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Background: Epigallocatechin gallate (EGCG) is an anti-inflammatory agent and has

proven neuroprotective properties in animal models of multiple sclerosis (MS). Optical

coherence tomography (OCT) assessed retinal thickness analysis can reflect treatment

responses in MS.

Objective: To analyze the influence of EGCG treatment on retinal thickness analysis

as secondary and exploratory outcomes of the randomized controlled Sunphenon in

Progressive Forms of MS trial (SUPREMES, NCT00799890).

Methods: SUPREMES patients underwent OCTwith the Heidelberg Spectralis device at

a subset of visits. We determined peripapillary retinal nerve fiber layer (pRNFL) thickness

from a 12◦ ring scan around the optic nerve head and thickness of the ganglion

cell/inner plexiform layer (GCIP) and inner nuclear layer (INL) within a 6mm diameter grid

centered on the fovea from amacular volume scan. Longitudinal OCT data were available

for exploratory analysis from 31 SUPREMES participants (12/19 primary/secondary

progressive MS (PPMS/SPMS); mean age 51 ± 7 years; 12 female; mean time since

disease onset 16 ± 11 years). We tested the null hypothesis of no treatment∗time

interaction using nonparametric analysis of longitudinal data in factorial experiments.

Results: After 2 years, there were no significant differences in longitudinal retinal

thickness changes between EGCG treated and placebo arms in any OCT parameter
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(Mean change [confidence interval] ECGC vs. Placebo: pRNFL: −0.83 [1.29] µm vs.

−0.64 [1.56] µm, p = 0.156; GCIP: −0.67 [0.67] µm vs. −0.14 [0.47] µm, p = 0.476;

INL: −0.06 [0.58] µm vs. 0.22 [0.41] µm, p = 0.455).

Conclusion: Retinal thickness analysis did not reveal a neuroprotective effect of EGCG.

While this is in line with the results of the main SUPREMES trial, our study was probably

underpowered to detect an effect.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT00799890.

Keywords: optical coherence tomography, retina, progressive multiple sclerosis, treatment response,

epigallocatechin gallate

INTRODUCTION

Multiple sclerosis (MS) is the most common autoimmune
inflammatory and degenerative central nervous system (CNS)
disease, often resulting in sustained neurological deficits (1).
The majority of patients manifest with a relapsing remitting
(RRMS) disease course (2, 3), followed by a secondary progressive
(SPMS) stage ∼20 years from onset (4). However, 15–20% show
a primary progressive (PPMS) disease course from onset (3, 5, 6).
Neurodegeneration may be present in any course from the onset
of the disease (7–10).

The principle of disease modifying therapy (DMT) aims at
decreasing relapse frequency and disability progression. Whereas
various immunomodulatory drugs for the treatment of RRMS
targeting the inflammatory aspect of the disease have been
established in the last decades (11), treatment options for
progressive MS are sparse (12, 13). Furthermore, due to the
absence of clinical relapses, treatment response is difficult to
measure in progressive MS and has to rely on measures not
primarily associated with relapse activity (13).

Green tea anti-inflammatory, anti-oxidative, and
anti-cancerogenic effects have been shown on various
conditions such as energy metabolism, cell development,
and neuroprotection (14–17). The most active agent is the
polyphenol epigallocatechin-gallate (EGCG), comprising 50–
80% of the total catechins in green tea (18). EGCG has shown
immunomodulatory effects by inhibition of T cell proliferation
and thus modulates the production of T cell-derived cytokines,
e.g., Interferon-γ, Interleukin-2, and tumor necrosis factor
(TFN) α (from T helper type 1 cell subset) (19–21). In an
experimental animal model of MS (experimental autoimmune
encephalomyelitis, EAE) the oral intake of EGCG suppressed
inflammation via inhibition of TNFα and nuclear factor
kappa-light-chain-enhancer of activated B cells in T cells, thus
resulting in reduced clinical disease severity and fewer CNS
lesions in mice (22–24). Furthermore, treatment with EGCG and
glatiramer acetate in EAE mice delayed disease onset, reduced
clinical disability and reduced inflammatory infiltrates (25). In
clinical trials, oral intake of EGCG was associated with improved
muscle metabolism during moderate exercise in RRMS (26) and
improved cognitive rehabilitation in genetic disorders (27, 28).

Optical coherence tomography (OCT) allows quantification
of anterior visual pathway damage in MS patients (29–33).

