluate the usefulness of Microsoft
Kinect R© along with the software Akira R© for an objective motor

status evaluation after stroke. The secondary objective is to
explore the relationship between kinematic metrics provided by
the software and functional status after stroke.

MATERIALS AND METHODS

This is a case–control, pilot-feasibility study. Cases were
prospectively selected from in-hospital patients with the
diagnosis of acute ischemic stroke, able to stand up, and without
significant language disorder that could interfere with the
understanding of the purpose of the study and the explanation
of the workout. Controls were subjects without any neurological
condition or osteomuscular diseases. Controls were not paired
with cases. The sample size was estimated for at least 30
participants in each group due to its exploratory nature.

We designed a workout extracted from the Fugl–Meyer
Assessment (FMA) motor section (17) to be captured with
Kinect R© (Kinect 2 for Windows, SDK 2.0). The kinematic
metrics were obtained with the Akira R© software. The workout,
kinematic metrics, and FMA item of reference are described
in Table 1 and exemplified in Figure 1. Briefly, the workout
comprises eight exercises that were performed always in the
same order.

The first four exercises were designed to evaluate the trunk
balance: (1) standing for 10 s, (2) walking 2m, (3) sitting position
with eyes opened for 5 s, and (4) with eyes closed for 5 s. For
these exercises, we calculated body oscillation (body sway) as
the angle between the maximum trunk deviation to the left
and to the right with respect to baseline position during the
exercise. The other four exercises of the workout were designed
to evaluate the upper limb movement. Participants were asked
to perform a shoulder abduction reaching 90◦ with forearm in
pronation and to maintain the position for 5 s. Then, they were
asked to change the forearm to supination and to maintain the
position for 5 s. For these two exercises, we calculate the drift
in the shoulder–trunk angle, elbow–trunk angle, and forearm–
trunk angle from the start to the end of each position. Then,
we asked the participant to perform a shoulder flexion to
90 and 180◦, and we measured the maximum shoulder angle
reached. Finally, we asked the participant to reach the ear with
the ipsilateral hand and calculated the minimum elbow angle
reached. For arm exercises, we used the difference in performance
between the affected side and the normal side in each subject
in order to reduce individual variability; so for every angle,
the absolute difference between both sides was used. The total
workout duration estimated was 1min and 30 s. Every exercise
was explained to the participants before execution and they were
video-guided during the recording. Also, the participants were
guided by the clinician during the workout to ensure that it was
correctly performed. Each participant performed the workout
just once, in order to reduce the likelihood of practice effects.

Variables recorded were demographics and characteristics
of stroke for cases. Stroke severity was assessed by certified
neurologists and a rehabilitation physician using the National
Institutes of Health Stroke Scale (NIHSS) and the FMA upper
limb sections II, III, and IV (17), and functional status was
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TABLE 1 | Description of the exercises and calculation formula for each parameter.

Exercise Plane Angles evaluated Measurements

1. Standing position 10 s Frontal and sagittal Axial trunk angle ABS = MaxTA–MinTA

2. Walking 2m Frontal and sagittal Axial trunk angle ABS = MaxTA–MinTA

3. Sitting position, eyes open Frontal and sagittal Axial trunk angle ABS = MaxTA–MinTA

4. Sitting position, eyes closed Frontal and sagittal Axial trunk angle ABS = MaxTA–MinTA

5. Shoulder abduction with forearm in

pronation (5 s)→arm drift*

Frontal Shoulder angle, elbow

angle, forearm–trunk angle

1SAp = SAps0–SAps5

1FAp = FAps0–FAps5

1EAp = EAps0–EAps5

6. Shoulder abduction with forearm in

supination (5 s)→arm drift*

Frontal Shoulder angle, elbow

angle, forearm–trunk angle

1SAs = SAss0–SAss5

1FAs = FAss0–FAss5

1EAs = EAss0–EAss5

7. Shoulder flexion at 90◦ and 180◦** Sagittal Shoulder angle Maximum shoulder angle

reached

8. Elbow flexion with shoulder in

abduction***

Frontal Elbow angle Minimum elbow angle

reached

ABS, average body sway; MaxTA, maximum trunk angle; MinTA, minimun trunk angle; 1, variation; SAp, shoulder angle in pronation; SAs, shoulder angle in supination; FAp, forearm

angle in pronation; FAs, forearm angle in supination; EAp, elbow angle in pronation; EAs, elbow angle in supination; s0, second 0; s5, second 5. These measurements are graphically

shown in Figure 1. The average body sway is defined as the body oscillation and calculated as the angle between the maximum trunk deviation to the left and to the right with respect

to baseline position during the exercise.

