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Accurate brain tumor segmentation is crucial for clinical assessment, follow-up, and

subsequent treatment of gliomas. While convolutional neural networks (CNN) have

become state of the art in this task, most proposed models either use 2D architectures

ignoring 3D contextual information or 3D models requiring large memory capacity and

extensive learning databases. In this study, an ensemble of two kinds of U-Net-like

models based on both 3D and 2.5D convolutions is proposed to segment multimodal

magnetic resonance images (MRI). The 3D model uses concatenated data in a modified

U-Net architecture. In contrast, the 2.5D model is based on a multi-input strategy

to extract low-level features from each modality independently and on a new 2.5D

Multi-View Inception block that aims to merge features from different views of a 3D

image aggregating multi-scale features. The Asymmetric Ensemble of Asymmetric

U-Net (AE AU-Net) based on both is designed to find a balance between increasing

multi-scale and 3D contextual information extraction and keeping memory consumption

low. Experiments on 2019 dataset show that our model improves enhancing tumor

sub-region segmentation. Overall, performance is comparable with state-of-the-art

results, although with less learning data or memory requirements. In addition, we provide

voxel-wise and structure-wise uncertainties of the segmentation results, and we have

established qualitative and quantitative relationships between uncertainty and prediction

errors. Dice similarity coefficient for the whole tumor, tumor core, and tumor enhancing

regions on BraTS 2019 validation dataset were 0.902, 0.815, and 0.773. We also applied

our method in BraTS 2018 with corresponding Dice score values of 0.908, 0.838,

and 0.800.

Keywords: brain tumor segmentation, deep-learning, BraTS,multi-input, multi- view, inception, uncertainties, 2.5D
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INTRODUCTION

Glioma is the most frequent primary brain tumor (1). It has its
origin in glial cells and can be classified into I to IV grades,
depending on phenotypic cell characteristics. In this grading
system, low-grade gliomas (LGGs) correspond to grades I and
II, whereas high-grade gliomas (HGGs) are grades III and IV.
The primary treatment is surgical resection followed by radiation
therapy and/or chemotherapy.

MRI is a non-invasive imaging technique commonly used
for diagnosis, surgery planning, and follow-up of brain tumors
due to its high resolution on brain structures. Currently,
tumor regions are segmented manually from MRI images by
radiologists, but due to the high variability in image appearance,
the process is very time consuming and challenging, and
inter-observer reproducibility is considerably low (2). Since
accurate tumor segmentation is determinant for surgery, follow-
up, and subsequent treatment of glioma, finding an automatic
and reproducible solution may save time for physicians and
contribute to improving the clinical assessment of glioma
patients. Based on this observation, the Multimodal Brain
Tumor Segmentation Challenge (BraTS) aims at stimulating
the development and the comparison of the state-of-the-art
segmentation algorithms by making available an extensive pre-
operative multimodal MRI dataset provided with ground truth
labels for three tumor tissues: enhancing tumor, the peritumoral
edema, and the necrotic and non-enhancing tumor core.
This dataset contains four modalities: T2-weighted (T2), fluid-
attenuated inversion recovery (FLAIR), T1-weighted (T1), and
T1 with contrast-enhancing gadolinium (T1c) (3–7).

Modern convolutional neural networks (CNNs) are currently
state-of-the-art in many medical image analysis applications,
including brain tumor segmentation (8). CNNs are hierarchical
groups within filter banks that extract increasingly high-level
image features by feeding the output of each layer to the next
one. Recently, Ronneberger et al. (9) proposed an effective U-Net
model, a fully convolutional network (FCN) encoder/decoder
architecture. The encoder module consists of multiple connected
convolution layers that aim to gradually reduce the spatial
dimension of feature maps and capture high-level semantic
features appropriate for class discrimination. The decoder
module uses upsampling layers to recover the spatial extent
and object representation. The main contribution of U-Net is
that, while upsampling and going deeper into the network,
the model concatenates the higher resolution features from the
encoder path with the upsampled features in the asymmetric
decoder path to better localize and learn representations in
following convolutions. The U-Net architecture is one of the
most widely used for brain tumor segmentation, and its versatile
and straightforward architecture has been successfully used
in numerous segmentation tasks (10–14). All top-performing
participants in the last two editions of the BraTS challenge used
this architecture (15–22).

While 3D CNN can provide global context information of
volumetric tumors, the large size of the images makes the use
of 3D convolutions very memory demanding, which limits the
patches and batch size, as well as the number of layers and filters

that can be used (23). Consequently, the use of 2D convolutions
for slice-by-slice segmentation is also a common practice that
reduces memory requirement (24). Multi-view approaches have
also been developed to address the same problem. McKinley
et al. (18) and Xue et al. (25) showed that applying 2D
networks in axial, sagittal, and coronal views and combining their
results can recover 3D spatial information. Recently, one of the
top-performing submissions in the BraTS 2019 challenge (20)
proposed a hybrid model that goes from 3D to 2D convolutions
extracting two-dimensional features in each of the orthogonal
planes and then combines the results in an ensemble model.
Wang et al. (16) demonstrated that using three 2.5D networks
to obtain separate predictions from three orthogonal views and
fusing them at test time can providemore accurate segmentations
than using an equivalent 3D isotropic network. While they
require the training and optimization of severalmodels, ensemble
models are currently the top-performing methods for brain
tumor segmentation.

On the other hand, some strategies have been implemented
to aggregate multi-scale features. Cahall et al. (26) showed
a significant improvement in brain tumor segmentation by
incorporating Inception blocks (27) into a 2DU-Net architecture.
Wang et al. (16) and McKinley et al. (20) used dilated
convolutions (28) in their architecture with the same aim of
obtaining both local and more global features. While significant,
aggregating multi-scale features is limited by the requirement
of more memory capacity. To address this, the use of Inception
modules has been incorporated into 2D networks (26), not taking
advantage of 3D contextual information. In addition, Inception
modules have been integrated into a cascade network approach
(29). Themodel first learns the whole tumor, then the tumor core,
and finally the enhancing tumor region. This method requires
three different networks and thus increases the training and
inference time. Another approach to extract multi-scale features
uses dilated convolutions. This operation was explicitly designed
for semantic segmentation and tackled the dilemma of obtaining
multi-scale aggregation without losing full resolution, increasing
the receptive field (28). Wang et al. (16) and McKinley et al. (20)
implemented different dilation rates in sequential convolutions;
nevertheless, it has not been used to extract multi-scale features
in a parallel way in a single layer and, if not applied carefully, can
cause gridding effects, especially in small regions (30).

In terms of accuracy and precision, the performance of
CNNs are currently comparable with human-level performance
or even better in many medical image analysis applications
(31). However, CNNs have also often been shown to produce
inaccurate and unreliable probability estimates (32, 33). This
has drawn attention to the importance of uncertainty estimation
in CNN (34). Among other advantages, the measurement of
uncertainties would enable knowing how confident a method is
in implementing a particular task. This information can facilitate
CNN’s incorporation into clinical practice and serve the end-user
by focusing attention on areas with high uncertainty (35).

