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Alzheimer’s disease (AD) is a progressive neurodegenerative disease and is the most

common cause of dementia in an aging population. The majority of research effort

has focused on the role of neurons in neurodegeneration and current therapies have

limited ability to slow disease progression. Recently more attention has been given to the

role of astrocytes in the process of neurodegeneration. Specifically, reactive astrocytes

have both advantageous and adverse effects during neurodegeneration. The ability

to isolate and depict astrocyte phenotype has been challenging. However, with the

recent development of single-cell sequencing technologies researchers are provided

with the resource to delineate specific biomarkers associated with reactive astrocytes

in AD. In this review, we will focus on the role of astrocytes in normal conditions

and the pathological development of AD. We will further review recent developments

in the understanding of astrocyte heterogeneity and associated biomarkers. A better

understanding of astrocyte contributions and phenotypic changes in AD can ultimately

lead to more effective therapeutic targets.

Keywords: neurodegeneration, Alzheimer’s disease, biomarkers, reactive astrocyte, heterogeneity, single-cell

sequencing, neuroinflammation

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia worldwide and was first described
over 100 years ago by Alois Alzheimer. Alzheimer’s disease is a prominent disease throughout the
world with a significant impact on the health care system, estimated at nearly $500 billion annually
(1). Currently, the FDA has approved few drugs for AD, which aim to improve quality of life but
do not change or slow disease progression (2).

At this time the pathophysiological mechanisms of AD are not fully understood, and current
therapeutic interventions are limited in efficacy. The pathological hallmark of the disease is the
deposition of beta-amyloid (β-amyloid) plaques and the resulting formation of neurofibrillary
tangles composed of hyperphosphorylated tau protein (3). Due to the location of these pathological
markers within neurons, neurons have been the target of research. Ramon y Cajal eloquently
demonstrated these pathological hallmarks decades earlier (4). Interestingly, Ramon y Cajal
also noted reactive hypertrophic astrocytes that surrounded senile plaques and blood vessels
with amyloid deposits in post-mortem AD patients (4). Thus, astrocytic changes due to
neurodegeneration are not a new discovery. However, there has been minimal advancement in
understanding the role of astrocytes in the development of AD. This lack of progress was likely due
to insufficient technology and methods. Due to new innovative technologies, there is an increasing
focus on elucidating the physiological changes within astrocytes during AD progression.
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The astrocyte is a prevalent cell type within the central nervous
system (CNS). They have diverse and vital functions within the
CNS including contributions to synaptogenesis, ion homeostasis,
neurotransmitter buffering, the blood brain barrier (BBB), and
inter/intracellular communication (5). Furthermore, astrocytes
are a heterogeneous group of cells with diverse phenotypes and
functions specific to their origin regionally (5, 6). Currently,
significant effort has been dedicated to investigating the distinct
functions of astrocytes as it relates to neurodegenerative disease
(5, 7).

This review will examine the current understanding of the
roles of reactive astrocytes and potential astrocytic biomarkers
unique to AD. We will further explore new technologies
such as single-cell sequencing and its potential effectiveness
in deciphering the phenotypic changes astrocytes undergo
in the context of AD. Finally, we will examine how these
technologies can help to dissect astrocyte states or subtypes
during AD progression.

ALZHEIMER’S DISEASE PATHOLOGY

Alzheimer’s disease is an irreversible brain disorder that slowly
destroys memory and thinking skills. Two forms of AD exist,
familial, and sporadic. Familial AD accounts for <5% of cases
and is associated with three subtypes defined by unique genetic
mutations (8). The first unique genetic mutation involves the
amyloid-beta precursor protein (APP) gene, which controls the
formation of the amyloid precursor protein. The APP role is
not fully understood, but it is suspected that it helps direct the
migration of neurons during early development (9). Mutations
cluster around the γ-secretase cleavage site of APP, resulting
in longer and more fibrillogenic β-amyloid (10). Two other
genes implicated in familial AD are presenilin1 (PSEN1), and
presenelin2 (PSEN2) (11). These genes encode for subunits
of a complex of gamma (γ)-secretase, which is involved in
the proteolysis and processing of APP. The sporadic or late-
onset (>65 years old) of AD lacks a complete explanation
for its development. However, there is a host of risk factors
associated with the onset of the disease. For example, there
is a genetic association of carriers of the Apolipoprotein E4
(APOE4) allele, Clusterin, and mutations in triggering receptor
expressed on myeloid cells 2 (TREM2) (12, 13). Other risk factors
for the development of sporadic AD are associated with both
environmental and modifiable lifestyle factors (14, 15).

