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Background: Decision-making in epilepsy surgery is strongly connected to the

interpretation of the intracranial EEG (iEEG). Although deep learning approaches have

demonstrated efficiency in processing extracranial EEG, few studies have addressed

iEEG seizure detection, in part due to the small number of seizures per patient typically

available from intracranial investigations. This study aims to evaluate the efficiency of

deep learning methodology in detecting iEEG seizures using a large dataset of ictal

patterns collected from epilepsy patients implanted with a responsive neurostimulation

system (RNS).

Methods: Five thousand two hundred and twenty-six ictal events were collected from

22 patients implanted with RNS. A convolutional neural network (CNN) architecture was

created to provide personalized seizure annotations for each patient. Accuracy of seizure

identification was tested in two scenarios: patients with seizures occurring following a

period of chronic recording (scenario 1) and patients with seizures occurring immediately

following implantation (scenario 2). The accuracy of the CNN in identifying RNS-recorded

iEEG ictal patterns was evaluated against human neurophysiology expertise. Statistical

performance was assessed via the area-under-precision-recall curve (AUPRC).

Results: In scenario 1, the CNN achieved amaximummean binary classification AUPRC

of 0.84± 0.19 (95%CI, 0.72–0.93) and mean regression accuracy of 6.3± 1.0 s (95%CI,

4.3–8.5 s) at 30 seed samples. In scenario 2, maximum mean AUPRC was 0.80 ± 0.19

(95%CI, 0.68–0.91) and mean regression accuracy was 6.3 ± 0.9 s (95%CI, 4.8–8.3 s)

at 20 seed samples. We obtained near-maximum accuracies at seed size of 10 in both

scenarios. CNN classification failures can be explained by ictal electro-decrements, brief

seizures, single-channel ictal patterns, highly concentrated interictal activity, changes in

the sleep-wake cycle, and progressive modulation of electrographic ictal features.

Conclusions: We developed a deep learning neural network that performs personalized

detection of RNS-derived ictal patterns with expert-level accuracy. These results suggest
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the potential for automated techniques to significantly improve the management of

closed-loop brain stimulation, including during the initial period of recording when the

device is otherwise naïve to a given patient’s seizures.

Keywords: epilepsy, responsive neurostimulation, seizure detection, ictal pattern, deep learning

INTRODUCTION

Since its clinical establishment in the early twentieth century,
intracranial electroencephalography (iEEG) has become
the fundamental modality for evaluation and subsequent
management in epilepsy surgery (1–4). Recorded either
with the use of subdural electrodes (5) or stereotactic
electroencephalography (sEEG) (6), the iEEG allows for
localization of the epileptogenic zone or the epileptogenic
network giving rise to seizures (7, 8). Computer-assisted signal
processing methodologies became popular in the field to support
the tedious task of seizure onset localization (9–11).

Deep learning methodologies have been successful in the
medical field due to their efficiency in information extraction
from raw data (12). One of the most recently established
approaches to machine-learning is the convolutional neural
network (CNN) model. CNNs are artificial neural networks
with multiple consecutive layers that perform convolutions in a
hierarchical fashion (13, 14). They are considered to be the deep
learning model of choice in applications that require processing
of multiple array data, as they can successfully identify local
conjunctions in data and build high-level features from low-
level ones (15). In the brain-related sciences and clinical fields,
neural networks have become a core entity of brain-computer
interfaces (16–23), assisted diagnosis and rehabilitation for brain
disorders (24–27), and allowed methodological improvements in
neuroscience (28–31). For electroencephalographic (EEG) data
analysis specifically, deep learning by means of CNNs has been
applied for feature extraction purposes (32–34), prediction of
cognitive performance (35, 36), and identification of evoked
potentials (37).

In recent years, deep learning has been applied in extracranial
EEG data to facilitate seizure detection in adult (38–41), children
(42), and neonatal populations (43), as well as to identify
interictal EEG features (44, 45). Fewer studies, have used deep
learning to detect seizures from iEEG data (46). Machine learning
approaches have also been used to link extracranial EEG with
ECoG discharges (47), predict epileptic seizures (41, 48), and
design seizure-detection embedded systems (49). The studies
aiming at developing deep learning approaches using intracranial
seizure data derived from pre-surgical evaluations for epilepsy are
highly limited by the small number of recorded seizures available
per patient.