While thinning of the peripapillary retinal nerve fiber layer
(pRNFL), containing unmyelinated axons, and the ganglion cell
layer, containing their cell bodies, reflect neuroaxonal atrophy
as a consequence of retrograde neurodegeneration, the inner
nuclear layer (INL) is associated with inflammation manifesting
in thickening and edema (31, 34–40). The ganglion cell layer
is usually—due to similar contrast on OCT images—analyzed
in combination with the inner plexiform layer (GCIP). RNFL
and GCIP changes are found even during early stages of
MS and occur also in absence of a history of optic neuritis
(ON) (8, 41–44). Response to DMT is reflected by decreased
rates of GCIP thinning (45) and thinning of INL in RRMS
patients (46). A recent study has shown faster retinal thinning—
also compared to RRMS patients and no effect of DMT on
thinning rates in progressive MS (47). The study has been
discussed controversially (48).

The SUPREMES study (Sunphenon in progressive forms
of multiple sclerosis) was a phase 2 monocentric, prospective,
randomized double-blind placebo-controlled pilot study to
evaluate the effect of EGCG/Sunphenon on brain atrophy in
MRI over a period of 36 months in patients with primary and
secondary progressive multiple sclerosis (NCT00799890). The
primary results of the SUPREMES study have been published
elsewhere (49). OCT parameters were assessed as secondary and
exploratory outcomes. The aim of our study was to evaluate the
impact of EGCG on longitudinal retinal component changes in
patients with progressive MS.

MATERIALS AND METHODS

Patients and Study Design
In total, 61 patients were randomized to the SUPREMES trial
(NCT00799890) at the NeuroCure Clinical Research Center
(NCRC) at Charité—Universitätsmedizin Berlin, Germany.
Inclusion and exclusion criteria, randomization, blinding
process and primary and secondary endpoints are described
in detail elsewhere (49). Primary outcome parameter of the
main study was brain atrophy detected as the difference
between brain parenchymal fraction after 36 months compared
to baseline. Inclusion criteria were age between 18 and
65 years, diagnosis of primary progressive or secondary
progressive multiple sclerosis according to the McDonald criteria
version 2005 (50), expanded disability status scale (EDSS)
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FIGURE 1 | CONSORT chart describing the enrolment process of OCT analysis and case numbers at each year of follow-up. PMS, progressive MS; OCT, Optical

coherence tomography; pRNFL, peripapillary retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer.
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TABLE 1 | Baseline cohort description.

EGCG Placebo p

n 15 16

Age [years] 50.8 ± 8.4 50.7 ± 6.9 0.968

Sex female [n (%)] 5 (33.3) 7 (43.8) 0.821

Diagnosis PPMS [n (%)] 6 (40.0) 6 (37.5) >0.999

SPMS [n (%)] 9 (60.0) 10 (62.5)

Disease duration [years] (median, [IQR]) 13.69 [8.90, 29.41] 12.12 [7.47, 20.17] 0.406

EDSS (median, IQR) 6.00 [4.00, 6.50] 5.75 [4.00, 6.00] 0.138

Time on trial at OCT baseline (median, IQR) [years] 1.06 [0.00, 1.50] 1.04 [0.00, 1.53] 0.919

Follow-up duration (median, IQR) [years] 1.47 [1.27, 2.01] 1.95 [1.47, 2.90] 0.213

Abbreviations: EGCG: epigallocatechin-gallate, SPMS: secondary progressive multiple sclerosis, PPMS: primary progressive multiple sclerosis, EDSS: Expanded disability status scale,

IQR: interquartile range, OCT: optical coherence tomography.

TABLE 2 | First OCT measurements.

EGCG Placebo EGCG vs. placebo

Mean ± SD RTE Mean ± SD RTE p

pRNFL/µm 87.3 ± 11.1 0.554 82.9 ± 11.4 0.450 0.297

GCIP/µm 65.4 ± 7.4 0.609 59.9 ± 6.1 0.381 0.024

INL/µm 37.8 ± 2.2 0.599 36.1 ± 2.3 0.392 0.049

Test statistics from “nonparametric analysis of longitudinal data” of first examination OCT

data. EGCG, epigallocatechin-gallate; CI, confidence interval; RTE, Relative treatment

effect; pRNFL, peripapillary retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform

layer; INL, inner nuclear layer.

