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Neuromuscular disorders are rare diseases for which few therapeutic strategies currently
exist. Assessment of therapeutic strategies efficiency is limited by the lack of biomarkers
sensitive to the slow progression of neuromuscular diseases (NMD). Magnetic resonance
imaging (MRI) has emerged as a tool of choice for the development of qualitative
scores for the study of NMD. The recent emergence of quantitative MRI has enabled to
provide quantitative biomarkers more sensitive to the evaluation of pathological changes
in muscle tissue. However, in order to extract these biomarkers from specific regions
of interest, muscle segmentation is mandatory. The time-consuming aspect of manual
segmentation has limited the evaluation of these biomarkers on large cohorts. In recent
years, several methods have been proposed to make the segmentation step automatic
or semi-automatic. The purpose of this study was to review these methods and discuss
their reliability, reproducibility, and limitations in the context of NMD. A particular attention
has been paid to recent deep learning methods, as they have emerged as an effective
method of image segmentation in many other clinical contexts.
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1. INTRODUCTION

Neuromuscular pathologies are rare diseases that can occur in both children and adults. Very few
therapeutic strategies have been proposed so far. Reliable outcome measures that could be sensitive
enough to detect therapeutic effects are still missing. Diagnosis of neuromuscular pathologies is
commonly based on clinical presentation, genetic testing, and histological assessment of muscle
biopsy. Given its non-invasiveness and its ability to distinguish fat and muscle tissue, magnetic
resonance imaging (MRI), and more particularly quantitative MRI (QMRI), has emerged in recent
years as a tool of choice for the investigation of neuromuscular diseases (1). Over the last 20
years, research projects have been developed to define relevant and sensitive MRI parameters that
could be used in the diagnostic classification and the follow-up of neuromuscular diseases (2-6).
The initial approaches were based on a visual analysis of hypersignals illustrating pathological
processes and on that basis alterations patterns have been proposed. In slowly progressive diseases,
such as neuromuscular disorders, the sensitivity of such visual qualitative assessments is largely
questionable and may not be powerful enough to identify mild changes in muscle function that
occur from year to year.
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More recently, gMRI have been used in order to generate
parametric maps illustrating the various pathological processes
occurring in skeletal muscle, i.e., mainly inflammation and fat
infiltration (4, 5). Compared to visual scores, such a quantitative
approach has paved the way of a more sensitive assessment of
dystrophies and neuropathies. Beyond the diagnostic interest,
these approaches provide sensitive and reproducible biomarkers,
which have been used for follow-up studies (6-8). In addition to
the generation of parametric maps, gMRI has to be combined
to images segmentation if one intends to extract the relevant
information within different regions of interest. Segmentation
refers to the delineation of muscle regions of interest that
must be distinguished from subcutaneous and perimuscular
adipose tissues, on the one hand, and from bones, on the
other hand. Segmentation in general and segmentation of
MR images in particular is a time-consuming process so that
automatic procedures are highly requested. However, automation
of muscle segmentation in MR images is very challenging
given the poor contrast between different muscles and the large
variability of muscle shapes (9). In pathological situations, the
challenge can be even higher given that borders between the
different compartments can be hidden by a severe fat infiltration.
Given the task complexity, most of the studies related to
the investigation of neuromuscular diseases have been based
on the manual segmentation of individual muscles or muscle
compartments. One has to keep in mind that such an approach is
operator dependent and time consuming. As a result, quantitative
analyses have been mainly performed over a limited number of
slices and not on the whole 3D datasets (4, 10) or on a limited
number of individual muscles (6). In a few clinical studies in
which the manual segmentation has been performed in the 3D
field of view, an inconsistent distribution of MRI biomarker
values has been interestingly reported along the proximo-distal
axis (2, 11-13). In addition, it has also been documented that
individual muscles could be affected differently and that this
difference could also occur among patients and neuromuscular
disorders (5, 14-16). These results clearly emphasized the need of
reliable automatic 3D segmentation methods and the relevance of
evaluating muscles individually, rather than by muscle groups.

Over the last 15 years, several automated methods have been
reported in the literature with the aim of segmenting muscle
groups or individual muscles in MR images. Although promising,
most of these methods have been tested in MR images from
healthy volunteers for which fat infiltration and atrophy were
absent so that the corresponding confounding factors could not
be taken into account. More recently, a few automatic methods
have addressed the issue of segmenting MR images of patients
with neuromuscular disorders but only for the delineation of
muscle compartment.