More recently, neuromodulation by the Food and Drug
Administration (FDA)-approved RNS System has been used
in the U.S.A. as an alternative minimally invasive and
personalized therapy for patients with pharmacoresistant focal
epilepsy (50). The RNS system is an implantable closed-loop
electrical stimulation device that applies electrical stimulation
to epileptogenic tissue upon detection of ictal patterns (51–54).

The electric current applied locally over the seizure onset
areas affects the progress of the detected ongoing ictal patterns
by acutely causing their attenuation (55) or by chronically
inducing changes in the epileptic synchronization and neuronal
recruitment properties of the underlying epileptogenic tissue
(56). For the first time in the history of iEEG, RNS allows the
recording of iEEG epochs over long periods of time, resulting
in the accumulation of hundreds and often thousands of iEEG
epochs per patient per year. However, a study to evaluate the
efficiency of CNNs in large intracranial RNS-derived seizure
datasets remains lacking. As a consequence, the development of
reliable automated seizure detection methods is urgently needed
to support routine clinical evaluation of RNS patients, as well
as to facilitate analytics for personalized treatment (57). Our
study addresses this need and evaluates the efficiency of deep
learning methodology in detecting iEEG ictal patterns using a
large RNS-derived dataset of ictal patterns.

METHOD

Patients
Patients included in this study suffered from focal epilepsy,
diagnosed according to current ILAE criteria (58, 59). Patients
underwent investigative intracranial recording procedures, either
by subdural electrodes, or by robotic-assisted stereotactic
EEG, to identify the focus and extent of their epileptogenic
zone. After a review of all available patient data during
weekly multidisciplinary epilepsy conferences and consideration
of available therapeutic options, closed-loop neurostimulation
therapy (RNS, NeuroPace, Mountain View, CA, USA) was
recommended. Our patients were implanted with the RNS
system between January 2015 and June 2018, and the use of their
data for this study was approved by the University of Pittsburgh
Institutional Review Board (IRB).

RNS Implantation
RNS leads were implanted as closely as possible to the
recorded and/or hypothesis-derived epileptogenic regions
(Supplementary Figure 1). Patients with a diagnosis of
neocortical epilepsy onset were implanted either with strips
placed over the focus, or depth leads placed through the
focus, or a combination of both. Patients with a diagnosis of
malformations of cortical development were implanted with
depth leads across the posterior-anterior direction of the lesion.
Patients with a diagnosis of mesio-temporal epilepsy were
implanted with depth electrodes placed across the posterior-
anterior axis of the hippocampus. Patients with a diagnosis of
idiopathic generalized epilepsy were implanted in the thalamus
by oblique depth electrodes targeting the centro-median nucleus.
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Assessment of electrode locations was performed by fusion of
the post-surgical CT with the pre-surgical MRI.

Data Acquisition
iEEG data recorded from the RNS system were obtained
from NeuroPace. Additional RNS-related metadata, including
recording, detection and stimulation settings, were collected
directly from the NeuroPace Patient Data Management System
(PDMS) using purpose-built software. Recordings consisted
exclusively of 90 s duration, 4-channel ECoGs, online band-pass
filtered at 4–125Hz, sampled at 250Hz and digitized by a
10-bit ADC. iEEG channel derivations were bipolar between
neighboring electrode contacts (Supplementary Figure 1),
grounded to the case of the RNS pulse generator. All electrode
impedances measured below 1 kOhm for all recordings. Both
scheduled and detection-triggered iEEG recordings were
obtained and used in this study. Scheduled recordings were
triggered by the RNS device’s onboard clock to occur either every
12 or 24 h and offered a continuous sampling of spontaneous
neurophysiologic activity. Detection triggered recordings were
initiated by one of the onboard closed-loop algorithms. Patients
were instructed to download their raw iEEG data daily to a
local computer, through a transcutaneous telemetry wand,
which was in turn uploading the recordings to the NeuroPace
PDMS on a weekly basis. Immediately post-implantation, the
device was set to passive recording mode for ∼1 month, during
which no stimulation was delivered in order to record baseline
activity (baseline epoch). Once baseline activity was reviewed,
stimulation parameters were configured and activated. During
the rest of the post-implantation period the device delivered
detection-triggered stimulation therapy and parameters were
periodically modified in subsequent clinic visits based on
evaluation of seizure control status. The time interval during
which RNS parameters remain unchanged is referred to as
programming epoch.