The gold standard of pathologic diagnosis of AD includes
extracellular amyloid plaques and intracellular neurofibrillary
tangles. Amyloid plaques aggregate within the isocortex and are
found in all six cortical layers (16). β-amyloid deposition and
plaque formation are accompanied by reactive astrogliosis and
microglial activation (17). It has been shown in post-mortem
specimens that neurofibrillary tangles were densely associated
with those areas of the brain most affected by the disease, such as
the hippocampus (18). The number of these tangles is correlated
with severity of symptoms (19). Tau protein is a microtubule-
associated protein (MAP) which aggregates into neurofibrillary
tangles. It is necessary for the function and development of

the nervous system and regulation of the normal function
of neurons (20). In AD, tau aggregation secondary to post
translational changes such as hyperphosphorylation, truncation,
glycation, glycosylation, nitration, and ubiquitination results in
the formation of neurofibrillary tangles in neuronal cytoplasm
(20). For example, in AD, hyperphosphorylation of tau protein
is produced by glycogen-synthase-kinase 3β, cyclin-dependent
kinase 5 (CDK5), mitogen-activated protein kinase (MAPKs),
Fyn, and many others (20). In addition, decreased phosphatases
(which dephosphorylate tau) have been found in AD post-
mortem specimens. A major phosphatase implicated in AD is
protein phosphatase 2 (PP2A). Protein phosphatase 2 inhibition
has been shown to increase tau hyperphosphorylation and has
been demonstrated to be reduced in AD human brain specimens
(20, 21). Thus, the imbalance of kinases and phosphatases
together results in hyperphosphorylated tau and progression
in AD.

Currently, the approved treatment for AD is directed at
controlling symptoms. Further investigation is underway to
evaluate possible disease modifying agents to attempt to slow
the progression of the disease. Continued research efforts are
required to clarify the pathological progression of AD and thus
provide new targets for therapeutic development.

ROLE OF NORMAL ASTROCYTES

Astrocytes are specialized glial cells and have important roles
within the CNS. They are essential to allow the brain to
function as an organ and computational structure. Astrocytes
have long been postulated and expanded upon since they were
histologically depicted by Ramon y Cajal and his contemporaries
(22). Initially it was believed that the astrocytes’ role within the
CNS was structural support for neurons. However, over 100
years ago, Ramon y Cajal found morphological heterogeneity
of astrocytes (22). He described nine different morphological
subtypes of astrocytes, which led to the development of multiple
theories of the vital function of astrocytes. Unfortunately,
due to the lack of technology these theories were left largely
unproven and forgotten over the next century. More recently
new methodologies have revealed that astrocytes execute a
variety of essential functions including contributions to the BBB,
synaptogenesis, ion homeostasis, neurotransmitter buffering, and
the secretion of neuroactive agents (5) (Figure 1).

The understanding of the functional roles in cellular
physiology first begins with understanding uniquemorphological
characteristics. Typical protoplasmic astrocytes demonstrate a
characteristic spongiform morphology (22). These astrocytes are
ubiquitous throughout the gray matter. The astrocyte soma has
numerous major branches with multiple secondary and tertiary
branches that ultimately form interactions with other neurons
and several synapses (23). Astrocytes regulate these synapses by
secreting neurotransmitters to target pre and post synaptic sites
andmodulating function of adjacent neurons and astrocytes (24).
This led to the development of the tripartite synapse, which
is composed of an astrocyte and two neurons as a functional
unit (24). The numbers of synapses an astrocyte interacts with
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FIGURE 1 | Examples of roles of astrocytes in normal condition and in AD. The left half of astrocyte (yellow) depicts normal astrocyte functions, including

neurotransmitter recycling (U-turn arrow and brown-outlined circles), synaptogenesis, central nerve system (CNS) homeostasis, and interaction with vasculature. The

right half of astrocyte (Pink) depicts a reactive astrocyte in Alzheimer’s Disease (AD). The black box contains some examples of the astrocytic signaling pathways

related to AD. Green box indicates examples of inducing factors of reactive astrocytes from microglia. Red boxes are the representative intracellular and secretory

molecules (red-outlined circles) and astrocytic makers expressed by reactive astrocytes in AD. Blue circles with icons are synapses. K+, potassium; AQP4,

aquaporin-4; Kir4.1, inwardly rectifying K+ channel subunit 4.1; APP, amyloid-beta precursor protein; BACE1, β-site APP-cleaving enzyme 1; FFA, free fatty acid;

GFAP, glial fibrillary acidic protein; YKL-40, chitinase-3 protein like-1; S100B, S100 calcium-binding protein B; MAOB, monoamine-oxidase-b; GLAST, glutamate

aspartate transporter; GLT-1, glutamate transporter 1; Ca2+, calcium; NF-κB, nuclear factor- kappa B; Stat3, signal transducer and activator of transcription 3; AGEs,

advance glycation end-products; RAGE, Receptor for advanced glycation end products; TGF-β, transforming growth factor beta; GABA, gamma-aminobutyric acid;

IL, interleukin; TNF-α, tumor necrosis factor alpha; C1q, complement component 1q.

are variable between circuits, brain regions and species. For
example, a single astrocyte in the dorsolateral striatum can
interact with 50,000 synapses while in the hippocampus stratum
radiatum interactions can exceed 100,000 (5). This suggests
that the morphological diversity of astrocytes is also related to
their location within the CNS (6). The mechanism controlling
the morphology of astrocytes remains ill-defined. More recently
studies have proven that the loss of connexins and neuroligins
alters astrocyte morphology, influencing synapse formation (25,
26). For example, Stogsdill et al. found that the morphological
complexity of astrocytes relies on direct contact with neurons
mediated by astrocyte neuroligin/neurexin interactions (26).
Moreover, changes in astrocyte morphology in response to
a pathological insult are ubiquitously noted in variety CNS
diseases (27).