Very recently, semi-automatic methods have been reported
for individual muscles segmentations in order to reach an
optimized balance between segmentation accuracy and user’s
dedication. These full 3D methods have been successfully used
in a clinical context. A few limitations has to be acknowledged
for these kinds of methods. They are still time consuming and
require a manual initialization so that reliable full automatic
segmentation methods are still warranted for individual muscles.

Deep learning methods have been very scarcely used in the
field of neuromuscular disorders and considering the results
obtained in other scientific fields, they might represent a very
interesting alternative for a full-3D segmentation of MR images.
One should keep in mind that large databases should be available
for this kind of approach and this could be a limitation in
rare diseases.

Manual segmentation methods are not applicable for 3D
datasets and the follow-up of neuromuscular diseases. They have
been recognized as time consuming (5 h per subject for the
3D manual segmentation of 4 muscles) and operator dependent
(3.1% volume error for the quadriceps femoris in healthy subjects)
(9). On that basis, these methods were beyond the scope of the
present review. Considering that neuromuscular disorders have
been mainly studied using MRI of thighs and legs, only the
automated methods that have been used for the segmentation of
lower limbs images are part of the scope of the present review.

The main aim of this review is to provide an overview of
the methods dedicated to the segmentation of individual skeletal
muscles on MR images and to discuss their validity and reliability.
We pay a particular attention to the evolution of segmentation
strategies, from the separation of muscle and fat deposits to the
segmentation of individual muscles, together with the clinical
potential and applicability in the context of neuromuscular
disorders. Finally, we introduce insights into semi-automatic
methods that could potentially break the barrier between research
and clinics. These methods could provide clinicians with user-
friendly tools that generate biomarkers for individual muscles
over an entire 3D dataset. The emerging segmentation methods
based on deep learning approaches have been included in a
dedicated section as they are still emerging.

2. MUSCLE TISSUE SEGMENTATION
ISSUES

2.1. Type of MR Images for Segmentation

Since the emergence of MRI, the quality and type of images
available through this acquisition modality have greatly evolved
and have consequently influenced automated segmentation
methods. First segmentation methods had to deal with severe
artifacts on MR images and hence segmentation of the contour
of lower limbs and muscular region were a complicated task (17).
Over the years, image quality has been dramatically improved
with hardware and images techniques advancement. Intensity
inhomogeneity correction method, such as N3 and more recently
N4 algorithm (18), also strongly contributed to the improvement
of image quality and such algorithms are now a common pre-
processing step for muscle segmentation method. Segmentation
methods for lower limbs MR images were first dedicated to
T -weighted images, commonly used in clinics. The parametric
images from qMRI sequences were then used as they may display
different information regarding the nature of tissue (Figure 3).
In most of the studies discussed in this review, parametric maps
used for segmentation methods were extracted from multi-echo
chemical shift-based water-fat separation MR sequences (19).
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FIGURE 1 | Fat fraction map of a thigh of a patient with myotonic dystrophy
type 1 (left) and corresponding segmentation of the principal regions of
interest (right). Femur is in white. The individual muscles of the knee
extensors, knee flexors, and the medial compartment are in red, blue, and
green, respectively. Subcutaneous (orange) and perimuscular (purple) tissues
are separated by the fascia lata (dot line in dark blue). Patient participated in
the randomized controlled trial OPTIMISTIC (5).

2.2. Regions of Interest

As illustrated in Figure 1, different tissues are visible in a
MR image of a lower limb. For the sake of clarity, these
tissues will be designated according to the nomenclature
of (20). The subcutaneous adipose tissue (SAT) and the
internal adipose tissue (IAT) are separated by the fascia
lata for the thigh and by several deep fascias for the lower
leg. Within the IAT, the intramuscular adipose tissue is
defined as the adipose tissue contained within muscles
while perimuscular adipose tissues (PAT) designates the
remaining adipose tissue, mainly the fat deposits between
the muscles.

In healthy subjects, fat is mainly present as SAT, whereas IAT
is almost absent (Figure 2A). On the contrary, in neuromuscular
diseases, muscle tissue is submitted to histological changes
leading to a progressive replacement of muscle tissue by
adipocytes. Intramuscular fat infiltration can even lead to muscle
necrosis and fibrosis (Figure 2D).