In this study, we propose an approach that addresses a
current challenge of brain tumor segmentation, keeping reduced
memory requirements while benefiting from multi-scale 3D
information. To do so, we propose an ensemble model, called
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Asymmetric Ensemble Asymmetric U-Net (AE AU-Net), based
on an Asymmetrical 3D residual U-Net (AU-Net) using two
different kinds of inputs: (1) concatenated multimodal 3D MRI
data (3D AU-Net) and (2) a 2.5D Multi-View Inception Multi-
Input module (2.5D AU-Net). The proposed AU-Net is wider in
the encoding path to extract more semantic features, has residual
blocks in each level to increase training speed, and additive skip
connections between the encoding and decoding path instead of
a concatenation operation to reduce the memory consumption.
The proposed 2.5D strategy allows us to extract low-level features
from each modality independently. In this way, the model can
retrieve specific details related to tumor appearance from the
most informative modalities, without the risk of being lost when
combined during the downsampling. The Multi-View Inception
block aims to merge features from both different views and
different scales simultaneously, seeking a balance between 3D
information usage and memory footprint. In addition, we use an
ensemble of models to improve our segmentation results and the
generalization power of our method and also as a way to measure
epistemic uncertainty and estimate structure-wise uncertainty.

METHODS

Network Architecture
We have developed a modified U-Net architecture with five-level
asymmetric descending and ascending parts implemented with
two kinds of inputs for ensemble modeling (Figure 1). While the
first input is a classical concatenation of 3DMRI data, the second
one is a novel 2.5D Multi-View Inception Multi-Input module
aiming to extract low-level textural features of the tumor. Details
of the modified U-Net proposed inputs and assembling strategy
are provided.

Asymmetric U-Net (AU-Net)
The main component of our network is a modified 3D U-
Net architecture of five levels (Figure 1B). Traditional 3D U-
Net architecture has a symmetrical decoder and encoder paths.
The first path is associated with the extraction of semantic
information to make local predictions, while the second section
is related to the recovery of the global structure. AU-Net is
wider in the encoding path than in the decoding path, to extract
more semantic features while keeping memory usage lower. We
added twice more convolutional blocks in the encoding path
than in the decoding section to achieve this. The standard U-Net
architecture also does not get enough semantic information in the
downsampling path because of the limited receptive fields. We
added parallel paths with convolutions with two different filter
sizes in the downsampling blocks (Figure 1D).

This architecture uses residual blocks (Figure 1F) instead
of a simple sequence of convolutions. The residual blocks
(36) are obtained by a short skip connection and element-
wise addition operation between each block’s input and output
feature maps. This simple algorithm does not add additional
training parameters to the network, and it has been shown to
be beneficial for faster convergence, reducing training time (37).
We also used additive skip connections between the encoding
outputs and decoding feature maps of equivalent size instead of

using a concatenation operation. This enables reducing memory
consumption while maintaining similar performances compared
with using concatenation operations. Finally, each level of the
encoding pathway consists of two residual blocks (green blocks
in Figure 1) followed by a downsampling block (blue blocks).We
used convolutions with stride equal to 2 for downsizing image
dimension, maintaining the same number of filters in the first
two levels and then increasing the number of features in each
level with an initial number of filters equal to 32. Thus, the
spatial dimension of the initial training patches of size 128 ×

128 × 128 was reduced by a factor of 32 in the encoding path.
In the decoding path, we used only one residual block in each
level, and we used upsampling layers, which duplicate values in a
sliding window to increase the dimension. The upsampling layers
are directly followed by convolution ones. This technique of
upsampling helps to avoid the checkerboard pattern generated by
transposed convolution (deconvolution) layers as experimented
by Odena et al. (38).

The final activation layer uses a sigmoid as an activation
function to output three prediction maps of the same size as
the initial training patches into three channels corresponding to
the regions: whole tumor, tumor core, and enhancing tumor.
We chose to classify the three regions by doing three binary
classifications, one for each region.

3D AU-Net
The proposed AU-Net was used with two different kinds of
inputs. In the first one, called 3D AU-Net, 3D concatenated MRI
sequences are used as the input to capture classical multimodal
information from the different MRI sequences. This input is
presented in Figure 1A′.

2.5D AU-Net
The second type of input is proposed to capture the textural
and multi-scale features of the tumor better. This second input
is a 2.5D input for the AU-Net, with a different strategy. A
multi-inputmodule (Figure 1A) has been developed tomaximize
learning from independent features associated with each
imaging modality before merging into the encoding/decoding
architecture, thus avoiding the loss of specific information
provided by each modality. While most previous architectures
concatenate all the MRI modalities as a single multi-channel
input, we propose to extract low-level features associated with
tissue appearance from each modality independently. To do
so, we divide the input into four paths, one for each imaging
modality, to extract features from each modality independently,
and then we merge them as an input of the proposed AU-Net.

In addition, we propose that each of these four paths
contains what we define as a 2.5D Multi-View Inception module
(Figure 1C) that allows the extraction of features in the different
orthogonal views of the 3D image: axial, coronal, and sagittal
planes and different scales, merging them all in each forward pass.

The design of the 2.5D Multi-View Inception module is
inspired by the Inception module of GoogLeNet (39). Unlike
the Inception module, we use 2.5D anisotropic filters instead
of 3D or 2D isotropic filters, and we add all the resulted
feature maps instead of stacking them. This module has two
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FIGURE 1 | Proposed 2.5D Asymmetric U-Net and 3D Asymmetric U-Net. (A) 2.5D Multi-View Inception Multi-input. (A′) 3D concatenated input. (B) An asymmetric

3D U-Net architecture using residual blocks, instance normalization (IN), and additive skip connections between encoding and decoding sections. (C) 2.5D Multi-View

Inception block. (D) Down sampling block. (E) Up sampling block. (F) Residual block.
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main characteristics: the first one is the use of convolutions
with different receptive field orientation on each image plane—
axial, sagittal, and coronal planes—by using anisotropic kernels
oriented in each direction. The second is the fusion of the
features extracted using anisotropic kernels at different scales.
Figure 2 shows the way these two characteristics are combined
by replacing a typical 3D isotropic convolution 3 × 3 × 3 into
an anisotropic convolution 1 × 3 × 3 followed by a 3 × 1 ×

1 convolution. These filters extract features in the sagittal view
of the image; the same idea is repeated in “y” and “z” directions
but using different scales: 5 × 5 × 1 extracts features in the axial
plane and 7 × 1 × 7 in the coronal plane. With this approach,
the network extracts and merges features from different planes at
the same time, with three parallel branches of anisotropic kernels.
After each pair of convolutions, an instance normalization (40)
and ReLU (41) activations are applied.

Our model has been optimized using 2.5D convolutions to
fit a 12GB GPU memory. 2.5D filters store more weight factors
than 2D filters and <3D equivalent filters, with the advantage of
obtaining volumetric information on the tumor. Consequently,
training an equivalent network with 3D convolutions instead
of 2.5D convolutions would require a higher memory capacity

(>12 GB GPU). Therefore, our model’s design aims to extract
volumetric information using 2.5D Multi-view filters and multi-
scale information by training a single network. Training a
single network instead of three networks, one for each view as
implemented in (16, 18) should save training time. Our models
take around 8 h to be trained.