(51) between 3.0 and 8.0 and at least 30 days between the
last exacerbation and study screening. Exclusion criteria were
treatment with any immunomodulatory or immunosuppressive
drugs, with exception of methylprednisolone up to 3 months
before screening. Regarding OCT, pRNFL was a secondary
outcome parameter; GCIP and INL were analyzed as
exploratory endpoints. For inclusion in the analysis of OCT,
ophthalmological diseases such as glaucoma, recurrent iritis,
myopia <-5 dpt were considered as additional exclusion criteria.
As for many patients OCT scanning was not available in the
beginning, we only included patients to the OCT analysis
who had at least one follow-up OCT at least 6 months from
baseline OCT.

Study Medication
Patients in the treatment arm started treatment with one capsule
containing Sunphenon 200mg/day and placebo patients received
identical capsules without active component. After 3 months,
participants received two capsules per day of either EGCG or
placebo medication. After 6 months, the medication increased to
600 mg/day, after 18 months to 800 mg/day and after 30 months
they received the full amount of 1,200 mg/day.

Ethics
The SUPREMES trial was approved by the local ethics committee
(LaGeSo ZS EK 10 407/08, new: 08/0407-EK 15) and by

the German Federal Institute for Drugs and Medical Devices
(BfArM). The trial is registered with EudraCT (2008-005213-
22) and clinicaltrials.gov (NCT00799890) and was conducted
in accordance with the current version of the Declaration of
Helsinki and the applicable German law. All subjects provided
written informed consent prior to enrolment.

Optical Coherence Tomography
Patients underwent spectral domain OCT (Spectralis SD-
OCT; Heidelberg Engineering, Heidelberg, Germany) with the
Eye Explorer 1.9.10.0 and automatic real-time (ART) image
averaging. pRNFL was calculated from a standard ring scan
around the optic nerve head (12◦, 1536A-scans, 16≤ART≤ 100)
using segmentation by the device’s software with viewing module
6.0.14.0. A macular volume scan (25◦ × 30◦, 61 B-scans, 768 A-
scans per B-scan, 12 ≤ ART ≤ 15) was acquired for intraretinal
segmentation of GCIP and INL. Segmentation of macular scans
was performed with SAMIRIX (52). All OCT scans were revised
for retinal changes unrelated to MS, sufficient quality (53, 54),
segmentation errors and were manually corrected by a blinded
experienced grader if necessary. OCT methods are reported in
line with the APOSTEL criteria (55).

Statistical Methods
Cohort baseline differences with subject reference in numerical
variables were either given as mean ± standard deviation and
analyzed with t-test, or as median and interquartile range (IQR)
and analyzed withWilcoxon rank-sum test, while Chi-Square test
was applied for categorical variables. Due to overall low sample
size and high number of missing data (Figure 1) we tested the
OCT first examination and the longitudinal main hypothesis
with “nonparametric analysis of longitudinal data in factorial
experiments” as implemented in the R package nparLD (56). We
modeled first OCT examination within an F1-LD-F1 design and
used the ANOVA-Type test with treatment arm as whole-plot
factor and eye as sub-plot factor for inference. We performed
longitudinal analysis within the F1-LD-F2 experimental design
with one whole-plot factor and two sub-plot factors, where the
second sub-plot factor is the stratification of the first. Using
this design, we used treatment group as whole-plot factor, time
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FIGURE 2 | Longitudinal retinal layer changes in the EGCG treated and placebo group. Error bars indicate the standard error to the mean. EGCG,

epigallocatechin-gallate; pRNFL, peripapillary retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer.

as the first subplot factor, and eye as the second to account
for two eye measurements per patient at each time point. We
excluded three-year follow up because of potential bias resulting
from missing data. The main question was whether the time
profiles of the two groups were parallel or diverging, i.e., if
there exists a statistical interaction between treatment group and

time after 2 year follow up, which would indicate an effect of
EGCG on OCT changes over time. The effect size is represented
by the relative marginal treatment effect (RTE), indicating
whether data tend to be smaller/larger under respective factor
level combinations. The analysis set included missing values
as described in the flow chart (Figure 1). In this data set we
rounded follow-up time to full years in order to use time as a
categorical variable. To confirm our findings, changes in OCT
parameters were estimated with linear mixed models (LMM)

using the formula: OCT value ∼ group∗time from baseline +

(1 + time from baseline|patient/eye). In LMM, all sessions were
considered including time since baseline as a continuous variable.
No corrections for multiple comparisons were performed for this
exploratory outcome analysis. Statistical analyses were performed
with R (57) version 3.6.2 with packages nparLD (56), lme4,
lmertest, tidyverse, tableone, ggplot2, beeswarm, ggplot, RMisc.
Statistical significance was established at p < 0.05.