Segmentation strategies have evolved over the years with
improvements in image quality and clinical needs. The first
approaches intended to separate muscle and fat deposits with
no distinction between subcutaneous and internal compartment
fat. Clinical research has revealed that perimuscular and
intramuscular adipose tissue are not part of the same metabolic
processes (21) but their respective contributions are not yet fully
understood (22). Segmentation strategies have therefore evolved
toward the segmentation of muscle regions or individual muscles
in order to allow the precise quantification of each adipose
compartments. This has also been facilitated by improved image
quality, which has allowed better visualization of the boundaries
between tissues. It should be noted that the nomenclature
of the different adipose tissues is still not clearly defined
in the research field of segmentation strategies. The terms
“intermuscular fat” and “intramuscular fat” have been confused
and misleadingly used in many of the articles we reviewed in
this study.

2.3. Validation of Segmentation
Approaches

Validation is a crucial step in the development of automatic
segmentation methods. It intends to assess the effectiveness of
an automatic segmentation method based on the comparative
analysis between the automatic segmentation provided by an
algorithm and a ground truth produced by one or more experts
in the field, usually radiologists.

Several complementary metrics have been commonly used.
They can assess the overlap between segmentations, the distance
between segmentation contour points or the volumes computed
from the segmentations. Each metric is actually sensitive to one
type of segmentation error (size, location, and shape) and none
can take all error types into account (23).

For the muscle segmentation methods reported in the
present review, the most commonly used metrics are the
relative volume difference (RVD), the dice similarity coefficient
(DSC), the Hausdorft distance (HD), and the average surface
distance (ASD).

Let X be the segmentation resulting from the algorithm
and Y the ground truth. RVD is computed taking into
account the volumes quantified from the manual and automatic
segmentations. It actually refers to the ratio between the |X —
Y| difference and |Y|. The RVD score is a relevant metric in
clinical fields related to muscle because many studies used muscle
volume change as a biomarker. Nevertheless, this metric does not
allow a geometric and spatial analysis between the manual and
automatic segmentations.

The DSC measures the relative overlap between X and Y.
It is calculated as the ratio of twice the intersection between X
and Y by the number of combined elements of X and Y. As
defined in (1), DSC can also be expressed in terms of true positive
(TP), false negative (FN), and false positive (FP). The DSC
values can range from 0 to 1, 1 indicating the largest similarity
between segmentations.

_2Xny| 2-TP
T IX|+1]Y|]  FN4+2-TP+FP

(1

In addition to DSC, the distance between the segmentation
boundaries can be computed in order to assess the
segmentation robustness regardless of the volume. Let 90X
be the segmentation boundary of X and dY be the boundary
of Y. For HD and ASD, the smallest distance separating the
boundaries is measured between each point of X and dY. The
distance between two points x and y is the Euclidian distance
3(x,y) = |lx — y||. The HD is calculated as the maximum of
these distances (2) and the ASD as the average of the distances
(3). Both distances are expressed in millimeters and low values
are desirable for an accurate segmentation.

HD(0X,0Y) = max{sup inf §(x,y), sup inf 8(x,y)} (2)
yeay x€0X xedx yedY

D xeax 006 0Y) + 3 yy 8(0X, y)
X + 10Y]

ASD(3X,9Y) = (3)

The three geometric metrics, DSC, HD, and ASD, are
complementary and should all be evaluated in order to properly
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FIGURE 2 | Examples of Ty-weighted images of thighs (first row) and lower legs (second row) of a healthy subject (A,F) and patients with Charcot-Marie-Tooth
disease type 1A (B,G), myotonic dystrophy type 1 (C,H), facioscapulohumeral muscular dystrophy (D,l), and inclusion body myositis (E,J).

validate a segmentation method. The DSC and ASD provide
global information on the segmentation, i.e., the overlap and
the distance between the boundaries, respectively. Unlike DSC
and ASD, HD is very sensitive to outliers and to slight
shape differences.

3. EVOLUTION OF SEGMENTATION
STRATEGIES

3.1. Automatic Separation Between Muscle
and Fat Deposits

Over the last 15 years, several automated methods have been
reported in the literature with the aim of separating muscle and
fat tissue in lower limbs MR images.

3.1.1. Separation Between Muscle and Adipose
Tissue

Early automated segmentation methods took advantage of the
contrast between fat, muscle, and bone tissues. Accordingly,
Mattei et al. proposed a method for the semi-automatic
segmentation of the muscle compartment of the thigh based on
a histogram representation of T;-weighted images (24). Based
on user-defined thresholds for muscle and fat pixel intensities,
the method was validated through a reproducibility study of
the results between 3 experts but no metric related to the
segmentation accuracy was reported. Becker et al. proposed an
automatic method for the separation between muscle and fat
using a series of thresholding, morphological, and connectivity
operations enhanced by the use of the four different kind
of images provided by the chemical-shift DIXON sequences
(25). They reported a DSC score larger than 0.95 for muscle
segmentation performed in seven slices selected along the lower
limbs of four subjects.