As stated, astrocytes are a mainstay in the development of the
synapse. At a synaptic level, astrocytes have a plethora of roles to
maintain normal synaptic activity. Astrocytes have known roles

in synapticmetabolism and are implicated in glycogen processing
and storage (Figure 1). Astrocytes can synthesize glycogen,
provide glycolytic components for neurons during periods of
high demand, and remove free radicals (28). Additionally, when
neurons have further energy requirements, glycogen stores can
be metabolized to form lactate which is transported from
astrocytes to neurons via various monocarboxylate transporters
(MCTs) (29).

A new waste clearance system formed by normal astrocytes
has been discovered, deemed the glymphatic system (30). In this
system, perivascular channels promote the efficient elimination
of soluble proteins and metabolites, including β-amyloid, from
the CNS. Astrocytes directly contact the CNS vasculature via their
end feet and vasodilate or constrict to accommodate nutrient-
waste exchange for neurons based on activity (5). For example,
astrocytes highly express aquaporin-4 (AQP4) at the end foot
processes and in turn can regulate extracellular matrix as well as
cell membrane potential (Figure 1) (31). Aquaporin-4 is also vital
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in the clearance and exchange of solutes in a water dependent
manner between the cerebral spinal fluid (CSF) and interstitial
fluid (31). Glymphatic dysfunction has been demonstrated in
animal models of traumatic brain injury, AD, and ischemic
disease, most likely related to dysfunction of AQP4 (32).

Moreover, CNS homeostasis is maintained by astrocytes
by regulating pH and fluid levels in the brain, buffering
potassium, and recycling neurotransmitters (Figure 1). For
example, astrocytes possess a Kir4.1 potassium channel (33). In
conjunction this allows astrocytes to control action potential
firing (Figure 1) (34).

Overall, the roles of astrocytes are diverse and fundamentally
important in the CNS. Therefore, any disruption regarding the
normal roles of astrocytes can result in morphological and
functional changes that result in pathological consequences. We
will further review astrocyte function and the impact on AD.

ASTROCYTES IN ALZHEIMER’S DISEASE

Within the CNS astrocytes have a vital role in protecting and
repairing neuronal damage (35, 36). Astrocytes respond to
inflammatory substances and undergo a process known as
reactive astrogliosis (34, 37). Astrocytes become reactive in
response to multiple pathological conditions including acute
injuries and progressive disorders such as tumor and AD (37).
For example, Das et al. completed a meta-analysis of published
astrocyte transcriptomic datasets in both acute and chronic
neurodegenerative models, which displayed differing genetic
astrocyte signatures (38). Specifically, in acute models, astrocytes
were found to have upregulated expression for genes involved
in protein synthesis, protein degradation, and antioxidant
defense, whereas downregulated expression were noted for
genes regulating chromatin structure and transcriptional
repressors. Conversely, in chronic models, astrocytes were
found to have upregulated expression for genes associated with
extracellular matrix proteins and downregulated expression
for genes associated with glycogenolysis, immune modulation,
and antioxidant defense. Thus, astrocytes have unique genetic
signatures in response to acute and chronic neurodegeneration.

Inflammation plays a prominent role in the development
of AD (17). Reactive astrocytes release molecules including
cytokines, chemokines, growth factors, and gliotransmitters (39).
Astrocytes also release axon growth-promoting factors essential
for axon growth and synaptic formation and maturation in
response to injury (34, 40). Additionally, astrocytes increase
neuronal viability and mitochondrial biogenesis, protecting
neural cells from oxidative stress and inflammation induced by
amyloid peptides (41).

The central hypothesis regarding the etiology of AD is that β-
amyloid and neurofibrillary tangles produce acute inflammation
which activates microglia, the primary inflammatory cells of
the CNS, to release inflammatory mediators. This chronic
inflammation results in neuronal dystrophy and ultimately
leads to the clinical symptoms of AD. More recently, the
role of astrocytes in the neuroinflammatory process has been
closely evaluated (42, 43). For example, Orre et al., identified