*Extracted from the Fugl–Meyer Assessment (FMA). A. Upper extremity: seating position. III. Volitional movement mixing synergies, shoulder flexion 0–90◦ and pronation supination: In

this case, we asked the participant to perform an abduction movement from 0 to 90◦ and maintain the position during 5 s with the elbow in pronation. After 5 s, we asked the participant

to change to elbow supination and maintain the position for another 5 s.

**Extracted from the FMA. A. Upper extremity: seating position. IV. Volitional movement with little or no synergy: shoulder flexion 90–180◦. We asked the participant to perform a shoulder

flexion from 0 to 90◦ and from 90 to 180◦.

***Extracted from the FMA. II. Volitional movements within synergies. Flexor synergy: We asked the participant to touch the ipsilateral ear.

measured using the modified Rankin Scale (mRS) score (18).
All patients were clinically evaluated at the same time of
kinematic evaluation. Informed consent was obtained from each
participant. The study was approved by the Research ethics
committee with Medical Products of La Paz University Hospital.

The statistical analysis was performed using SPSS 12.0
for Windows (SPSS Inc., Chicago, IL). The descriptive and
comparative analyses were conducted considering the predefined
groups. Categorical variables were expressed as percentages and
compared between groups using the chi-square test. Continuous
variables were expressed as mean and standard deviation (SD) or
median and interquartile ranges (IQR) and were compared using
Student’s t-test.

Univariate and multivariate regression analyses adjusted
by age and sex were performed to identify those kinematic
measurements that were independently associated with the
diagnosis of stroke (cases). The variables included in the model
were those that achieved a difference with p < 0.10 in the mean
comparison tests.

Within the cases group, a Spearman correlation analysis
was performed to explore the association between kinematic
metrics that were independently associated with the diagnosis
of stroke and the clinical scales scores at the time of
evaluation. Additionally, the association of kinematic metrics
and the presence of disability (defined as mRS score 2–5
vs. no disability: mRS 0–1) was analyzed using a logistic
regression analysis.

All tests were two-tailed, and statistical significance was
established as p < 0.05.

The data that support the findings of this study are available
from the author for correspondence upon reasonable request.

RESULTS

From March 2017 to November 2017, 70 participants were
enrolled. A total of 37 ischemic stroke cases and 33 controls were
included. Cases were significantly older than controls (mean ±

SD: 70.4 ± 11.216 vs. 55.5 ± 12.3 years; p < 0.001) and were
more frequently men (64.8 vs. 27.3%; p= 0.002). Cases had mild
strokes with median NIHSS 2 (IQR 0–4), median motor NIHSS
subscale 1 (IQR 0–2), and median FMA 18 (IQR 13–31). They
also showedmoderate disability with median mRS 2 (IQR 0–3) at
the moment of the evaluation. The time lapse from stroke onset
to the study evaluation was 3 (2–6) days [median (IQR)].

Comparison of the kinematic data between cases and controls
is described in Table 2. Cases showed less body sway than
controls in the frontal and sagittal planes when walking with
almost half of the body oscillation grades and greater body sway
in the sagittal plane while in sitting position. Cases showed
greater arm drift than controls during the shoulder abduction,
mainly in supination. After adjusting for age and sex, the drift
in the forearm–trunk angle in supination (B coefficient 0.28;
p = 0.04) and the reduced body sway in the frontal plane during
walking (B coefficient −0.36; p = 0.01) remained significantly
associated with stroke cases.

Body sway in the frontal plane during walking was moderately
correlated with the NIHSS score (Rho = −0.39; p = 0.01) but
more strongly correlated with themRS (Rho=−0.52; p< 0.001).
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FIGURE 1 | Three-dimensional representation of the body obtained with the

Kinect–Akira system and angles of interest. (A) Exercises 1 to 4 in the frontal

plane (left) and in the sagittal plane (right). We calculated the body oscillation

(body sway) as the angle between the maximum trunk deviation to the left and

to the right with respect to baseline position during the exercise. (B) Exercises

5 and 6 in the frontal plane. Extracted from the Fugl–Meyer Assessment (FMA).

(A) Upper extremity: seating position. III. Volitional movement mixing synergies,

shoulder flexion 0–90◦ and pronation supination: In this case, we asked the

participant to perform an abduction movement from 0 to 90◦ and maintain the

position during 5 s with the elbow in pronation. After 5 s, we asked the

participant to change to elbow supination and maintain the position for

another 5 s. Angles measured are shoulder with the trunk, elbow in extension,

and forearm with the trunk. We measured the difference between the start and

the end (after 5 s) of the arm position. (C) Exercise 7. Extracted from the FMA.