RESULTS

Cohort Description
Sixty-one patients with progressive MS were randomized in the
SUPREMES trial to receive either EGCG treatment or placebo.
From these patients, we had to exclude 16 patients because of
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TABLE 3 | Longitudinal OCT changes in treatment arms—nonparametric analysis.

EGCG Placebo EGCG vs. Placebo

Mean change [CI]/µm RTE Mean change [CI]/µm RTE p

treatment:time treatment:time

pRNFL/µm −0.83 [1.29] 0.331 −0.64 [1.56] 0.492 0.156

GCIP/µm −0.67 [0.67] 0.360 −0.14 [0.47] 0.429 0.476

INL/µm −0.06 [0.58] 0.504 0.22 [0.41] 0.635 0.455

All results for the 2-year follow-up visit. Test statistics from “nonparametric analysis of longitudinal data.” EGCG, epigallocatechin-gallate; RTE, Relative treatment effect; pRNFL,

peripapillary retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer.

TABLE 4 | Longitudinal OCT changes in treatment arms—linear mixed models.

B SE p Lower CI Upper CI R2m R2c

pRNFL Treatment EGCG 3.194 4.014 0.433 −4.673 11.062 0.032 0.982

Time −0.788 0.306 0.018 −1.387 −0.189

Treatment EGCG:Time 0.766 0.463 0.111 −0.140 1.673

GCIP Treatment EGCG 4.389 2.432 0.082 −0.379 9.156 0.092 0.994

Time −0.221 0.111 0.068 −0.439 0.003

Treatment EGCG:Time 0.0138 0.160 0.933 −0.300 0.327

INL Treatment EGCG 1.866 0.838 0.034 0.223 3.509 0.136 0.956

Time −0.075 0.084 0.374 −0.240 0.089

Treatment EGCG:Time 0.064 0.119 0.589 −0.168 0.297

All result for the maximum available follow-up time (continuous) under treatment. Test statistics from linear mixed models. B, non-standardized correlation coefficient; SE, standard error;

CI, 95% confidence interval; R2m, Marginal R2; R2c, Conditional R2; pRNFL, peripapillary retinal nerve fiber layer; GCIP, ganglion cell and inner plexiform layer; INL, inner nuclear layer.

missing OCT data. From the 45 patients with OCT data, seven
patients had no follow-up OCT data, and 7 patients had to be
excluded due to ophthalmological diseases such as glaucoma,
recurrent iritis, and myopia <-5 dpt. Thus, 31 patients were
included in analysis. The inclusion process is detailed in Figure 1.
Moreover, from 2 patients (1 EGCG, 1 placebo), one eye was
excluded from all analyses because of unilateral retinopathy. Two
pRNFL scans from 2 patients (both EGCG) and 34 macular scans
from 28 sessions of 20 patients (8 EGCG, 12 placebo) failed the
OSCAR-IB quality criteria and had to be excluded (53, 54).

Baseline OCT Findings
Baseline cohort details are described inTable 1. Patients had their
first OCT examination median 1.05 (interquartile range 0.00–
1.52) years after randomization. The OCT cohort comprised 15
patients from the treatment and 16 patients from the placebo
group. There were no significant differences in age, sex, time since
disease onset, EDSS, time in the trial, and follow-up duration
between treatment and placebo groups (Table 1). Patients in the
EGCG treated arm had thicker GCIP, INL, and—though not
significant—pRNFL (Table 2).

Longitudinal OCT Results
Figure 2 illustrates changes over time in the EGCG treated and
Placebo group. Table 3 depicts changes over time separately
for the treatment and the placebo arms and their statistical
comparison from non-parametric longitudinal data analysis.
There was no significant interaction of treatment and time for

any parameter. Table 4 includes results from LMMs, as well not
detecting any significant differences in change over time between
ECGC and placebo group.

DISCUSSION

In this study, we performed an analysis of OCT data as
secondary (pRNFL) and exploratory (GCIP, INL) outcomes in
the SUPREMES trial. Specifically, we investigated differences
in retinal thickness changes over time between patients treated
with EGCG vs. placebo. We found no difference between the
treatment groups.