Asymmetric Ensemble of Asymmetric U-Net

(AE AU-Net)
Since 2017 where Kamnitsas et al. (17) won the BraTS
challenge using an ensemble of five models with three different
architectures, trained with varying functions of loss and using
different normalization techniques, all the winners of the
following competitions have used ensembles of models as a
strategy to improve the segmentation results of their best single
models (15, 19–22). Combining different models reduces the
influence of hyper-parameter choices and the risk of overfitting,
and it is currently the most effective approach for brain
tumor segmentation.

In this study, we used an ensemble of models based on the
proposed AU-Net architecture and the proposed asymmetric 3D
and 2.5D input strategies. This ensemble of models improves

FIGURE 2 | Visual representation of the 3D anisotropic kernels inside each branch of the 2.5D Multi-View Inception block.
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segmentation results and the generalization power of our
method by reducing the risk of overfitting. Considering the
different nature of the input data, we call the proposed method
Asymmetric Ensemble of Asymmetric U-Net (AE AU-Net). The
proposed ensemble model is based on the training of seven
models. According to a 5-fold cross-validation strategy, both
the 3D AU-Net and the 2.5D AU-Net were trained five times
each with different subsets of the dataset and varying weights of
initialization. The seven best-performing models were selected;
we finally chose four from 3D AU-Net and three from 2.5D AU-
Net, this mainly due to memory constrictions. The ensemble was
obtained by averaging the output probability estimates of the
labels for each voxel of the image.

Data and Implementation Details
BraTS Dataset
We validated our model in the 2019 BraTS dataset, which
consists of pre-operative MRI images of 626 glioma patients.
Each patient’s MRI images contain four modalities T2-weighted
(T2), fluid-attenuated inversion recovery (FLAIR), T1-weighted
(T1), and T1 with gadolinium-enhancing contrast (T1c). All
images were segmented manually by one to four raters, following
the same annotation protocol. Experienced neuro-radiologists
approved their annotations. The data are divided into three sets
by the organizers of the BraTS challenge: training, validation, and
test dataset. The training set is the only one provided with expert
manual segmentation and the grading information of the disease.
The training dataset contains images of 335 patients, of which 259
areHGG and 76 are LGG. The validation and test datasets include
the same MRI modalities for 125 and 166 patients, respectively.

In the training dataset, the ground truth labels are provided
for three tumor tissues: enhancing tumor (ET—label 4), the
peritumoral edema (ED—label 2), and the necrotic and non-
enhancing tumor core (NCR/NET—label 1). From these classes,
we defined the following tumor regions to train our models:

• The whole tumor (WT) region. This includes the union of the
three tumor tissues ED, ET, and NCR/NET (i.e., label = 1∪
2 ∪4).

• The tumor core (TC) region. This is the union of the ET and
NCR/NET (i.e., label= 1 ∪4).

• The enhancing tumor (ET) (i.e., label= 4).

Pre-processing
The multimodal scans in the BraTS challenge were acquired
frommultiple institutions, employing different clinical protocols,
resulting in a non-standardized distribution. The challenge
organizers performed several preprocessing steps to homogenize
the dataset. The images from different MR modalities were first
co-registered to the same anatomical template. The SRI24 multi-
channel atlas of a normal adult human brain template (42) was
used. The template was obtained by affine registration using
the Linear Image Registration Tool (FLIRT) (43) developed by
the Oxford Center for Functional MRI of the Brain (FMRIB)
and available in the FMRIB Software Library (FSL) (44). The
original images were acquired across different views and variable

anisotropic resolution. All the images were re-sampled and zero-
padded to the same isotropic resolution (1.0 × 1.0 × 1.0mm)
and zero-padded to have the same spatial dimensions (240× 240
× 155mm). Skull-stripping was also performed using the Brain
Extraction Tool (BET) (45) from the FSL (46).

Even though the images provided were already preprocessed
to homogenize the data (4), image intensity variability can still
negatively impact the learning phase; contrarily to some other
imaging techniques like CT, MRI does not have a standard
intensity scale. Therefore, image intensity normalization is often
a necessary stage for model convergence. We chose to normalize
the MRI images by first dividing each modality by its maximum
value and then by centering and reducing the data to have
images with the same zero average intensity and unitary SD. This
method is widely used due to its simplicity and good qualitative
performance (19, 21).

Post-processing
We implemented the post-processing of the prediction maps of
our proposed model to reduce the number of false positives and
enhance tumor detection. A threshold value representing the
minimum size of the enhancing tumor region was defined, as
suggested in Isensee et al. (19), and the label of all the voxels
of the enhancing tumor region was replaced with one of the
necrosis regions when the total number of predicted ET voxels
was lower than the threshold. The threshold value was estimated
as the one that optimizes the overall performance in this region
in the validation dataset. Besides, as proposed by McKinley et al.
(20), if our model detects no tumor core, we assume that the
detected whole tumor region corresponds to the tumor core. We
have relabeled the region as a tumor core.

Implementation and Training
The Dice loss function was used to cope with class imbalances
and weighted Dice coefficient (WDC) as the evaluation metrics
to look for the best-performing model (12). Since ground truth
segmentations were only provided for the training dataset, we
randomly selected 20% from the training set as our internal
validation set, taking the same percentage of images from LGG
and HGG patients. We trained our models using the remaining
80%. The networks were trained for 100 epochs using patches of
128× 128× 128 and Adam optimizer (47) as a back-propagation
algorithm, with an initial learning rate of 0.0001 and a batch size
of 1. The learning rate was decreased by five if no improvement
was seen, on the validation set, within 10 epochs. Ourmodel takes
around 8 h to be trained. Figure 3 shows a representative example
of the learning curves.

We compared different data augmentation strategies to
prevent overfitting, and the best results were obtained using
only random crops and random horizontal axis flipping with a
probability of 0.5. Note that the data are augmented on the fly
during training.

All experiments were conducted on a workstation Intel-i7
2.20 GHz CPU, 48G RAM, and an NVIDIA Titan Xp 12GB
GPU. All our models were implemented in Keras (48) 2.2 using
the Tensorflow (49) 1.8.0 as a backend. All results obtained on
the validation dataset of the BraTS challenge were uploaded
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FIGURE 3 | Learning curves. Example of (A) WDC evaluation metric and (B) (1-Dice score) loss function evolution during training on the BraTS 2019 dataset. The

blue vertical line shows the moment at which the model reached the best performance in the validation dataset. The best models were obtained systematically before

the 100 epochs.

on the publicly available evaluation server of BraTS for metrics
evaluation.We report the quantitative evaluation values obtained
in terms of Dice coefficient and Hausdorff distance, which are
defined as follows:

Dice (P,T) =
2 |P ∩ T|

|P| + |T|
, (1)

Haus (P,T) = max

{

p ∈ P
inf
t ∈ T

d
(

p, t
)

, t ∈ T
inf

p ∈ P
d

(

t, p
)

}

,

(2)

where P and T are respectively, the set of predicted voxels and
the ground-truth ones, representing the supremum and inf the
infimum, and d

(

p, t
)

the Euclidian distance between two points
p and t.