Data Labeling
In accordance with established clinical practice, iEEG ictal
patterns were visually identified by an experienced epilepsy
surgery neurophysiologist (V.K.) and in turn confirmed by a
board-certified epileptologist (N.Z.). The evaluation process was
not influenced by and did not take into account the “long-
episode” detections of the RNS system. The onset of ictal patterns
was annotated by a cursor marker. The term “ictal pattern”
is used instead of the term “seizure,” as the device provides
no information regarding the clinical manifestation of the
electrographic events. The iEEG ictal pattern onset was defined as
the point in time after which the iEEG recording background was
no longer interictal and was followed by a paroxysmal discharge
of ictal features with evolution in frequency and morphology
over time. Interictal background was evaluated from scheduled
recordings that did not contain iEEG ictal patterns.

Data Augmentation
To reduce overfitting of themodel to the training data, we applied
label-preserving transformations to iEEGs in the training set (60).
We padded the iEEGs with 30 s of zero-voltage measurements

before and after the recording, and then chose a 90-s crop
uniformly at random. We also rescaled the data by multiplying
each signal by a factor between 0.8 and 1.2, chosen uniformly
at random for each iEEG. The network was evaluated on
untransformed iEEGs from separate validation sets.

Model Architecture and Training
We used a convolutional neural network with high-level
architecture shown in Figure 1. The network contains 23
convolutional layers with residual connections to make
optimization of such a deep network tractable (61). The
network takes as input a time-series of intracranial voltage
measurements and a patient identifier. The patient identifier
facilitates personalized ictal pattern prediction by allowing the
network to make predictions conditioned to a particular patient.
The network outputs two predictions: a probability that the
recording contains an ictal pattern, and the onset time of the
ictal pattern in seconds. We jointly optimize both losses using a
hybrid loss function. Defining s ∈ {0, 1} as ictal pattern label,
ŝ as predicted ictal pattern probability, t as ictal pattern onset
time, and t̂ as predicted ictal pattern onset time, the loss for one
example is:

L
(

s, ŝ, t, t̂
)

= crossentropy
(

s, ŝ
)

+ 0.1 huber
(

t, t̂
)

where

crossentropy
(

s, ŝ
)

= −s log
(

ŝ
)

− (1− s) log
(

1− ŝ
)

and

huber
(

t, t̂
)

=

{

1
2

(

t − t̂
)2

for
∣

∣t − t̂
∣

∣ ≤ 1
∣

∣t − t̂
∣

∣ − 1
2 otherwise

The network contains 11 residual blocks with 2 one-dimensional
convolutional layers per block. The convolutional kernel size is
16. The number of filters is 16 in the first layer and increases
linearly to 116 in the penultimate residual block. At that point,
the filters are concatenated with one-hot encoded patient IDs
followed by the final residual block. At the first convolutional
layer and at the start of every other residual block, the stride is 2,
which down samples the data by a factor of 2 every other residual
block. Alternating residual connections also use a stride of 2 in
their convolution.

Before each convolutional layer, we apply batch normalization
(62) followed by rectified linear activations (63). We initialize
the weights (64) and train the network using stochastic gradient
descent for 20 epochs with a batch size of 128. We use cyclical
learning rates (65) by cycling the learning rate from 0.1 to 0.025
every 4 epochs. For the final two epochs, the learning rate is
held at 0.025. Experiments were conducted on Nvidia Tesla K80
accelerators using TensorFlow 1.13.

Accuracy is evaluated by concordance with expert
identification, as well as the empirical time constraint for
detecting the ictal pattern onset at an interval of less than ±5 s
from the expert onset marking, corresponding to half the 20 s
EEG review page typically used in clinical routine.
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FIGURE 1 | Architecture of the network. The CNN contains 23 convolutional

layers with residual connections. The network takes as input a time-series of

intracranial voltage measurements and a patient identifier. Before each

convolutional layer, batch normalization is applied followed by rectified linear

activations. The network contains 11 residual blocks with 2 one-dimensional

convolutional layers per block. The convolutional kernel size is 16. The number

of filters is 16 in the first layer and increases linearly to 116 in the penultimate

residual block. The network outputs two predictions: a probability that the

recording contains an ictal pattern, and the onset time of the ictal pattern in

seconds (Conv, convolutional layer; BN, batch normalization; ReLU, rectified

linear activations).