(A) Upper extremity: seating position. IV. Volitional movement with little or no

synergy: shoulder flexion 90–180◦. We asked the participant to perform a

shoulder flexion from 0 to 90◦ and from 90 to 180◦. We measured the maximal

angle of the shoulder with the trunk reached in the sagittal plane. (D) Exercise

8. Extracted from the FMA. II. Volitional movements within synergies. Flexor

synergy: We asked the participant to touch the ipsilateral ear. We measured

the minimum angle of the elbow flexion reached in the frontal plane.

The drift in forearm–trunk angle was not correlated with any of
the scales (correlations are shown in Table 3). We did not find
any correlation between FMA score and kinematic data.

In the logistic regression analysis, we found that the drift in
the forearm–trunk angle in supination was associated with the
presence of disability (OR = 1.27; 95% CI = 1.01–1.60, p =

0.04) and that body sway during walking was associated with the
absence of disability (OR= 0.64; 95% CI= 0.43–0.93; p= 0.02).

DISCUSSION

The results of this pilot study suggest that this novel custom-built
software allows discrimination of mild deficits in stroke patients
in comparison with subjects without stroke, even though these

findings show a poor correlation with the score in the NIHSS or
the FMA. This suggests that the tool can detect minor deficits
not quantified by the clinical scale but which can impact patient’s
functionality as suggested by the better correlation between the
kinematic metrics and the mRS score.

Kinect R© has previously been proven useful in the assessment
of other neurological conditions such as posture disorders
associated with multiple sclerosis, gait disorders in Parkinson’s
disease or the upper limb movement in type III Spinal muscular
atrophy or amyotrophic lateral sclerosis (3–6). Kinect R© is
also widely used in stroke rehabilitation, together with video
games for therapy purpose (9, 19). Apart from the easy
use of Kinect R©, its main advantages when used with the
software Akira R© is that the workout chosen to evaluate motor
function can be personalized for specific needs. Moreover,
it is portable and cheap, thus being more accessible and
suitable for clinical evaluation at the patient bedside. All
these characteristics make this tool suitable to be used in
the neurological clinical setting for the objective evaluation of
motor function in acute stroke patients if the promising results
of this pilot study are confirmed and better established in
further studies.

The measures that showed the greatest differences between
cases and controls were reduction in body sway during walking
and forearm–trunk angle drift during shoulder abduction
in supination. The latest might be expected due to motor
impairment after stroke, but it is remarkable that most of the
cases included in this pilot study had very mild deficits that may
not be quantified during the routine clinical evaluation. These
results are in agreement with other studies of stroke patients,
in which subclinical motor deficits were found using robotic
technology such as KINARM (12, 13).

The reduction in body sway found among stroke patients is a
novel and interesting finding, since it is not routinely assessed.
Musculoskeletal disorders, age, and other non-neurological
conditions may affect gait. Different walking patterns have been
described in subjects without neurological disorders as well
as in Parkinson’s disease and in stroke using Kinect R© (using
signal processing and measurements different from those used
in this study) (6). Our results suggest that walking patterns can
be altered after a stroke even in patients without a significant
motor deficit.

Moreover, the body sway during walking had a weak
correlation with the NIHSS score and a strong correlation with
the mRS: the less body sway, the more disability. Interestingly,
the reduction in body sway during walking and the drift of
forearm–trunk angle during shoulder abduction in supination
were also associated with the presence of disability. This is the
first time, to our knowledge, that specific kinematic metrics show
association with the functional status of the patient after stroke
and, therefore, deserve further investigation.

Apart from the low sensitivity of the neurological scales
routinely used in clinical practice to accurately measure minor
motor deficits, another disadvantage of these scales is that the
scoring relies on the subjective assessment of the evaluator, which
may reduce the accuracy of the assessment especially for minor
deficits. Also, the various motor scales are strongly correlated

Frontiers in Neurology | www.frontiersin.org 4 February 2021 | Volume 12 | Article 603619

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Gutiérrez Zúñiga et al. Kinematic Metrics in Stroke Evaluation

TABLE 2 | Comparison of kinematic metrics between cases and controls.