Uncertainty Estimation
The use of an ensemble of models improves the segmentation
results and the generalization power. Still, it also allows the
measurement of epistemic uncertainty and the estimation of
structure-wise uncertainty that provides additional information
regarding the segmentation results.

To estimate epistemic uncertainty, we averaged the model’s
output probabilities for each label in each voxel to obtain a new
probability measure from the ensemble. Since our model makes
a binary classification of each voxel, the highest uncertainty
corresponds with a probability of 0.5. Then we used the
normalized entropy (Equation 3) to get an uncertainty measure
of the prediction for each voxel:

H = −
∑

c∈C

pc log
(

pc
)

log (|C|)
∈ [0, 1] , (3)

where pc is the sigmoid output average probability of class c and
C is the set of classes (C = {0, 1} in our case). To measure a
structure-wise uncertainty, we considered all volumes associated
with each region estimated from the ensemble of models. Similar
to Wang et al. (16), we calculated the structure-wise uncertainty
of each region as the volume variation coefficient (VVC):

VVC =
σv

µv
, (4)

where µv and σv are the mean and SD of the N volumes. In this
case, N is equal to seven. Equations (3) and (4) represent the
voxel-wise epistemic uncertainty and structure-wise uncertainty
from the ensemble of models, respectively.

Uncertainty Measure Evaluation
We evaluate our uncertainty estimationmethod using themetrics
proposed in Mehta et al. (50), which were used in the last two
editions of the BraTS sub-challenge on uncertainty quantification
to rank the participants. The three-selectedmetrics aim to reward
models when the uncertainty is low in correct predictions and
high in the wrong predictions. In this part of the challenge,
participants are required to submit along with the brain tumor
segmentation, a map of uncertainties associated with each
segmentation. The first metric, the Dice area under the curve
(Dice AUC), evaluates the Dice score after removing the voxels
with uncertainty levels higher than certain thresholds (0.25, 0.5,
and 0.75). It is expected that removing uncertain voxels will
increase the segmentation accuracy, but it can also decrease the
Dice score if many correct predictions are removed.

The two other selected metrics are, respectively, the filter true-
positive ratio (FTPR) and the filter true-negative ratio (FTNR),
which aim to penalize the elimination of correct predictions, the
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true positives (TP) and true negatives (TN), respectively. The
FTPR is defined as follows:

FTPR =
(TP1.00 − TPτ )

TP1.00
(5)

The FTPR at different thresholds (τ ) is measured relative to
the unfiltered values (τ = 1.00). The ratio of filtered TN is
calculated similarly.

The final uncertainty score for each region is calculated
as follows:

score =
AUC1 + (1− AUC2) + (1− AUC3)

3
, (6)

which combines the area under the curve of three functions: (1)
Dice, (2) FTPR, and (3) FTNR, all as a function of different values
of τ .

Ablation Study
To evaluate the impact of the proposed AE AU-Net compared
with its components, we compared our proposed ensemble
model to two variants: (1) 3D AU-Net, which is the AU-Net
model with concatenated MRI modalities as the input; (2) 2.5D
AU-Net, which is the AU-Net with the proposed 2.5DMulti-View
Inception Multi-Input as the input.

EXPERIMENTS AND RESULTS

Segmentation Results
Qualitative Results
Figure 4 shows an example of segmentation results obtained
on two HGG patients with 3D AU-Net, 2.5D AU-Net, and
AE AU-Net. For simplicity of visualization, only the T1ce and
FLAIR images are presented. The three orthogonal views, axial,
coronal, and sagittal, are displayed for better representation
of the volumetric segmentation. The green, yellow, and red
regions correspond, respectively, to the whole tumor (WT), the
enhancing tumor (ET), and the tumor core (TC). The ground
truth provided with the BraTS dataset is presented on the third
row, followed by 3D and 2.5D AU-Net results on rows 4 and
5, and the results of the proposed AE AU-Net are presented in
the last row. It can be observed that the segmentation results of
the 3D and 2.5D single networks provide proper segmentation,
although with some defects that are highlighted with white
arrows. Looking at the different views and patients, it can be
noticed that the performance of the 3D and 2.5D approaches
are varying and that both can present accurate segmentation or
defects. In contrast, the proposed AE AU-Net appears globally
more accurate, benefiting from both the models to decide more
correctly the labeling of the voxels.

In Figure 5, we present two examples of segmentation made
by our AE AU-Net model ensemble. Both patient images were
taken from the 2018 validation dataset. In the top, we show the
patient identified as CBICA_AZA_1 in the BraTS dataset. We
selected the same example reported in Isensee et al. (19) for
a qualitative comparison. This case example has been reported
as a difficult case for segmentation due to blood vessels close

to the enhancing tumor, as can be seen in the T1ce image
(arrow 1). Comparing our model segmentation qualitatively with
the one reported in Isensee et al. (19), we can say that our model
better delimits the region of necrosis and non-enhancing tumor
(in green). Our model overlaps better the hyperintense region
in the FLAIR sequence (arrow 2) but fails to detect the fine
structures of the enhancing tumor region as signaled (arrow 3).
Our model effectively excludes the blood vessels (arrow 1) from
the tumor, which are small structures with similar image intensity
to enhancing tumors. Deep learning models usually fail to detect
such small regions due to the few training examples containing
these structures. The use of Dice loss function can explain this
effect, as missing small structures has a low impact on Dice score
and, therefore, a low penalization.

At the bottom of Figure 5, we compare the segmentation
made by Wang et al. (51) using cascade networks with test time
augmentation (cascaded CNNs + TTA) with the one made by
our method for the patient identified as CBICA_ALZ_1. We
can see that our model better segments the necrosis and non-
enhancing region (arrow 4) but that there are no other significant
differences between the segmentations, resulting in similar Dice
scores. This suggests that slight differences in Dice values will
not always represent significant qualitative differences that could
impact clinical practice.

Quantitative Results
The corresponding quantitative criteria obtained with the
different approaches are presented in Table 1. For both the
3D and 2.5D AU-Net, the results correspond to an ensemble
from 5-fold cross-validation models. Results for all methods
are presented as averagea ± SD obtained over the BraTS 2019
validation dataset. It can be observed that 3D and 2.5D AU-
Net got relatively similar scores, with better Dice achieved by
3D AU-Net on the enhancing tumor, and better Hausdorff
distance obtained by 2.5D AU-Net on the enhancing tumor and
tumor core. The proposed AE AU-Net improved all the scores,
reaching the best values on five criteria out of six, illustrating
that each architecture learned different features to address the
segmentation problem and complement each other. It achieved
Dice scores of 0.773, 0.902, and 0.815 on the ET, WT, and
TC. For visual comparison, the individual results of the 5-fold
cross-validation are presented as box plots in Figure 6, along
with p-values from Student’s t-test performed to compare the
different models.