Threshold-based methods are fast and simple to implement
but are quite sensitive to noise, imaging artifacts, and above
all need empirical thresholding. Automatic methods such as
K-means clustering have been developed to address this issue
(26). These methods classify tissues according to the intensity of

each pixel. Other automatic methods based on Gaussian mixture
model (GMM) histogram analysis have been reported (27). The
corresponding results were better because of the unsupervised
learning, which allows the algorithm to adapt to each image and
makes it more robust.

Because K-means clustering approaches are based on the
assumption that a feature vector belongs to only one class, they
have been recognized as ill-suited for MR image segmentation
when classes overlap or when the information is unclear and
uncertain (28). Partial volume effects between muscle and fat near
muscle boundaries and inter- or intra-muscular fat infiltration
lead to class uncertainties. Fuzzy c-means (FCM) clustering
algorithm has been developed in order to overcome this issue.
An FCM clustering algorithm was proposed by Barra et al. to
estimate 3D volumes of muscle and fat on thigh images (29).
The method was reproducible with respect to volume estimates
in five images acquired on the same day from three subjects but
no comparison was performed with ground truth segmentations.

Methods based on clustering or histogram analysis allowed fat
and muscle tissues to be distinguished but SAT and IAT remained
undistinguishable. This is of importance considering that IAT
is directly related to the pathological process of neuromuscular
disorders, whereas SAT is not.

3.1.2. Separation Between Perimuscular and
Subcutaneous Adipose Tissue

Since subcutaneous and internal adipose tissue have to be
distinguished, several approaches have been proposed for the
segmentation of the internal SAT border, in addition to fat and
muscle tissue separations.

Although Valentinitsch et al. (30) applied K-means clustering
on the different images resulting from chemical shift-based
water-fat separation MR sequences successively, Yang et al. (31)
proposed a machine learning algorithm using the whole set of
images at a time. Both of these approaches allowed IAT to be
distinguished from SAT using basic morphological operations
such as dilatation, erosion, and connected components. These
methods were assessed on a single chosen slice position for

Frontiers in Neurology | www.frontiersin.org

March 2021 | Volume 12 | Article 625308


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Ogiier et al.

Muscle MRI Segmentation Strategies

Valentinish et al. and on a 3D stack of slices of thigh for Yang
et al. For both methods, good results were obtained for the
segmentation of muscular tissue in “healthy” images with DSC
values higher than 0.94 and ASD around 0.80 mm. However,
Valentinish et al. highlighted that this kind of approaches
may not identify the correct muscle envelope if a muscle
next to the SAT region is fatty infiltrated or surrounded by
a substantial amount of fat, a common scenario in patients
with neuromuscular disorders (Figure 2). Moreover, defining the
delimitation between IAT and SAT as the muscular envelope was
misleading given that the true natural boundary is the fascia lata
(20), which may not appear close to the muscle.

To address the issue of segmenting the fascia lata, which is a
very thin tissue, poorly contrasted, and partially invisible in MR
images, a few methods based on snake, active geodesic contours
(32) have been proposed.

This kind of algorithm may be able to perform an active
contour evaluation toward weak edges, such as that of fascia
lata (Figure 1). Snake algorithm was used in similar methods
on T;-weighted images by (33, 34) with a difference regarding
contour initialization. Although Makrogiannis et al. used the leg
boundary segmented by morphological operations, Orgiu et al.
implemented a rough fascia lata segmentation defined by the
muscle envelope segmented with an FCM clustering followed by
morphological operations. Positano et al. used a gradient vector
flow snakes (35), an extension of snake active contours, which
does not need to be initialized close to the boundary and is
able to converge to the boundary concavities (27). Succession
of active contours initialized by a circle surrounding the leg
were applied to segment the external SAT contour, the internal
SAT contour, and finally the bone contour. External force of
the snakes used edge map derived of a fat map previously
created with an FCM clustering. Inside the internal border of
the SAT, Positano et al. used a GMM approach to separate fat
and muscle in the perimuscular region, whereas Makrogiannis
et al. applied K-means clustering to the combined space of fat
image and water image. These approaches were assessed in MR
images of healthy volunteers (33) and obese patients (27, 34).
No direct comparison was made with ground truth segmentation
but good correlations for volume quantification between manual
and automatic segmentations were reported for muscle and fat
tissues within the internal SAT border. Orgiu et al. reported a
mean ASD value of 0.81 mm for the fascia lata segmentation but
no indication about the HD.