differentially expressed genes (DEGs) (807 upregulated and
571 downregulated genes) in AD astrocytes in APPswe/PS1dE9
double transgenic mouse model compared with WT mice
(42). These up-regulated genes were enriched in inflammatory
response, such as “defense response” and “positive regulation
of immune response” and down-regulated genes were enriched
in the regulation of synaptic transmission, neurogenesis, and
brain and neuron development. Studies demonstrate that reactive
astrocytes are induced by activated microglia that release IL-
1alpha (IL-1α), IL-1beta (IL-1β), IL-6, tumor necrosis factor-
α (TNF-α), and complement component 1q (C1q) (44–46).
Furthermore, these cytokines can activate β-secretase and γ -
secretase activity, cleaving APP, and stimulating β-amyloid
formation by astrocytes, thereby supplementing neuronal β-
amyloid production (47). For instance, Zhao et al. (48)
demonstrated that primary astrocytes taken from mice and
treated with a combination of INF-γ and TNF-α or IL-1β induced
the secretion of β-amyloid. β-site APP-cleaving enzyme (BACE1)
is an enzyme that works in conjunction with γ -secretase in
cleaving APP to form β-amyloid. Previously it was thought that
only neurons expressed BACE1, thus being the only cell capable
of producing β-amyloid (35). Recent studies on post-mortem
AD human brains have exhibited that astrocytes express BACE1
levels high enough to secrete β-amyloid (49). The mouse models
that overexpress APP with the Swedish mutation (which is a
mutation adjacent to the beta-secretase cutting site in the APP
gene), displayed increased expression of BACE1 in correlation
with elevated β-amyloid in reactive astrocytes, but BACE1 was
not detectable by staining in resting astrocytes in the same mouse
model (50). Therefore, inflammatory stimulation of astrocytes
can induce BACE1 and in turn secrete more β-amyloid resulting
in the progression of AD.

Another important protein associated with astrocytes and
AD severity is S100B. During fetal development, it functions
as a neurotrophic agent (51). S100B has been shown to induce
astrocytes to become reactive in transgenic mice that overexpress
S100b (52). Further studies have proven that cells, particularly
astrocytes, that are S100B positive were located in higher
concentrations around neuritic plaques in post-mortem AD
brains (19). Specifically, there was a high concentration of these
cells in areas of the brain known to be affected severely by
AD, such as the hippocampus. The antiprotozoal medication
pentamidine, which directly blocks S100B activity, has been
studied in an AD mouse model (53). Pentamidine reduced
GFAP, S100B and the receptor for advanced glycation end
products (RAGE) protein expression, which are implicated in
the neuroinflammatory response of astrocytes (53). Cirillo et al.
also displayed the neuroprotective effect of pentamidine in
CA1 pyramidal neurons (53). Thus, S100B is an important
inflammatory regulator of astrocytes involved in phenotypic
changes and progression of AD pathology.

Astrocytes are the primary source of cholesterol and lipid
production and metabolism, and aberrant cholesterol processing
has been implicated in AD development (54, 55). ATP-binding-
cassette transporter 1 (ABCA1) is expressed on astrocytes and
important in the lipidation of APOE. When cholesterol is
abundant, neurons produce β-amyloid to suppress the expression
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of the ABCA1, which results in increased deposition of β-amyloid
(55). Increased free fatty acids have been suggested as a risk
factor in the development of AD and high fat diets in animal
models resulted in the accumulation of β-amyloid and plaque
formation (54, 55). Ceramide, a metabolite of fatty acids, is
increased in AD post-mortem brains and β-amyloid production
(55). Furthermore, elevated ceramide levels have been shown to
induce astrocytes to produce inflammatory cytokines; in turn
this activated BACE1 activity and thus β-amyloid production
in neurons (55). Therefore, cholesterol and fatty acids prompts
astrocyte inflammatory response and further progression of AD.

Additionally, astrocytes recycle glutamate and GABA into
glutamine, via glutamine synthetase (56). The glutamine from
astrocytes is then used by neurons to produce more glutamate
and glutathione (57), thus, providing additional nutrients
and protection against reactive oxygen species. Glutamate
Transporter (GLT-1) and Glutamate Aspartate Transporter
(GLAST) are responsible for 90% of astrocytic glutamate uptake
in the brain and are ubiquitous marker for astrocytes (57).
In post-mortem AD brains and animal models mRNA of
both Glt-1 and Glast are reduced (Figure 1) (58). Astrocyte
glutamatergic dysfunction, specifically GLT-1, is associated
with the microenvironment of β-amyloid plaques in animal
models. For example, when a mouse model lacking one allele
of Glt-1 is crossed with mice expressing mutations in APP
and PS1, it accelerated memory impairment and increased β-
amyloid (59). Additionally, β-amyloid oligomers and preplaque
β-amyloid species have been demonstrated to decrease GLT-
1 and GLAST in cultured astrocytes (60, 61). Thus, aberrant
glutamate transport results in the disruption in the clearance of
excitatory neurotransmitters and increased levels of β-amyloid
and tau from astrocytes (62).