Regarding the Dice metric, no significant difference was
observed between 3D and 2.5D models in the WT and
TC regions, but a significant difference was observed in the
ET region (Figure 6A). Incorporating the 2.5D Multi-View
InceptionMulti-Inputmodule to the AU-Net improved the result
in this region compared with 3D input. The best performance
was obtained in all regions with the AE AU-Net, which over-
performed 3D and 2.5D AU-Nets with a statistically significant
difference (p < 0.008). Regarding the Hausdorff distance, it
can be observed that the variability of the results was higher
compared with the Dice metric (Figure 6B). No statistically
significant difference was found between 3D and 2.5D models
in the TC and ET regions. In WT, 2.5D AU-Net obtained
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FIGURE 4 | (A,B) Qualitative results. Example of segmentation improvement using our proposed model AE AU-Net in two patients from the BraTS 2019 training

dataset. The whole tumor (WT) region includes the union of the three tissues (ED, ET, and NET); the tumor core (TC) region is the union of the necrotic and

non-enhancing tumor (red) and enhancing tumor (yellow).

a significant improvement with respect to the 3D AU-Net
model. The smaller Hausdorff distances were obtained in the
three regions with the proposed AE AU-Net with a statistically
significant difference (p < 0.008).

This study has extended our previous work (52), which
corresponds to a single model from 2.5D AU-Net architecture.
Table 2 shows the results of this single model in the validation
and test dataset of the BraTS 2019. We can observe that the 2.5D
model achieved a similar overall performance in both validation

and test datasets, illustrating that the method did not overfit the
validation dataset and generalized well to the test dataset.

We have improved the model and the segmentation
performance in the validation dataset by implementing the
proposed AE AU-Net as an ensemble of seven asymmetric
models and using additional post-processing techniques. We
also implemented our proposed AE AU-Net framework in
BraTS 2018 for comparison purposes. In Table 3, we compared
our implementation on BraTS 2018 with a 3D U-Net (53)
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FIGURE 5 | Qualitative results. Two example segmentations using our proposed ensemble. In the top patient identified as CBICA_ZA_1 and in the bottom the patient

CBICA_ALZ_1, both from the BraTS 2018 validation dataset. In the bottom, we compare our results with the segmentation made using the Cascaded Networks +

TTA presented in (51).

TABLE 1 | Ablation study on BraTS validation data (125 cases).

Dice Hausdorff 95 (mm)

ET WT TC ET WT TC

3D AU-Net (5-CV) 0. 730 ± 0.284 0.895 ± 0.070 0.796 ± 0.186 6.06 ± 10.54 6.20 ± 9.21 8.40 ± 12.09

2.5D AU-Net (5-CV) 0.714 ± 0.295 0.898 ± 0.066 0.798 ± 0.189 5.74 ± 9.92 6.79 ± 12.6 7.46 ± 9.13

AE AU-Net (5-CV) 0.773 ± 0.257 0.902 ± 0.066 0.815 ± 0.161 4.65 ± 8.10 6.15 ± 11.2 7.54 ± 11.14

Ensemble results from 5-fold cross-validation are reported for 3D, 2.5D, and AE AU-Net models. The online BraTS evaluation platform computed reported metrics. ET, enhancing tumor;

WT, whole tumor; TC, tumor core; 5-CV, ensemble results from 5-fold cross-validation. Bold values highlight the best results for each metric.

reimplemented by (51) and cascaded networks (51). We also
compare our results with the top-performing methods in the
BraTS 2018 challenge, including the first place of the competition
(21) and the second place (19). From the comparison with
cascade networks, we can observe that our method has a similar
performance in terms of Dice in the enhancing tumor and
whole tumor regions. We got a comparable although slightly
lower performance with the top-performingmethods in the same
regions, with a lower performance in the tumor core region.
We got better performance in terms of Hausdorff distance than
cascade networks in the ET and in the WT regions and similar
performance with the competition winners.

Table 4 shows a comparative performance between the
proposed AE AU-Net model and the two best-performing
networks presented to BraTS 2019 (15, 22). It can be observed
in Table 4 that our method performs closely, although a
little less, to the second-ranked submission in the validation
dataset and that our model performs better than the second-
place model in the enhancing tumor region. The difference
in performance in both BraTS datasets, 2018 and 2019,
could be explained by the fact that the second performer
(19) and (15) did not only use the BraTS dataset to train
their model but also an additional Decathlon dataset (54).
Regarding the top score (22), it comparatively requires more
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FIGURE 6 | Quantitative results. Box plot comparing two models in a 5-fold cross-validation: the 3D Asymmetric U-Net, the 2.5D Asymmetric U-Net, and the impact

of our proposed model (AE AU-Net). (A) The y-axis presents the Dice score values for the three tumor sub-regions in the x-axis. (B) The y-axis shows the Hausdorff

distance for the three tumor sub-regions in the x-axis. In green, red, and blue are depicted the three tumor sub-regions: whole tumor, tumor core, and enhancing

tumor. The third column corresponding to our AE AU-Net is not a box plot; it is a single value obtained with the ensemble for comparison purposes.
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TABLE 2 | Results of the 2.5D AU-Net model proposed to BraTS 2019 validation data (125 cases) and testing data (166 patients) using our best single model.

Dice Hausdorff 95 (mm)

Best single model ET WT TC ET WT TC

Validation

(125 patients)

2.5D AU-Net (single model) 0.723 ± 0.293 0.888 ± 0.077 0.783 ± 0.206 4.91 ± 8.63 8.12 ± 14.65 7.56 ± 9.40

Test

(166 patients)

2.5D AU-Net (single model) 0.775 ± 0.212 0.865 ± 0.133 0.789± 0.266 3.08 ± 3.53 7.42 ± 10.90 6.23 ± 8.50

The online BraTS evaluation platform computed metrics.

TABLE 3 | Model comparison on BraTS 2018 validation data (66 cases).

Dice Hausdorff 95 (mm)

ET WT TC ET WT TC

3D U-Net Wang G.

et al. (51)

0.734 ± 0.284 0.864 ± 0.146 0.766± 0.230 9.37 ± 22.95 12.00 ± 21.22 10.37 ± 13.47

Cascade networks

Wang G. et al. (51)

0.792 ± 0.233 0.903 ± 0.057 0.854 ± 0.142 3.34 ± 4.15 5.38 ± 9.31 6.61 ± 8.55

Cascade networks +

TTA + CRF 1

0.803 ± 0.228 0.905 ± 0.054 0.869 ± 0.126 3.01 ± 3.69 5.86 ± 8.16 6.09 ± 7.74

AE AU-Net (our model) 0.800 ± 0.230 0.908 ± 0.055 0.838 ± 0.150 2.59 ± 2.29 4.55 ± 5.92 8.14 ± 13.73

No New-Net Isensee

et al. (19)

0.810 0.908 0.854 2.54 4.97 7.04

Autoencoder

regularization

Myronenko (21)

0.823 0.910 0.867 3.93 4.52 6.85

The online BraTS evaluation platform computed metrics. AE AU-Net, Asymmetric Ensemble of Asymmetric U-Net. Bold values highlight the best results for each metric.

TABLE 4 | Model comparison on BraTS 2019 validation data (125 cases).