More recently, several approaches have been proposed to
enhance active contour methods for fascia lata segmentation with
learning methods and line detection filters.

A random forest approach coupled with sparsity constraints to
fix the noise caused by veins was proposed by Tan et al. with the
aim of learning a 2D fascia lata detector and incorporating it into
the external energy terms of a gradient vector flow snake (36).
They reported a high average DSC of 0.97 and an average ASD of
1.37 mm in thigh images of osteoarthritis patients. This method
clearly outperformed those based on classic active contour model
(37). In two others similar methods, geodesic active contours,
also initialized with muscle envelope, were enhanced by line
detection filter, which extracts fascia lata point candidates (38)

and a vessel enhancement filtering, which distinguishes plate-like
shapes (39). Kovacs et al. assayed their method on T -weighted
images of myopathic patients and DSC for the segmentation of
non-affected and mildly affected muscles was 0.93, whereas it was
reduced (0.80) for severely affected muscles. These results can be
explained by the volume dependency of the DSC and the fact
that muscle volume was lower in severely affected patients. For
the detection of the true muscle envelope (i.e., the fascia lata),
HD scores were systematically high with an average of 13 mm
regardless of the pathology severity. Chaudry et al. proposed a
semi-automatic method based on live-wire to refine the fascia lata
automatic delineation in addition of their automatic approach.
Manual corrections were partially necessary for 40% of the
datasets (23 healthy young men and 50 elderly sarcopenic men
with a moderate level of fat deposits). No direct comparison with
ground truth segmentations was performed.

Although the detection of the muscle envelope with intensity-
based clustering or active contour approaches is ill-suited for
images of patients with neuromuscular disorders, these methods
have been used as an initialization step in most of the studies
dedicated to fascia lata detection. As expected, segmentation of
images with a severe fat infiltration was of poor quality. Other
approaches therefore had to be proposed.

Chambers et al. (40) introduced a method based on a live-wire
approach for muscle region segmentation. A fingerprint-based
algorithm was used to overcome the limitations of basic live-
wire approaches, which are sensitive to the additive noise and
small textural information. The muscle region border was then
identified using an exponential cost function related to the edge
information. The internal border of the SAT was first detected by
keeping the edges closest to the border of the leg. The procedure
was performed on the slice with the largest cross-sectional area
and then the border search was restricted to adjacent slices,
assuming the location of the boundaries is fairly similar from
one slice to another. The method was validated on 10 T;-
weighted images of facioscapulohumeral muscular dystrophy
(FSHD) patients and the DSC and ASD values were 0.89 and
0.10 mm, respectively. They also demonstrated that the state-of-
art FCM clustering and active contour methods were less robust
than their method when fat infiltration was present.

Very recently, Gadermayr et al. (41) evaluated up-to-date
approaches for the segmentation of the whole muscle region in
datasets of patients with neuromuscular disorders. For mildly to
moderately infiltrated patients, all the tested approaches allowed
an accurate segmentation with mean DSC values above 0.90.
For images with a severe fat infiltration, they demonstrated that
a graph cut approach incorporating shape knowledge exhibited
a more accurate segmentation than the other methods with an
average DSC value of 0.80.

3.1.3. Toward Fat Infiltration Measurement

Opverall, several studies have been proposed for the segmentation
of muscle and internal adipose tissue in MR images of lower
limbs. Only a few have been validated for images of patients
with neuromuscular disorders with a rather limited number
of images and metrics related to segmentation. One has to
keep in mind that the initial clinical driving force related
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to these segmentation methods was related to the automatic
quantification of fat-unaffected muscle volume. Accordingly,
Miiller et al. used intensity-based segmentation approaches
on Tj-weighted images in order to quantify the remaining
muscular tissue. The corresponding metric allowed to distinguish
myopathic and neuropathic patients from control subjects (42).
Similar methods have been used for the estimation of fat
infiltration in images of patients with neuromuscular disorders.
This clinical purpose faced several issues. Lareau-Trudel et al.
reported, in a clinical study, that separation between SAT and IAT
with active contour methods failed for patients with severe fat
infiltration and manual corrections had to be performed in 20%
of the cohort (15). Furthermore, in many of the studies reviewed,
authors claimed to propose a quantification of the intermuscular
fat fraction while using ratios between fat-unaffected muscle
volume and adipose tissue volume contained within the fascia
lata. No separation between intermuscular and intramuscular
fats was performed and could be hardly expected with such
intensity-based approaches. The assessment of intramuscular
adipose tissue is of utmost importance in neuromuscular diseases
given that it is a hallmark of the disease process.