Annotated iEEG ictal patterns from the dataset were
partitioned into training and testing sets; the training set
was used to introduce data and the testing set to measure
algorithm performance. We decided to create the following
two experimental scenarios that correspond to actual clinical
situations: (1) when a patient already implanted with RNS moves
his epilepsy care to a new center, and the new center receives
all prior RNS recordings for analysis, or when an RNS clinic

physician moves to a new center, where a list of RNS patients
is already registered for care (scenario 1) and, (2) the situation
when a new patient is implanted (scenario 2). To test the 1st
scenario on previously unseen data of patients that have already
been recorded for some time (scenario 1), cross-validation was
performed using leave-one-out methodology. This was done
by training and evaluating the network on all ictal patterns
obtained from all except one patient. Ictal patterns from this
“hold-one-out” patient were randomly selected to form a seed
set that was then used to train the CNN. The size of seed set
was increased from n = 0 to n = 30 at increments of 5. In
addition, each seed set was paired with an equal number of
interictal epochs free from ictal patterns; for this purpose, non-
ictal scheduled recordings from the “hold-one-out” patient were
used to pair seed set recordings containing ictal patterns from
the same patient. We then evaluated CNN accuracy on the held-
out data, i.e., ictal patterns of the “hold-one-out” patient not
used in the seed set. This experiment was repeated in separate
iterations for all patients. To test the 2nd scenario on data
of newly implanted patients (scenario 2), we used the “hold-
one-out” patient’s earliest available consecutive ictal patterns as
seed set, corresponding to the baseline and early stimulation
programming epochs, and then trained and evaluated the
network as in scenario 1. Testing in both scenarios was performed
in 12/22 patients for which at least n + 5 iEEG ictal patterns
(i.e., # of ictal patterns > 35) were available (Table 1). The data
of the rest of the patients were not used for testing. We trained
our CNN to classify each iEEG epoch as containing an ictal
pattern vs. no ictal pattern. Binary classification or detection
accuracy was evaluated using area under precision-recall curve
(AUPRC), which incorporates positive-predictive value to adjust
for the significant class imbalance in our data set. For regression
accuracy (predicting the time at which an ictal pattern begins),
we used mean absolute error.

Statistical Analyses
Kruskal-Wallis-tests were used to compare AUPRC results
between implant location groups, with an a priori level of
significance set to 0.05. All analyses were performed using R 3.1.6
(R Foundation for Statistical Computing, Vienna, Austria) and
all data was stored on Microsoft SQL Server 2012 R2 (Microsoft
Corporation, Redmond, Washington, USA).

RESULTS

In this study we used a large RNS-derived intracranial dataset
comprised of 5,226 ictal pattern events, marked and verified
by consensus by two epilepsy experts (agreement on 99.8% of
markings), in 18,368 epochs of ∼90 s duration from 22 epilepsy
patients implanted with RNS, corresponding to a total of 7,346
days of intracranial recording. The mean total post-implantation
recording period was 47.7 ± 7.5 weeks (minimum 2.4 weeks,
maximum 111.9 weeks). The mean patient age was 33.9 ± 2.5
years and 13 (59.1%) were women (Table 1).

In scenario 1, the CNN achieved a maximum mean
binary classification AUPRC of 0.84 ± 0.19 (95%CI, 0.72–
0.93) (Figure 2A) and mean regression accuracy of 6.3 ± 1.0 s
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TABLE 1 | Patient demographics and RNS data features.

Patient Age Gender Implantation site # of days with RNS # of iEEG files # of ictal patterns

1 21 F Thalamus 95 349 11

2 22 M Developmental malformation 166 333 13

3* 42 F Neocortex 677 1,682 430

4* 22 F Hippocampus 393 1,316 452

5* 39 F Hippocampus 314 716 73

6 29 M Developmental malformation 152 294 9

7* 22 F Hippocampus 461 1,396 567

8* 34 F Neocortex 600 1,172 113

9* 24 M Neocortex 425 1,304 258

10 19 F Thalamus 355 16 5

11* 39 F Developmental malformation 297 834 720

12* 31 M Hippocampus 261 443 47

13 46 M Hippocampus 17 46 4

14 53 M Neocortex 42 90 1

15 22 M Thalamus 171 529 13

16* 63 F Neocortex 732 4,110 2,057

17 35 F Neocortex 19 95 4

18 37 M Neocortex 735 508 20

19 31 F Thalamus 73 299 9

20* 38 F Hippocampus 202 522 93

21* 30 M Hippocampus 376 796 159

22* 47 F Developmental malformation 783 1,518 168

Total 7,346 18,368 5,226

*Patients with > 35 iEEG ictal patterns used in the testing dataset.