Dice Hausdorff 95 (mm)

ET WT TC ET WT TC

AE AU-Net (our model) 0.773 ± 0.257 0.902 ± 0.066 0.815 ± 0.161 4.65 ± 8.10 6.15 ± 11.2 7.54 ± 11.1 4

2nd Brats competitor

Zhao et al. (15)

0.754 0.910 0.835 3.84 4.57 5.58

1st Brats competitor

Jiang et al. (22)

0.802 0.909 0.865 3.15 4.26 5.44

The online BraTS evaluation platform computed metrics. AE AU-Net, Asymmetric Ensemble Asymmetric U-Net. Bold values highlight the best results for each metric.

GPU capacity (>12 GB) to train their model than the proposed
method, and Myronenko (21) used 32 GB GPU to train
their models. Model comparison in the BraTS tests dataset
was not possible since results from the online evaluation
platform for this dataset were available only once during
the contest.

Error and Uncertainty
Qualitative Results
In Figure 7A, we present a representative segmentation result
along with the corresponding errors and estimated uncertainty.
The errors, which correspond to the difference between the
ground truth and the predicted labels, are displayed using the

same colors as the ground truth: green, red, and yellow for the
whole tumor, tumor core, and enhancing tumor, respectively.
The errors in the rest of the brain are displayed in blue. The
significative uncertainty, corresponding to uncertainty values
above 85 (Figure 7B), is depicted in purple. In Figure 7C, the
error is shown with two colors to differentiate false positives and
false negatives.

Similarly, in Figure 7D, the uncertainty is displayed
with two colors to differentiate uncertain positive and
uncertain negative predictions. It can be observed that
both the error and the uncertainty were mainly located
on the borders of regions, and that their locations
are correlated.
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FIGURE 7 | Uncertainty estimation. Example of an HGG patient from BraTS 2019 training set showing (A) from left to right: ground truth segmentation (GT),

segmentation prediction made by AE AU-Net model, segmentation error, and the estimated uncertainty (threshold 85%). (B) Entropy as a function of model output

probability showing in blue and orange the intervals for uncertain negative and positive predictions. (C) Segmentation error in (A) is divided into false positives and

false negatives. (D) Uncertainty in (A) separated in uncertain positives and uncertain negatives. Depicted volumes in green, red, and yellow are whole tumor, tumor

core, and enhancing tumor, respectively.

FIGURE 8 | Error (1-Dice) as a function of volume variation coefficient (VVC) for the BraTS 2019 validation set. WT, whole tumor; TC, tumor core; ET, enhancing tumor.

Quantitative Results
This relationship between errors and uncertainty is further
studied in Figure 8, which shows a second-order polynomial
regression of the segmentation error (1-Dice) as a function
of VVC uncertainty (Equation 4), with an R2 of 0.49, 0.71,
and 0.94 corresponding to the WT, TC, and ET, respectively.
It can be observed that the error increases with higher
uncertainty. This illustrates that structure-wise uncertainty

obtained from prediction variations within an ensemble could be
used potentially to train a model further and that it could bring
relevant information to the physician. It could also be useful for
post-processing to improve segmentation.

We also compare our uncertainty estimation method with
other approaches. In Table 6, we reported our results in terms
of the three metrics used to rank participants in the BraTS
sub-challenge on uncertainty estimation, which are described in
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section 2.2.6. We compare our results with six different methods
implemented by Mehta et al. (50). We can observe that our
approach performed lower in Dice AUC when filtering out
uncertain voxels. However, we perform better both in terms of
the FTPR and the FTNR, and our proposed model reached an
overall score significantly superior to all the other methods.

Single-Input Modalities
Organizing a homogeneous database ofMRI images that includes
the same modalities for all glioblastoma patients is a challenging
task to achieve. In most health centers, the imaging modalities
available for each patient may vary, without considering that the
image acquisition parameters also change in each protocol. The
images in the BraTS database contain the same four imaging
modalities for each patient, but in many other databases, they
may have only three or even fewer. To evaluate the impact on
our model when being trained with only one imaging modality,
we trained a single input version of our proposed model with
only one of the four modalities separately and also with a
combination of twomodalities andwith all themodalities stacked
as a multi-channel input. In Table 4, we compare the results for
each modality and a combination of modalities. We observed
that using T1, T2, and FLAIR modalities, we obtained the same
low value in the ET region of 0.112. This low Dice score is
obtained because identifying the enhancing tumor region is only
possible with the T1-gadolinium sequence since it requires an
enhancement with contrast medium to be identified. The value
0.112 represents implicitly the proportions of tumors that do not
have ET at all and for which the BraTS scoring system attributes
a score of 1 for correctly finding 0 voxels of this class. For the
same reason, there is no Hausdorff distance associated with this
region since there were no volumes between which to measure
the distance.

The best modalities to segment whole tumor and tumor
core were FLAIR and T1-gadolinium, respectively, and the best
combination with twomodalities was T1-gadolinium and FLAIR.
However, the combination of the fourmodalities was necessary to
reach the best possible performance.

Multi-View Ensemble
The use of 2.5D convolutions oriented in different directions of
the 3D image may pose the dilemma of whether any direction
should be pre-selected to segment the tumor better or one of

its sub-regions. Wang et al. (51) proposed the fusion of the
predictions made by three 2.5D networks oriented in the three
different directions of the image (axial, coronal, and sagittal),
calling the method Multi-View Fusion. To compare our proposal
with the Multi-View Fusion strategy and also to analyze how the
orientation of the convolution filters affects the segmentation of
each of the tumor’s sub-regions, we trained three versions of our
model, one for each plane of the image. Each model version with
all the filters was oriented in only one of the three orthogonal
planes. We applied 3 × 3 × 1, 3 × 1 × 3, and 1 × 3 × 3
convolutions to obtain features in the axial, coronal, and sagittal
views. We found that most of the information is extracted from
the axial view with better performance in the smaller regions (i.e.,
the enhancing tumor and the tumor core).

Meanwhile, with sagittal features, better whole tumor
segmentation is obtained. The ensemble of the three models from
the three different views improves the results in all the regions.
The results are shown in Table 5.

DISCUSSION

Most of the proposed methods for medical image segmentation
involve the use of architectures that stack all modalities as a
multi-channel single input. In previous studies, usingmulti-input
entrance for independent modalities has improved segmenting
multiple sclerosis lesions (55) using MRI images, reporting an
increase in Dice score metric of around 3%. In the context of
the BraTS challenge, this is the first time that the use of multi-
input for different image modalities has been evaluated. We
designed a multi-input module that aims at extracting features
from independent modalities before downsampling the images
since, during this process, the specific details from the more
informative modalities can be missed by mixing with other
modalities. On the contrary, the multi-input approach allows
the extraction of more informative modality-specific features for
better segmentation. The results that we obtained in the BraTS
dataset confirmed our hypothesis. The 2.5D model with multi-
input generates more accurate segmentation than the identical
3D model, where all modalities are stacked into a single input.
Although the difference in overall performance is slight on
average, it was significant in some of the tumor regions, higher
by about 2% in the Dice score. This is a non-negligible difference

TABLE 5 | Single input results on BraTS 2019 validation data (125 cases).