Overall, the segmentation approaches reviewed above
are not adequate for the automatic quantification of fat
infiltration, whereas automatic segmentation of individual
muscles is warranted if one intends to thoroughly assess a
pathological process.

3.2. Automatic Segmentation of Muscle
Regions

The segmentation of individual muscles would have two main
advantages. Fat infiltration and other pathological changes could
be assessed in individual muscles. In addition, the processing of
3D datasets could be useful to investigate potential changes along
the proximo-distal axis. Accordingly, fat infiltration patterns of
individual muscles have been reported in a few clinical studies
(5, 16).

Both the fat infiltration severity together with the time-
dependent progression can largely vary between muscles in a
given patient, or between patients with a given disease (Figure 3)
and between various muscle disorders (Figure 2). On that basis,
quantification of any MRI biomarker of interest in individual
muscles and in a 3D dataset is of crucial importance so that cross-
sectional as well as longitudinal studies and therapeutic trials
could be properly performed. As most of the coming therapeutic
strategies are more likely to halt or slow the disease progression
rather than reversing the already established tissue damage, it
may be worthwhile to exclude the observation of fully infiltrated
muscles in order to pay a more particular attention to those
muscles not fully infiltrated.

In addition, automated methods are necessary to study
large cohorts of patients with neuromuscular diseases given
that manual segmentation is not conceivable given the time
required (9).

As mentioned above, the automated segmentation of
individual muscles in MR images is challenging for multiple
reasons. Muscles in an MR image of healthy subjects display

similar intensities and textures so that they can be hardly
distinguished. In addition, the boundaries between muscles
are very thin and may be discontinuous or invisible in MR
images. As illustrated in Figure 2, muscle boundaries can be
even less visible in case of fat infiltration. Different muscle
shapes and textures within and between patients also contribute
to the challenge the automatic segmentation task. In addition,
considering that muscles are made up of soft tissues, one can
expect large shape changes due to external constraints imposed
by leg and/or coil positioning in the MR scanner.

Over the last years, several studies have proposed automated
approaches to overcome these difficulties and to provide
accurate segmentations of muscles individually or grouped
by regions. Most of the methods were based on shape-
based approaches given that intensity-based approaches cannot
distinguish individual muscles.

A wavelet-based encoding method was proposed by Essafi
et al. (43) in order to provide a hierarchical encoding of shape
variability. This approach was assessed for the segmentation
of the gastrocnemius medialis in 20 healthy subjects and five
patients. The corresponding results were of poor quality with an
averaged DSC of 0.55.

Baudin et al. evaluated a method based on random walk
in order to address the issue of incomplete contours, which
may occur between muscles. Such a method relies on seeds
positioning for the initiation step that can be done manually
or automatically using atlases. This method has been evaluated
in out-of-phase images, which have the particularity of showing
strong contours between tissues and thus between individual
muscles in images of healthy subjects. The corresponding DSC
values were high, i.e., 0.80 £ 0.19 in 15 control subjects (44).
The incorporation of shape prior knowledge and confidence
map of muscle contours led to larger DSC values [0.86 =+
0.07; (45)]. Although such a method has not been assayed
in patients with neuromuscular disorders, one could expect
much lower DSC values given that the fat infiltration should
erase the muscle borders. Andrews et al. (46) addressed this
issue by designing a random forest boundary detector that
seek to learn common appearances of the interfaces between
muscles in order to distinguish them from intramuscular fat.
This intermuscular boundary detector was combined with a
statistical shape model over the space of generalized log-ratio
representations and a pre-alignment approach based on GMM
segmentation of the muscular tissue. They evaluated their
method for the segmentation of individual thigh muscles in
10 healthy subjects and 10 patients with chronic obstructive
pulmonary disease and they reported DSC values ranging from
0.70 £ 0.16 to 0.93 £ 0.06.

A method based on active contour model with an initialization
through an active shape model was assessed for the segmentation
of muscle regions in thigh of patients with knee osteoarthritis
(47). The active shape model was trained in 113 axial MR
slices for an assessment on 20 images. They reported that 50
training datasets were enough to obtain accurate segmentation.
Good DSC values were reported for the segmentation of each
muscle region. However, their method was only designed for
the segmentation of a unique mid-slice. In addition, a manual
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images, and quantitative fat fraction map (E,J).

FIGURE 3 | Examples of Ty-weighted images (A,F) and images produced by chemical shift-based water-fat separation MR sequences for the thigh of two patients
(first and second row) with different severity of facioscapulohumeral muscular dystrophy. lllustrations correspond to in-phase (B,G), out-of-phase (C,H), water (D,l)

interaction of 3-5 min per slice was required for refining the
initialization steps of both the active shape model and the active
contour model.