These results support the findings in the analysis of the
primary and secondary outcome parameters of the SUPREMES
trial: no evidence for treatment was found on brain atrophy,
lesion load, and clinical scores (49). The primary outcome
parameter of the SUPREMES trial was brain atrophy, a
commonly used outcome for neuroprotective trials in MS (58).
While brain atrophy measurement is widely established, retinal
thickness analysis has been included as an additional outcome as
the use of brain atrophy is not without challenge: a reduction of
acute swelling by a potent anti-inflammatory intervention may
lead to the phenomenon of “pseudoatrophy,” which is referred
to as decreased brain volume due to the resolution of edema
and inflammation after treatment (59, 60). Furthermore, as our
cohort had an average age of 50 years, treatment effects on brain
atrophy may be confounded by non-linear aging effects (61).
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In contrast, retinal thickness measurements are less prone
to aging (52). Furthermore, GCIP is not prone to swelling
(62), whereas a subtle swelling of pRNFL outside of acute
ON has not been reported so far. While they may be
inferior to brain atrophy at face value, GCIP and pRNFL
may be superior for detecting neuroprotective effects due
to a lack of pseudoatrophy. Nevertheless, we did not find
a significantly reduced atrophy of pRNFL and GCIP in
the EGCG group.

While pRNFL and GCIP thinning reflect neuroaxonal
damage, the INL is considered a marker of inflammation.
Treatment response is considered to be associated with INL
thinning (46). However, the INL is also subject to atrophy as
indicated by thinning in a large progressive MS study (47). In
our study, the INL showed no overall thickness changes. This
suggests that either no time-dependent change occur, or that
both atrophy and inflammation occur in our cohort, masking a
treatment-associated thinning.

Other clinical trials also failed to show a treatment effect of
EGCG: The SUNIMS trial (63) reported no treatment effect of
EGCG on clinical or MRI measures in RRMS patients. Moreover,
a recently published study demonstrated no impact of EGCG
after 48 weeks of treatment on disease progression in multiple
system atrophy (64). A potential reason for the failure of EGCG
in clinical trials could be the lower bioavailability of oral EGCG
than previously assumed (65, 66).

Several limitations may impact our results. First, the low
sample size of our cohort. A previous study estimated that
the sample size for a progressive MS trial on neuroprotective
agents should be at least n = 173 for pRNFL and n = 125
for GCIP per trial arm for a 3-year study (power 80%, effect
size 50%), numbers way larger than achieved in this exploratory
outcome analysis (47).

Another weakness is that treatment and placebo groups were
not well-matched regarding baseline OCT, with a significantly
thicker GCIP and INL in the treatment group. In our non-
parametric analysis, we used the change of retinal parameters as
outcome and the linear mixed models we computed additionally
consider the individual intercept at baseline. Thus, we assume
that the differences at OCT baseline had no influence on the
longitudinal analysis.

To date, there are few studies applying OCT as an outcome
parameter in clinical trials of MS. To the best of our knowledge,
there is no published prospective interventional study that
applied OCT as outcome parameter in trials in the progressive
forms of the disease. While OCT detected differences in retinal
thickness change between different treatment groups in RRMS
(45), it is possible that the retina of SPMS and PPMS patients
are less responsive to treatment. Another aspect is the high
frequency of primary eye disorders in a usually elder progressive
MS population. In our study, almost 20% of patients needed
to be excluded due to eye comorbidities. Furthermore, due
to increased disability, progressive MS patients are often less
compliant with the OCT examination, leading to a high number
of noise or cut-off scans failing the quality control. While
this does not preclude OCT as endpoint from clinical trials
in progressive MS, it suggests that careful ophthalmological

examination for comorbidities and rigorous quality control of
OCT scans are of paramount importance. A recent retrospective
study showed a decreased macular RNFL thinning associated
with 4-aminopyridine treatment in a mixed cohort of RRMS and
progressiveMS patients (67). These and our results encourage the
further evaluation of OCTmeasurements as outcome parameters
in clinical trials of progressive MS.

To conclude, our study shows no effect over time of EGCG
on pRNFL, GCIP, or INL. As such, our study does not provide
sufficient evidence for a neuroprotective effect of EGCG on
retinal thickness in patients with SPMS and PPMS. While this is
in line with the outcomes of the main SUPREMES trial, our study
was probably underpowered to detect a treatment effect.
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