Dice Hausdorff 95 (mm)

ET WT TC ET WT TC

T1 0.112 ± 0.317 0.769 ± 0.178 0.628 ± 0.244 – 12.16 ± 14.52 14.04 ± 16.53

T2 0.112 ± 0.317 0.833 ± 0.138 0.660 ± 0.221 – 9.55 ± 13.34 11.72 ± 10.12

Flair 0.112 ± 0.317 0.865± 0.134 0.656 ± 0.193 – 10.53 ± 20.37 13.23 ± 14.39

T1Gd 0.685 ± 0.322 0.753 ± 0.190 0.749 ± 0.264 5.16 ± 6.49 11.75 ± 11.17 10.34 ± 17.71

T1Gd + Flair 0.674 ± 0.314 0.879 ± 0.091 0.782 ± 0.200 7.43 ± 12.18 8.71 ± 13.96 9.03 ± 12.09

All 0.707 ± 0.302 0.889 ± 0.085 0.790 ± 0.202 5.92 ± 10.41 7.49 ± 13.75 8.66 ± 13.03

The online evaluation platform computed metrics. The Dice coefficient and Hausdorff distance (mean ± SD) are reported. ET, enhancing tumor; WT, whole tumor; TC, tumor core.

Bold values highlight the best results for each metric.
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considering that it is difficult to measure improvements due to
changes in model architecture (56). However, we found that
both the 2.5D and the 3D models predicted relevant information
that could be captured in the AE AU-Net that benefits from
both. In this study, we found that T1 with gadolinium is the
most valuable modality to segment enhancing-tumor regions;
the other modalities contribute slightly to the detection of these
small regions and when using only the other three modalities
independently, our model is not capable to identify this region
(seeTable 5). Since all the models in the literature that are trained
on BraTS datasets use the same four modalities, we believe that
their performance is strongly dependent on their availability, in a
similar way than our model.

In numerous studies, many strategies have been implemented
to combine features of different scales and different views in
the image. In this study, we have shown for the first time the
use of multi-inputs to combine multi-scale extracted features
coming from three orthogonal views of four independent image
modalities. While an approach was proposed to combine multi-
scale and multi-view features simultaneously (51), it required
training separate models for each view. In the proposed 2.5D
approach, the three branches in the input module allow the
training of a unique 2.5D model. This is convenient in terms
of training time since it is unnecessary to train several models
with different views or scales, and it can be optimized as a
unique process. Besides, using 2.5D convolutions reduces the
computational cost. We also compared our implementation
with a Multi-View Fusion strategy. Results in Table 6 show
the independent assessments of our model trained in different
views and the combination of them through an averaging
ensemble model. The ensemble improves the accuracy of the
segmentation but is inferior to the proposed AE AU-Net
approach based on both 3D and 2.5D modules (results in
Table 4).

When examining the influence of differently oriented 2.5D
convolutions in axial, coronal, and sagittal views, results in
Table 6 illustrated that in our experiments, the models trained
in axial view provide more accurate segmentation in enhancing
tumor and tumor core regions. This was predictable since most
MRI image acquisitions are obtained with a higher resolution in
the axial direction. On the other hand, the models trained in the
sagittal view generated a better segmentation of the whole tumor.
This is possibly due to the greater volume of the target region, for

which the more global information contained in the dimension
of lower resolution is more relevant. 2.5D Multi-View Inception
modules can be implemented in any architecture and benefit
the accuracy of the segmentation. It would also be interesting
to assess this block using dilated convolutions instead of using
different kernel sizes.

Tables 3, 4 compare our results with the first and second-
ranked models in the BraTS 2018 and 2019 challenge. All top-
performing methods have in common the use of U-Net like
architectures, and all of them used fusing strategies like an
ensemble of models.

In the 2018 BraTS challenge, the first-place competitor
(21) proposed a variational autoencoder branch for an
encoder/decoder model to reconstruct the input image
simultaneously with segmentation. The second place used
an ensemble of 10 3D U-Net with minor modification models
and implemented a co-training strategy using additional labeled
images. We also compared our results with the cascade network
in addition to test time augmentation (TTA) and a conditional
random field for post-processing, implemented by (51). TTA is
a data augmentation technique, such as spatial transformations,
but applied at test time to obtainN different segmentation results
combined to get the final prediction.

In terms of optimization in the 2019 BraTS challenge, the
first and second place used warming up learning and multi-
task learning strategies. The second-place submission of Zhao
et al. (15) started from a base model that consists of a U-
Net architecture with dense blocks joined with a self-ensemble
module that combines predictions made at different scales of
U-Net to obtain the final prediction. Additional strategies are
then applied to improve performance, including random patch-
size training, semi-supervised learning, warming up, and multi-
task learning. The authors made an ablation study in which
they compared their results using their initial model and after
the implementation of three strategies: warming up, fusing, and
semi-supervised learning. In our experiments on single models
(details not shown for the sake of clarity), we observed that
their single initial model has a similar performance to our single
model and that our model performs better in enhancing tumor
region. However, the strategy that gave them the most significant
improvement was the semi-supervisedmethod. The authors used
750 additional cases fromDecathlon (54) as the unlabeled data set
to implement this strategy.

TABLE 6 | Different view convolutions comparison on BraTS 2019 validation data (125 cases).

Dice Hausdorff 95 (mm)

ET WT TC ET WT TC

Axial view (331) 0.671 ± 0.308 0.868 ± 0.106 0.763 ± 0.208 8.81 ± 16.62 11.88 ± 19.45 11.95 ± 17.28

Coronal view (313) 0.651 ± 0.325 0.858 ± 0.119 0.758 ± 0.210 9.46 ± 16.93 14.25 ± 19.26 12.35 ± 18.29

Sagittal view (133) 0.645 ± 0.325 0.874 ± 0.099 0.757 ± 0.208 8.05 ± 14.56 12.96 ± 21.27 11.39 ± 16.67

Ensemble three views 0.676 ± 0.318 0.886 ± 0.075 0.774 ± 0.212 6.74 ± 13.19 9.08 ± 15.16 9.49 ± 14.66

The online evaluation platform computed metrics. The Dice coefficient and Hausdorff distance (mean ± SD) are reported. ET, enhancing tumor, WT, whole tumor, TC, tumor core.

Bold values highlight the best results for each metric.
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The best-performing method in the BraTS 2019 competition
used a two-stage cascaded U-Net (22). Instead of segmenting
one region in each stage in their cascaded strategy, they made
a coarse segmentation in the first U-Net like architecture.
Then they enter the preliminary prediction map stacked with
the original four input modalities into the second U-Net
to make the final segmentation. The authors improved their
performance implementing a multi-task learning strategy by
adding a second decoder to regularize the shared encoder, using
the warming up optimization method (57), performing TTA,
and implementing a post-processing technique to delete false
positives in the enhancing tumor region. The authors obtained
similar performances using their single best model compared
with fusing 12 models in an ensemble.