Aberrant gliotransmitter released by reactive astrocytes has
been suggested as a possible role in AD symptomology,
specifically memory loss (63). GABA is a major inhibitory
neurotransmitter within the CNS. GABA is metabolized within
astrocytes by GABA transaminase to succinate, entering the
Krebs cycle, and used for energy production (64). Jo et al.
displayed in vivo that reactive astrocytes produce GABA via
MAOB and release GABA through the bestrophin-1 channel
(63). GABA and MAOB content has been noted to be elevated
in AD patients and mouse models (63, 64). The excessive GABA
produced and released by reactive astrocytes results in activation
of neuronal GABA receptors, which results in inhibition of
glutamate release, and suppresses astrocytes’ pro-inflammatory
response (64). However, other studies have demonstrated
decreased GABA levels in multiple areas of the brain in post-
mortem AD samples (65). Although there are inconsistencies in
how GABA influences AD progression, it is clear that GABA
dysfunction within astrocytes is involved in AD pathogenesis.

Cellular senescence has been considered as a primary
inducing factor of age-associated neurodegenerative disorders,
and astrocytes can undergo stress-induced premature senescence
(66). Recently, astrocytes have been shown to have decreased
normal physiological function and increased secretion of
senescence-associated secretory phenotype (SASP) factors
in AD, which contribute to β-amyloid accumulation, tau

hyperphosphorylation, and neurofibrillary tangle deposition
(66). Senescent astrocytes share many similar phenotypes
to reactive astrocytes, and it has been suggested that prior
studies that focused on reactive astrocytes may have been
focusing on senescent astrocytes (66). However, the topic of
cellular senescence and its involvement in the development
of neurodegenerative disease is controversial at this time (37).
In order to verify if senescent astrocytes become reactive in
the development of neurodegenerative disease, a significant
amount of investigation remains. Specifically, defining molecular
markers of normal aging astrocytes over multiple brain regions
and compare with reactive astrocytes in neurodegenerative
disease will be required (37).

SIGNALING CASCADES ASSOCIATED
WITH ASTROCYTES IN AD

There are many molecules and signaling pathways that have been
implicated in astrocytes in AD. We review some examples as the
following. Astrocyte calcium regulation is regulated by a diverse
set of stimuli that can alter intracellular levels. The pathological
accumulation of β-amyloid results in inflammatory facilitators,
such as bradykinin, to increase intracellular calcium via nicotinic
receptors and the P13K-Akt pathway in cultured astrocytes (67,
68). Additionally, β-amyloid has the unique ability to interact
with multiple astrocyte cell surface receptors, such as P2Y1,
nicotinic receptors, and glutamate metabotropic mGlut receptor,
increasing intracellular calcium (Figure 1) (69). Furthermore,
Chiarini et al. (70) showed β-amyloid can bind to the
calcium sensing receptor (CaSR) in human astrocytes, activating
intracellular signaling, which resulted in the production and
release of phosphorylated tau. Overall, there is sound evidence
that calcium dysregulation is involved in the progression of AD.
However, the receptors involved need further investigation to
determine their diverse function and ability to be developed as
a therapeutic target.

Another signaling cascade important in astrogliosis in AD
is nuclear factor-kappa B (NF-κB). Nuclear factor-kappa B is a
common transcription factor present in almost all cell types and
has a critical function in numerous cellular processes. In the
CNS, NF-κB requires strict control to ensure normal neuronal
development and function (71). Abnormal NF-κB activation has
been previously reported in multiple neurodegenerative diseases,
including AD (72). Studies in rat models and post-mortem AD
brains have shown an association of NF-κB with β-amyloid
(73, 74). Specifically, NF-κB has been shown to have increased
activity in neurons, astrocytes, and microglia due to exposure to
β-amyloid. This activation results in induction of target genes in
reactive astrocytes which induces astrocytes’ morphological and
functional changes. Nuclear factor-kappa B activation in reactive
astrocytes is associated with elevated mitochondrial oxidative
metabolism, limiting the supply of pyruvate substrate for neurons
(75). The increased production of inflammatory substrates also
influences neurons by inducing neuronal oxidative stress and
apoptosis (72). The inhibition of NF-κB activation in AD mouse
models has been demonstrated to slow the AD pathology and
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improve neuronal survival and cognition, implicating that the use
of NF-κB antagonists could provide therapeutic benefit (76, 77).

Signal transducer and activator of transcription 3 (STAT3) is
a transcription factor that is activated through phosphorylation
by Janus Kinases (JAK) in response to cytokines, growth
factors, and intracellular mediators and has been implicated
in the activation of astrocytes (78, 79). Ben Haim et al.
showed that STAT3 is activated in reactive astrocytes of several
murine and primate AD and Huntington’s disease models (79).
Conversely, two studies have been completed in AD mouse
models with Stat3 inactivation in astrocytes (78, 80). Ceyzeriat
et al. demonstrated that inhibition of STAT3 in vivo resulted
in reducing amyloid deposition, restoring synaptic deficits,
and improved spatial learning (80). Similarly, Reichenbach
et al. showed Stat3 inactivation in astrocytes reduced plaque
deposition and improved memory. However, it was also
demonstrated that there was a reduction in pro-inflammatory
cytokine activation (78). Altogether, these studies provide strong
evidence of the potential for targeting STAT3 in astrocytes to
slow the progression of AD (37). However, further investigation
is required to determine the time point in which STAT3 activation
in astrocytes results in pathological consequences.