(95%CI, 4.3–8.5 s) at 30 seed samples (Figure 2B). In scenario
2, maximum mean AUPRC was 0.80 ± 0.19 (95%CI, 0.68–0.91)
(Figure 2C) and mean regression accuracy of 6.3± 0.9 s (95%CI,
4.8–8.3 s) at 20 seed samples (Figure 2D). However, we obtained
near-maximum accuracies at seed size of 10 in both scenarios
(Figure 2), suggesting significant transference between patients
at a small seed size.

Sub-analysis by brain region implanted in scenario 1
showed an AUPRC of 0.88 ± 0.08 (95%CI, 0.83–0.93) for the
hippocampus, 0.92± 0.09 (95%CI, 0.88–0.96) for developmental
anomalies, and 0.73± 0.24 (95%CI, 0.60–0.86) for the neocortex
(p = 0.35). In scenario 2, the AUPRC was 0.89 ± 0.09 (95%CI,
0.85–0.94) for the hippocampus, 0.93 ± <0.01 (95%CI, 0.93–
0.93) for developmental anomalies, and 0.59 ± 0.29 (95%CI,
0.44–0.75) for the neocortex (p= 0.15).

Examples of successful detections are presented in Figure 3A.
In order to appreciate confounds that influenced accuracy and
resulted in suboptimal detections, we performed manual review
of failed detection items and identified 7 main categories of CNN
pitfall conditions: (1) Ictal electro-decrements that reduce the
signal amplitude to baseline levels (Figure 3B1). (2) Brief ictal
patterns that can be confused for interictal bursts (Figure 3B2).
(3) Ictal patterns isolated to a single channel (Figure 3B3).
(4) Highly concentrated interictal activity (Figure 3B4). (5)
Changes in the brain state in the context of the sleep-wake
cycle (Figure 3B5). (6) Progressive modulation of electrographic
ictal features [not shown, see (56)]. (7) Undetermined reasons
(Figure 3B6).

DISCUSSION

This study describes a deep neural network that achieved high
accuracy in seizure detection using a large dataset of expert-
validated ictal patterns from the iEEG recordings of RNS-
implanted epilepsy patients. The large size of our dataset allowed
us to test two scenarios: (1) to evaluate seizure detection in an
existing collection of recordings (including a random selection
of the patient’s ictal patterns in the training dataset) (scenario
1), and (2) to evaluate seizure detection on a prospective basis
for new patients (including the earliest consecutive recorded
ictal patterns of the patient in the training dataset) (scenario 2).
We performed our evaluations using hold-one-patient-out cross
validation. Specifically, the model was trained on 22 patients and
evaluated in 12/22 patients for which at least > 35 ictal patterns
were available, in a hold-one-patient-out cross validation fashion.
For the “chronic recording scenario” (scenario 1), the model
was trained on 22 patients, 0–30 seed examples from the test
patient chosen uniformly at random, and it was evaluated on
the remaining examples for the test “hold-one-out” patient. For
the “recent recording scenario” (scenario 2), the model was also
trained on 22 patients and the 0–30 seed examples were chosen
to be the earliest possible recordings for the test patient, to
evaluate the ability of the model to predict future examples for
that patient. In turn, we report average results over all possible
“hold-one-out” patients (12 total, after excluding patients with
fewer than 35 ictal events). Our deep learning architecture
achieved accuracy comparable to experts in both clinically
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FIGURE 2 | Performance evaluation of the CNN. Box plots show the 25th and 75th percentiles, median (solid), mean (dotted), minimum, and maximum values with

outliers shown as dots. (A) AUPRC results (accounting for all past patients) for different numbers of paired seed data for our CNN in scenario 1 when detecting iEEG

ictal patterns vs. non-ictal patterns. (B) Absolute mean regression error results for our CNN in scenario 1. (C) AUPRC results (accounting for all past patients) for

different numbers of paired seed data for our CNN in scenario 2 when detecting iEEG ictal patterns vs. non-ictal patterns. (D) Absolute mean regression error results

for our CNN in scenario 2.

relevant scenarios (0.84 and 0.80, respectively) using limited
seed datasets containing 30 random and 20 consecutive ictal
patterns, respectively. In the only previous report investigating
the inter-rater reliability of RNS-derived intracranial seizure
detection by experts (66), amanual review of 7,221 RNS-recorded
electrographic epileptic events from 22 patients, experts reached
an overall 0.79 agreement.