Tables 3, 4 show that we got competitive results with top
performance methods in the 2018 and 2019 BraTS databases,
while training our models with fewer images than Isensee et al.
(19) and Zhao et al. (15). We used less GPUmemory capacity (12
GB) than Myronenko (21), who trained his models on a 32 GB
GPU. We obtained similar performance than cascade networks
with better performance in the complete and enhancing tumor
regions and with the advantage that our method segments all
regions in one step. The cascade networks do it in three stages.
First, the whole tumor is segmented. The tumor core is obtained
using the previous segmentation to get the segmentation of
the smallest region; then, the inference time is also lower in
our implementation. In addition, since they used a Multi-View
Fusion strategy, they need to train three networks, one for each
of three different planes, to make an ensemble of the predictions;
in total, nine models should be trained, three for each region. Our
implementation requires training seven models.

Our qualitative results comparing top-performing methods
with our proposed framework suggest that minor differences
in Dice values will not always represent significant qualitative
differences that could impact clinical practice.

Comparing the results obtained with the 2.5D AU-Net model
in the validation and the test dataset (see Table 2), we are
confident that the proposed model generalizes well since similar
general performances were obtained. Results obtained in the test
set presented an increase in the values obtained in the ET region

and a decrease in the WT region. This behavior is also observed
in most participating models, making it possible that the dataset
test images were easier to segment in the enhancing tumor region
and more difficult in the whole tumor region.

Even if we did not observe overfitting behavior, we could
improve the performance of our model by adding more complex
data augmentation methods, such as elastic and pixel-wise
transformations, since some of the top-performing methods
in past editions of the BraTS challenge implemented them.
However, this was not proposed as there is no clear evidence of
the impact of performing more data augmentation (15).

Outside the context of the BraTS challenge, there are
some works on brain tumor segmentation. Most of them
use hand-crafted features combined with machine learning
techniques (45, 58, 59). Soltaninejad et al. (59) used the diffusion
tensor imaging (DTI) additionally to the T1, T2, and FLAIR
sequences, to improve their method, which combines super
voxels and random forest models. While the reported results are
comparatively lower than those reported on BraTS challenges,
with a Dice value of 0.84 for the whole tumor, they propose
innovativemodifications that could improve the transferability of
trained models.

Deep learning models like the ones trained in BraTS database
can be adapted to different types of images, as illustrated by
the results of another grand challenge, the Decathlon (54).
In this competition, the models must be able to segment a
great variety of regions of six different organs, among them
the brain, the heart, and the liver, and adapt to other imaging
modalities such as CT and MRI. The last winner used an
ensemble of three different U-Net architectures, combining 2D
and 3D implementations to fit all different image sizes and
different memory consumption (19). While being adaptive to
many applications, the performance of this framework in the
different tasks is usually lower than that of a dedicated end-to-
end network.

Finally, we have explored the use of an ensemble of
models to estimate structure-wise uncertainties by measuring
volume variation coefficients; we observed similar behavior as
observed in (51) when using test time augmentation uncertainty
estimation, but we found that a quadratic relationship between

TABLE 7 | Uncertainty measures comparison on BraTS 2019 validation data (125 cases).

WT

Dice AUC FTPR AUC FTNR AUC Final score

MC dropout 0.9651 0.1725 0.0175 0.925

Deep ensemble 0.9703 0.2272 0.0160 0.909

Dropout ensemble 0.9711 0.2373 0.0171 0.905

Bootstrap 0.9760 0.2391 0.0179 0.906

Dropout bootstrap 0.9776 0.2388 0.0199 0.906

Deterministic 0.9621 0.1697 0.0152 0.926

AE AU-Net (ours) 0.940 ± 0.050 0.0830 ± 0.094 0.0099 ± 0.011 0.949 ± 0.05

The online BraTS evaluation platform computed metrics. The Dice coefficient area under the curve (Dice AUC), filtered true-positive ratio (FTPR), and filtered true-negative ratio (FTNR)

are reported for the whole tumor (WT). Bold values highlight the best results for each metric.
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segmentation error in terms of 1-Dice and structure-wise
uncertainty fits better the data (see Figure 8) instead of a linear
relationship as reported by (51).

We have compared our method using an ensemble of models
to estimate voxel-wise uncertainties; with six different methods
implemented by Mehta et al. (50), we found that all the other
methods had a higher increase in the Dice score when filtering
out uncertain voxels than our method, but this was at the expense
of eliminating many true-positive and true-negative predictions.
Our method was significantly superior in the final score that
considers the average of the three metrics (Table 7). This
result suggests that our approach has a better balance between
improving Dice coefficient by removing wrong predictions and
not drawing too many correct predictions.

Our qualitative results in uncertainty estimation show
that uncertain voxels are mainly located in the borders of
the different tumor regions, which is consistent with other
qualitative results in uncertainty estimation (50, 60) and
with human-rater variability. We have shown a qualitative
relationship between false positives and negatives and
uncertain positive and negative predictions (see Figure 7).
Quantifying volume variations associated with uncertain positive
and negative predictions would be interesting as a future
direction to differentiate between possible false-positive and
false-negative predictions.

Perhaps one of the most important questions is whether these
algorithms have a reliable application in clinical practice. Müller
et al., published that CNNs for brain tumor segmentation are
not directly applicable in daily clinical practice (61). However,
recent works start showing the feasibility of implementing these
methods into clinical practice (62, 63). The field continues to
evolve and move toward more stable and reproducible methods
for different applications such as brain tumor segmentation and
stroke detection, where clinical applications are clearly on the
horizon (64). Estimating uncertainties will be a crucial factor in
achieving these objectives.

As a perspective work, we aim to study the use of uncertainties
(both structure-wise and voxel-wise) to improve segmentation
accuracy when used as a post-processing technique to filtering
out uncertain predictions, taking into consideration the two
groups of uncertainties (positives and negatives). Uncertainties
could also be used as a reference for user interactions (51)
to detect mis-segmentation. We also aim to investigate the
reproducibility of this method on images coming from different
databases from the clinic.

CONCLUSIONS

We have proposed a novel end-to-end FCN architecture for
pre-operative MRI tumor segmentation. We have assessed, for
the first time, the use of independent input entrances into an
asymmetric U-Net architecture for brain tumor segmentation.
Our experimentations illustrated the benefit of the proposed
2.5D Multi-View Inception and Multi-Input module that mixes

different views of the 3D images using 2.5D convolutions
and the benefit of using it complementarily with a more
classical 3D concatenated input in an ensemble of models. The
proposed AE AU-Net segmentation aims to balance combining
multiple views and different receptive fields and to maintain
memory consumption low. We obtained dice scores of 0.902
± 0.066, 0.815 ± 0.161, and 0.773 ± 0.257 for the complete,
core, and enhancing tumor regions, with an overall dice of
0.83 in the BraTS 2019 validation dataset. We also applied
our method in BraTS 2018 database with corresponding Dice
score values of 0.908 ± 0.055, 0.838 ± 0.150, and 0.800
± 0.230, respectively. We obtained comparative results with
top-performing methods without using any additional training
data and requiring less memory to train than the first place
in both competitions. In addition, our approach to estimate
uncertainties was comparatively superior to other six methods
reported in the literature. Finally, the study of voxel-wise and
structure-wise uncertainties, and their relationship with the
segmentation errors, give perspectives to improve segmentation
accuracy further.
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