Receptor for advanced glycation end products is a multi-
ligand receptor of the immunoglobulin superfamily of cell
surface molecules. They bind advance glycation end-products
(AGEs) which are non-functioning glycated proteins or lipids
that become glycated after exposure to sugars (81). Advance
glycation end-products are associated with aging and have been
implicated in neurodegenerative diseases such as AD (82, 83).
Additional research has shown that AGEs form early in disease
process of AD (84). Engagement of AGEs-RAGE converts a
brief pulse of cellular activation to sustained cellular dysfunction
and tissue destruction (85). Increasing expression of RAGE on
the membranes of neurons and microglia is relevant to the
pathogenesis of neuronal dysfunction and death of AD (86).
Most pertinent to this discussion is the role of RAGE regarding
astrocytes response. Reactive astrocytes surround the β-amyloid
plaques and express RAGE (19). It has also been reported
that β-amyloid can bind and activate RAGE on astrocytes and
induce a pro-inflammatory state via a NF-κB pathway (87).
Thus, targeting RAGE has the potential to reduce downstream
inflammatory effects.

Transforming growth factor beta (TGF-β) is expressed
ubiquitously within the CNS. During development,
Transforming growth factor beta helps regulate neuronal
survival, neurogenesis, synaptogenesis, and gliogenesis
(Figure 1) (88, 89). Astroglia expression of TGF-β mediates
synaptic refinement as well as glial scar formation (90, 91).
Abnormal TGF-β hyperactivation has been detected in
neurodegenerative disease and traumatic injury patients,
and astrocytes and microglia are the predominate source
(92–95). Studies in vitro have shown that TGF-β may promote
cell survival since supplementing TGF-β protects neurons
from β-amyloid toxicity (96). This protective activity was further
demonstrated to be antagonized by β-amyloid (97). Furthermore,
the expression of the TFG-β type II receptor, mainly expressed by
neurons, is reduced in AD brains (72). Therefore, it is clear that

TGF-β has both beneficial and detrimental effects. Further work
is necessary to determine when TGF-β becomes detrimental in
response to neurodegenerative disease.

ASTROCYTE BIOMARKERS IN
ALZHEIMER’S DISEASE

Reactive astrocytes have become a focus of study in
neurodegenerative disease and are essential players in the
pathological process of AD and suggested to be targeted for
novel therapeutics (34). Typically, immunohistochemical
markers for reactive astrocytes are cytoskeletal components
such as GFAP, vimentin, and nestin (98). However, the elevated
marker such as GFAP alone is insufficient in categorizing
astrocytes as reactive (37). Therefore, multiple markers are
necessary to classify astrocytes as reactive.

Alzheimer’s disease is classically diagnosed based on clinical
criteria while the gold standard of definitive diagnosis is via
neuropathology. Diagnosis based on clinical symptoms has
a 30% misdiagnosis rate in comparison to neuropathological
diagnosis (99). Thus, significant effort has been dedicated to
develop clinical tools and tests to establish accurate early
diagnosis and monitor the progression of the disease. Initial
investigation for CSF markers began with classic astrocyte
biomarkers such as GFAP, S100B, and glutamine synthetase,
which proved to be not specific candidates due to their
associations with homeostatic states of astrocytes and multiple
other neurodegenerative diseases (100). Growing research has
focused on a new astrocyte CSF biomarker Chitinase-3 protein
like-1 (YKL-40), a protein commonly measured as a surrogate
marker of neuroinflammation in AD (Figure 1) (101, 102). It
has been linked to predict progression from normal cognition
to mild cognitive impairment (MCI) and MCI to AD (102).
Furthermore, elevated CSF YKL-40 has been confirmed to be
correlated with phosphorylated tau levels at the early stages of
AD (103). However, YKL-40 is not specific to AD alone and can
be elevated in other tauopathies. Thus, further evaluation with
multiple reactive astrocyte biomarkers is likely required to test
for accuracy and progression of the disease.

Imaging modalities such as Positron emission tomography
(PET) imaging and Magnetic resonance imaging (MRI) can
assess aberrant astrocyte metabolism and detect accelerated brain
atrophy. Currently, an inhibitor of the enzyme monoamine
oxidase B (MAOB) [11C]-deuterium-L-deprenyl has been
proposed as a PET imaging biomarker of reactive astrocytes
(62, 104–106). MAOB is known to be up-regulated in
GFAP-immunoreactive astrocytes. In post-mortem samples of
individuals afflicted with AD, both the activity of MAOB and
binding of L-deprenyl was found to be increased in multiple
areas of the cerebral cortex (107). Furthermore, Gulyas et al.
demonstrated that the highest binding of L-deprenyl occurs in
the initial stages of AD (108). This suggests L-deprenyl as a
promising PET imaging biomarker in the early diagnosis of AD.