We also observed that AUPRC accuracy between just 5 vs. 10
seeds increased significantly, and although we obtained maxima
at 20 and 30 seeds, the difference between 10, 20, and 30 seeds
was not clinically meaningful. The standard procedure following
RNS implantation requires 3–4 weeks of recording without

therapeutic stimulation (baseline period) in order to collect ictal
events and manually tune the on-board RNS detectors (51–54).
Our model’s training data requirements fit nicely with the RNS
procedure, and the CNN could be used to improve the device’s
event detection capabilities in real-time. Specifically, it could
use the baseline seizure data for training to improve the overall
detection accuracy, and greatly reduce the need for the current
practice of repeated heuristic manual adjustments of detection
parameters (67).

Finally, we observed that although there was no statistically
significant difference in ictal pattern identification between
implanted anatomy groups, ictal patterns in developmental
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FIGURE 3 | Examples of iEEG ictal pattern detection by the deep-learning neural network. Black dotted vertical lines represent the ictal pattern onset marking set by

expert neurophysiologists. Green dotted vertical lines represent the CNN’s annotation. (A) Examples of successful identifications of RNS ictal patterns with variable

(Continued)
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FIGURE 3 | degrees of onset accuracy (1–6). (B) Examples of unsuccessful identifications. 1. Although the CNN classifies an ictal pattern in the epoch file, the actual

onset is missed due to the presence of semi-regular brief diffuse electro-decrements at the beginning of the ictal pattern. 2. Although the CNN classifies an ictal

pattern in the epoch file, the marker is placed at the onset of brief interictal activity that resembles the actual, also brief, ictal pattern. 3. Ictal pattern taking place in a

single channel, in a patient with distant electrode implantation, is not acknowledged by the CNN (false negative). 4. Highly concentrated interictal activity is annotated

by the CNN as ictal pattern (most of the times resulting in a false positive, unless an ictal pattern co-existed in the epoch file as in this example). 5. The recording

occurred during the transition from sleep to wakefulness (arousal) and the CNN annotated the sudden introduction of normal background high frequencies as ictal

pattern onset (false positive). 6. The CNN missed the ictal pattern for no apparent reason.

malformations and the hippocampus were more reliably
classified than neocortical patterns. For that reason, we
performedmanual review of failed classifications and determined
several systematic causes that turned out to have negatively
affected the ictal pattern onset accuracy, although the mean
values were well within the pre-determined tolerance window.
Most failures and misses that we identified and hereby
report have a neurophysiological rather than a computational
background, comprised of a constellation of patterns that have
often raised concerns within the epilepsy community (68, 69):
patterns of interictal activity (70, 71), ictal electrodecrement
patterns (72), iEEG patterns during the shift from sleep to
wakefulness (73) and vice-versa (74), brief and regionally isolated
ictal patterns (75), as well as the recently highlighted effect of
ictal pattern modulation due to prolonged stimulation (56, 76).
The overall lack of major confounds related to RNS anatomical
substrates, suggests that the variety introduced by the anatomical
origin of ictal patterns is unlikely to interfere with deep learning
and performance.

We took several measures to quantify and reduce model
overfitting. First, we report cross-validated results wherein the
model is evaluated on different recordings than which it is
trained on. Also, we did not extensively or automatically tune
hyperparameters. For example, our learning rate varies from 0.1
to 0.025 and we train for exactly 20 epochs. Finally, we trained
with both batch normalization (62) and dropout (77) that have
experimentally been shown to act as regularizers.

The use of this CNN as an off-line tool can have an important
impact in the routine clinical evaluation of epileptic patients
implanted with RNS. Due to its high reliability in detecting
ictal patterns, our tool can reflect an accurate overview of the
patient’s progress with neurostimulation therapy and support
further quantitative assessments (57). Improvements in accuracy
of seizure detection can also identify potential breakthrough
seizures early enough for the physician to adjust and adapt the
treatment strategy and achieve better seizure control, reducing
thereby the risk of life-threatening emergencies such as status
epilepticus and sudden unexpected death in epilepsy (54, 78).

We developed and presented a deep learning neural network
that performs detection of RNS-derived ictal patterns with the
highest published accuracy to date. The key to its performance
is the large training dataset that allows the network to develop
expertise; a pool of data that only the RNS device can provide
due to its ability to sample and record neural activity over
long periods of time. We are confident that this technology
will improve the management of RNS patients and become
pivotal for applications requiring high accuracy in intracranial
seizure detection.
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