Measurements Controls Mean degrees (SD) N = 33 Cases Mean degrees (SD) N = 37 p

1. Standing position 10 s Body sway. Frontal plane. 1.09 (0.86) 1.70 (2.27) 0.13

Body sway. Sagittal plane. 3.12 (2.32) 2.49 (2.58) 0.29

2. Walking 2m Body sway. Frontal plane. 4.07 (2.73) 2.58 (2.06) 0.01

Body sway. Sagittal plane. 4.57 (4.21) 2.61 (3.13) 0.02

3. Sitting position, eyes open Body sway. Frontal plane. 1.62 (1.85) 1.85 (2.17) 0.64

Body sway. Sagittal plane. 4.24 (4.24) 6.72 (5.11) 0.03

4. Sitting position, eyes closed Body sway. Frontal plane. 1.64 (1.85) 2.12 (2.13) 0.33

Body sway. Sagittal plane. 40.02 (56) 38.99 (50.5) 0.93

5. Shoulder abduction with forearm

in pronation (5 s)→arm drift

Shoulder angle. Pronation. Frontal

plane.

5.72 (15.14) 9.58 (12.15) 0.24

Elbow extension angle. Pronation.

Frontal plane.

2.60 (2.6) 11.52 (27.06) 0.05

Forearm–trunk angle. Pronation.

Frontal plane.

5.30 (14.7) 7.22 (9.3) 0.5

6. Shoulder abduction with forearm

in supination (5 s)→arm drift

Shoulder angle. Supination. Frontal

plane.

2.11 (1.99) 8.11 (17.93) 0.05

Elbow extension angle. Supination.

Frontal plane.

2.06 (2.66) 9.43 (25.94) 0.08

Forearm–trunk angle. Supination.

Frontal plane.

2.18 (1.86) 4.97 (4.2) 0.01

7. Shoulder flexion at 90◦ and 180◦ Shoulder angle. Sagittal plane. 29.45 (45.9) 31.83 (33.6) 0.8

8. Elbow flexion with shoulder in

abduction

Elbow flexion angle. Frontal plane. 17.63 (32.6) 16.74 (19.9) 0.89

Data for exercises exploring arm movements show the difference in the measurements of angles (degrees) between both sides.

between them, but weakly correlated with disability scales (20),
and thus, certain motor deficits which have a real impact on the
quality of life of the patient could be underestimated. All these
disadvantages of clinical scales could be overcome using a reliable
motion capture system capable of being used at the bedside. The
poor correlation of the kinematic metrics with the clinical scales
for quantification of the neurological deficits (NIHSS, FMA) and
the better correlation with disability assessed by the mRS in this
pilot study suggest that this could be a good tool for clinicians
to evaluate subtle deficits that have an impact on the patient’s
functional status. This could be important in clinical practice,
as the prescription of an occupational therapy or rehabilitation
program is usually made based on clinical evaluation.

Our study has some limitations. The most important is the
large difference in age and gender between the two study groups.
Although these variables were considered in the multivariate
analysis, future studies should correct this methodological
limitation. Also, the small sample size prevented adjustment by
other confounders such as stroke location, which may influence
results. On the basis of the data obtained from this pilot
study, a larger one will be performed to confirm the findings
and to determine the clinical applicability of this tool for the
assessment of motor impairment and disability in stroke patients
in clinical practice. In this regard, we have designed the AKIRA II
study (ClinicalTrials.gov identifier: NCT04464863) with a larger
sample size and a prospective design that will match cases and
controls by age and sex and will analyze results according to
stroke location and characteristics in brain MRI.

TABLE 3 | Spearman’s Rho correlation between National Institutes of Health

Stroke Scale (NIHSS), motor NIHSS subscale, Fugl–Meyer Assessment (FMA),

and modified Rankin Scale (mRS) and the drift in forearm–trunk angle in

supination and body sways during walking.

Body sway in frontal plane Drift in forearm–trunk angle

Rho p Rho p

NIHSS −0.39 0.01 0.09 0.57

NIHSS motor

subscale

−0.31 0.06 0.05 0.76

mRS −0.52 <0.001 0.29 0.07

FMA 0.06 0.72 0.06 0.73

In conclusion, we present a new software that detects motor
impairment even in patients with mild strokes and motor deficits
that are underestimated by clinical scales but have an impact
on patient functionality. Given the fact that stroke is one of the
main causes of disability, this tool could help the physician to
globally evaluate patient’s motor function easily at the bedside
and, eventually, recommend rehabilitation therapy based on this
objective evaluation.

These promising results should be validated with further
studies to better establish their clinical applicability, with the
inclusion of more kinematic metrics (as movement acceleration)
and the creation of population-based normalized kinematic data
per age range, based on current recommendations (11, 21).
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