The Alzheimer’s precision medicine initiative was formed
to review current blood-based AD biomarkers (99, 109). At
this time no significant blood-based biomarker has proven to
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be effective. Therefore, it is crucial to continue investigating
and elucidate additional biomarkers for treatment/diagnosis and
signaling pathways to target for a better understanding of disease
progression. It is unlikely a single biomarker will be found for
diagnostic purposes, but rather reactive astrocyte signatures will
be required to increase the specificity of diagnostic tests (37).

HETEROGENEITY OF REACTIVE
ASTROCYTES IN ALZHEIMER’S DISEASE

Most studies of AD focus on tissue samples that contain many
cell types. However, this cannot distinguish the contribution of
specific cell types in AD. Although astrocytes could be isolated
from Alzheimer’s samples based on specific cell markers (110),
the functions of each subpopulation are not clear due to the
heterogeneity of astrocytes. Most of the current studies for
astrocytes emphasize two morphological groups: fibrous and
protoplasmic astrocytes, located in the white and gray matter of
the brain, respectively (111, 112). However, how many astrocyte
subclusters/subpopulations in different regions of the brain and
what functions they play are not clear. Recently, the single-cell
(scRNA-seq) or single-nucleus RNA-seq (snRNA-seq) methods
have been developed andmake it possible to analyze cell subtypes
or status (113). For human Alzheimer studies, most of the
time, only post-mortem frozen samples are available. Single-
nucleus RNA-seq is an effective method to analyze individual
cells using these samples. Grubman et al. obtained 13,214 high-
quality nuclei of entorhinal cortex samples from control and
Alzheimer’s disease brains (114). Astrocytes (2,171 nuclei) were
clustered into eight groups (a1–a8) by bioinformatic analysis. The
functional enrichment showed astrocyte subpopulations might
have different functions. For example, a1 astrocyte subpopulation
was enriched in genes linked to ribosomal and mitochondrial
function neuron differentiation and heat shock responses; a2
was enriched in transforming growth factor TGF-β signaling
and immune response; a3 and a8 were enriched in cellular
responses to lipids and hormones; a4 was enriched in respiratory
and mitochondrial genes, whereas a6 was enriched in synapse
organization, action potentials, and ion channel activity. Mathys
et al. isolated single-nucleus from 48 post-mortem human
prefrontal cortex samples (24 individuals with high levels of
β-amyloid and other pathological hallmarks of AD, and 24
individuals with no or very low β-amyloid burden or other
pathologies) (115). A total of 80,660 droplet-based single-nuclei
was sequenced and was used for identifying transcriptionally
distinct subpopulations. Three thousand three hundred and
ninety-two astrocytes (1,562 cells from no-pathology individuals
and 1,830 cells from AD-pathology individuals) were clustered
into 4 AD-associated subpopulations (Ast0–Ast3), which were
related to the different pathological features of source brains.
For example, Ast1 was associated with a high amyloid level,
high Braak stage (V), low CERAD (Consortium to Establish
a Registry for AD) score, low NIA (National Institute on
Aging)-Reagan score, and pronounced cognitive decline, while
Ast0 was associated with no pathological traits. They also

found astrocyte subpopulations have different responses to
AD pathology between female and male individuals: Ast1 was
enriched in female cells, whereas Ast0 was enriched in male cells.
Zhou et al. analyzed 66,311 individual nuclei from dorsolateral
prefrontal cortexes, and found six sub-clusters (Astro0–5) in
control (2,955 astrocytes) and AD (2,641 astrocytes) samples
(116). Compared with control, Astro3 was depleted in AD. Genes
related to the coordination of lipid and oxidative metabolism
between neurons and astrocytes, such as FABP5, HILPDA,
and SOD2, were down-regulated in AD samples; while the
expression of NCAN and COL5A3, which had functions on the
extracellular matrix, were up-regulated in Astro0 and Astro1.
These results suggested AD astrocytes might have lost metabolic
coordination with neurons in AD. Additionally, Lau et al.
sequenced 169,496 nuclei from prefrontal cortical samples of
12 AD patients and nine normal control (NC) subjects (117).
From these samples, 17,997 nuclei were of astrocyte origin.
The subcluster analysis showed that astrocytes were grouped
into nine clusters (a1–a9). The proportion of cells in each
subpopulation revealed the relative proportion of a2, a4, a5, a7,
a8, and a9 were similar between AD and NC samples. However,
the proportion of a1 and a6 were 9.9 and 10.2% larger and
a3 were 23.5% smaller in AD, compared to the NC samples.
The differential expressed genes across conditions in a1, a3,
and a6 demonstrate the DEGs in a1 and a6 were enriched in
up-regulated genes and a3 were enriched in down-regulated
genes in AD samples. The enriched genes in a1 and a6 were
associated with stress response genes, while genes in a3 were
associated with neurotransmitter metabolism. All the above
results suggest astrocytes from different brain regions might have
specific astrocyte subpopulations. These subpopulations can be
related to different AD pathology.