3.2.1. Atlas-Based Approaches

Atlas-based approaches have been proposed for the automatic
segmentation of individual muscles as they can incorporate
spatial prior anatomical knowledge at individual muscles level.
Atlas-based segmentation is a well-established concept (48) that
has been widely applied to brain structures. These approaches
treat segmentation as an image registration problem that aims
at computing the optimal transformation fields from the pre-
labeled atlases to the new image to be segmented. The atlas labels,
once transferred to the new image domain, are merged and result
in the final unique segmentation.

Such an approach has been used for the quantitative
assessment of regional muscle volume in whole-body MR images
(49). A multi-scaled and phase-based morphon method was
selected for the registration because it would be less sensitive
to MRI inhomogeneities. Water images were used since they
display the least anatomical variation and contain the largest
amount of information regarding muscle shapes. The multi-
atlas process was performed twice, once with all the images
of the atlas to obtain a first coarse segmentation, and then
a second time using only the atlases having similar volumes
to the coarse segmentations. Labels from atlases were merged
into a probabilistic map and a threshold was set empirically to
produce the final segmentation. Then, muscle and fat volumes
were separated inside the segmented areas with a threshold.
Using a leave-one-out strategy in 20 healthy subjects, good
correlation was reported for muscle volume quantification. The
mean TPVF was 93% for lower leg, posterior and anterior
thigh compartments, and mean FPVF was 5% for lower leg
and 8% for posterior and anterior thigh compartments. No

geometric metrics related to the muscle envelope segmentation
by multi-atlas process has been reported. In a recent study, this
multi-atlas approach was also assessed as sensitive enough to
detect significant changes in muscle volume following training
activities (50).

Multi-atlas approaches are strongly dependent on the
registration model used. Le Troter et al. (51) evaluated different
registration methods from well-known open-source libraries
to segment the four muscles of the quadriceps femoris. They
demonstrated that multi-atlas process could be improved
with initial registrations guided by the segmentation of SAT,
muscle envelope, and bone, using a method described by
Positano et al. (27). Similarly to Karlsson et al., the results
for the segmentation of the whole quadriceps femoris in
25 healthy subjects were good with an averaged DSC score
of 0.94 £ 0.03. The results were lower for the vastus
lateralis and rectus femoris muscles, i.e., mean DSC values of
0.88 £ 0.08 and 0.84 =+ 0.12. In addition, a 20% volume
error with RVD scores of 0.17 £ 0.18 and 0.21 + 0.24
were reported.

A multi-atlas approach based on B-spline nonrigid
registrations has been reported by Belzunce et al. (52) with
the aim of segmenting the gluteal muscles on hip and thigh
images. Registrations were performed on muscle envelope pre-
segmented with the Otsu algorithm. The approach was evaluated
on both multi-atlas of T -weighted and DIXON in-phase images
of 15 healthy subjects with DSC values of 0.94 + 0.01 and RVD
values of 1.5 & 4.3%. The assessment was only performed on
the medial slices of the dataset excluding the extremities deemed
to be more difficult to segment because of more variability
and uncertainty.

Very recently, Mesbah et al. (53) introduced a Markov random
field model combining appearance and spatial models with the
prior shape information from atlases and so in order to segment
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the three main muscle groups of the thigh. They reported good
DSC scores (0.89 = 0.05 to 0.95 = 0.03) but the HD scores were of
poor quality with an average ranging from 10.51 & 6.37 to 31.53
+ 14.24 mm for the medial compartment. Furthermore, their
method was assayed on images of healthy subjects and patients
with spinal cord injury, for whom no fat infiltration occurs. Given
that part of their method relied on intensity-based approach,
it may be ill-suited for images of neuromuscular disorder
patients. However, they demonstrated that their approach may
outperformed those based on majority vote or STAPLE fusion
following nonlinear atlas-based registrations.