Regarding animal models of AD, 5xFAD transgenic mice
are commonly used (118). Habib et al. analyzed 54,769 single-
nucleus RNA-seq profiles from eight 7-month male mice
hippocampus [four WT mice and four transgenic models of AD
(5xFAD) mice] to define the role of non-neuronal cells in AD
progression (119). Seven thousand three hundred and forty-five
WT and AD astrocytes were clustered into six subclusters. A
continuous trajectory across astrocyte subclusters showed three
end states [Gfap-low, Gfap-high, and DAA (disease-associated
astrocyte, a specific cluster in AD compared with WT)]. In
these six clusters, clusters 1 and 2 were Gfap-low states and
cluster 6 was Gfap-high state astrocytes; cluster 5 might be
the transitional-like intermediate state between the Gfap-low
state and Gfap-high state; cluster 3 might be a transitional-
like intermediate state between Gfap-low stage and the DAA
(cluster 4). Exemplary studies of astrocyte heterogeneity outlined
above is outlined inTable 1. The continuous expression spectrum
suggested astrocytes have a dynamic activation process in AD.

As astrocyte isolation is challenging, the proportion of
astrocytes obtained in total cells is around 10% in the published
papers. Also, the current single-cell technologies are limited with
low number of transcripts per nuclei/cell compared to bulk RNA-
seq. Future improvement of technology and astrocyte isolation
will enhance our understanding of astrocyte heterogeneity in AD.
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TABLE 1 | Example studies of astrocyte heterogenity in AD.

Species Reference Tissue Total nuclei no. Astrocyte nuclei no. Astrocyte clusters

Human Grubman et al. (114) Entorhinal cortex 13,214 2,171 a1–a8

Human Mathys et al. (115) Prefrontal cortex 80,660 3,392 Ast0-Ast3

Human Zhou et al. (116) Prefrontal cortex 66,311 Control (2,955) and AD (2,641) Astro 0-5

Human Lau et al. (117) Prefrontal cortex 169,496 17,997 a1–a9

Mouse (5xFAD) Habib et al. (119) Hippocampus 54,769 7,345 Cluster 1–6

DISCUSSION

In summary, there is overwhelming evidence of the vital role
astrocytes play in the pathophysiological development and
progression of AD. The advent of technologies such as single-
cell RNA sequencing and single-molecule imaging provides a
greater understanding of the temporal and spatial progression
of astrocytes that occurs during AD, which could serve as
a framework for researchers to elucidate specific astrocytic
biomarkers involved in AD progression (120). Specifically,
studies using transcriptomics have allowed us to understand
further that reactive astrocytes develop different molecular states
during the progression of AD (37). As mentioned earlier,
scRNAseq in AD models has demonstrated multiple stage-
dependent conditions or subpopulations of reactive astrocytes
(114–116). These studies signify the importance of characterizing
the complex diversity and function of reactive astrocytes in each
individual state to understand further the unique role these
changes have in AD progression (114, 115). Therefore, it is not
as simple to classify reactive astrocytes in AD as protective or
toxic. Understanding the molecular changes at a single-cell level
could also provide insight on the time point in which therapeutic
intervention against reactive astrocytes can be applied, to harness
AD progression and symptoms. The combination of powerful
technologies such as viral gene transfer, electrophysiology, and
optogenetics with transcriptomics can further elucidate the
functions of reactive astrocytes in AD (37, 121).

Additionally, the roles and mechanisms of regulatory
RNAs, such as long non-coding RNAs (lncRNAs), are
underexplored in AD (122, 123). Currently, studies have
demonstrated the regulatory role of lncRNA as it relates to tau
hyperphosphorylation and others have suggested the utility
of lncRNA as a biomarker for AD (124). These studies have
provided the exciting potential of lncRNA as both diagnostic and
therapeutic targets for AD.

Another critical consideration in elucidating the
pathophysiological mechanisms of AD and determining
fruitful therapeutic targets is ensuring we select appropriate in
vitro and in vivo study models. Most cellular spatial information
regarding cellular relationships to β-amyloid and neurofibrillary
tangles is lost when isolating mRNA samples (125). Similarly,
morphological and transcriptomic comparisons on human
and mouse reactive astrocytes have revealed significant
differences (37). This exemplifies the inherent limitations of
in vitro studies and animal models in AD, and the difficulty
in interpreting results when comparing studies with post-
mortem specimens. Human induced pluripotent stem cells
are currently increasingly employed in basic science research
and can help narrow these differences (37). Furthermore,
using multiple genomic techniques in combination, such
as spatial transcriptomics and in situ sequencing, provides
a benefit in preserving cellular spatial information (125).
In conclusion, a consensus regarding appropriate research
models and the integration of multiple “omic” modalities
could provide improved diagnostic and therapeutic targets in
reactive astrocytes.
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