The main advantage of multi-atlas methods is that any tissue
compartment can be segmented according to a given atlas. This
is of great interest for the study of neuromuscular diseases in
which individual muscles are affected differently depending on
the pathology. However, multi-atlas approaches have proposed
mixed results for the segmentation of individual muscles and
have only been validated in images of healthy subjects. In all
the methods presented above, the final step of label fusion used
only parts of the atlases, ie., those closest to the image to
be segmented. Various merging strategies have been used, i.e.,
majority vote (52) or more thoughtful algorithms like STEPS (51)
or a Markov random field model (53). It should be kept in mind
that parameters chosen empirically are optimized for a given
training database and could have to be retuned for other images.
On that basis, it may be necessary to have access to different
subgroups of atlases that may be adapted to different types of
images. This feature could be problematic for the generalization
of these methods for the segmentation of pathological images
considering the large between-muscles and between-subjects
phenotypic variability. As neuromuscular diseases are classified
as rare diseases, there is currently no database large enough to
cover all the variability of pathologies as it may be available for
the brain (54).

The above-reviewed approaches were designed for cross-
sectional studies and a follow-up version has been originally
reported by Le Troter et al. In a so-called single-atlas approach,
they used the manual segmentation of a first time point as an
atlas for the following time points (51). Since successive MR
images of the same subject may show little anatomical variations,
single atlas-based nonlinear registration can correctly transfer
segmentation of the first time point images to the others. Assessed
in healthy subject images, they reported much better results than
the multi-atlas based approaches. DSC scores were above 0.89 for
each individual muscle of the quadriceps femoris with RVD scores
below 5%. A limitation of this method is that the full automatic
aspect is lost with the need of an initial manually segmentation.

3.2.2. Toward Intramuscular Fat Infiltration
Measurement

Although several automatic approaches have reported promising
results for the segmentation of muscle regions in healthy subjects,
none of them have been assessed for images of patients with
neuromuscular disorders. To the best of our knowledge, only a
single study has been devoted to the segmentation of muscles in
patients with chronic obstructive pulmonary disease for whom

fat infiltration was moderate and the approach was not accurate
enough to be considered for clinical applications.

Overall, reliable automatic segmentation methods are
still warranted for individual muscles in the context of
neuromuscular pathologies. This is supportive of the conclusion
from the review by Pons et al. (55). Although promising, the
results already obtained in images of healthy subjects do not
guarantee similar results on images of patients for whom factors
such as fat infiltration may be problematic. Another critical issue
is the availability of pre-labeled data sets of muscle MR images.
The validation of a method requires manual segmentations from
experts to be considered as the ground truth segmentations.
As we previously mentioned, manual segmentation is time
consuming and validation of methods has often been performed
using a single slice (47).

The lack of automated segmentation methods is likely the
reason why only a limited number of clinical studies have
assessed qMRI scores at the individual muscles level in 3D
datasets. Most of the studies have been performed considering
a few slices only (4, 10) or a limited number of individual
muscles (6).

3.3. Semi-Automatic Segmentation of
Muscle Regions

As no automatic method has been validated for accurate
segmentation of individual muscles in neuromuscular
disorders, semi-automatic methods have been proposed to
reach an optimized balance between segmentation accuracy and
user’s dedication.

A semi-automatic method for segmenting the whole
quadriceps femoris was proposed with the manual delineation
of a line separating this muscle group from the rest of the
muscular envelope automatically pre-segmented with an
adaptive threshold on T -weighted images (56). The method was
assessed in healthy and elderly subjects and managed to reach a
time saving of 87% with a mean DSC of 0.98. As we previously
indicated, this kind of intensity-based methods is ill-suited for
images of patients with neuromuscular disorders.

Two similar methods have been proposed to generate 3D
muscle segmentations from manual segmentation on a limited
number of 2D slices. One of the advantages of these approaches
is that any tissue compartment can be segmented according to
the manual segmentation defined on the few axial slices used as
initialization of the process.

Jolivet et al. (57) proposed a model based on parametric-
specific object method. Only a fast rough contouring of the
muscle using polygons was necessary on the initial axial
slices. Polygons were then matched to the muscle shape using
an automatic contour optimization based on local gradient
weighted by intensity similarity and distance to the rough
contouring. Once segmentations were well-tuned on the initial
slices, parametric-specific object was constructed and deformed
to match the manual muscle segmentation. Process was
iterative with the successive injection of the axial interpolated
segmentation mask, after automatic contour optimization, in
the parametric-specific object. The manual segmentation of
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only 5 axial slices took 21 min (against 80 min for manual
segmentation of all slices) and was enough to obtain an accurate
3D segmentation of all individual muscles with RVD scores lower
than 5%. This method has not been tested in patients and one can
expect that the automatic contour optimization may suffer from
fat infiltration as it is a gradient-based approach.

The propagation of an initial manual segmentation to the
remaining slices through a combination of nonlinear registration
approaches has been originally reported by Ogier et al. The
method takes advantage of the shape information from the
initial manual segmentations with no other previous information
regarding muscles shapes. It is also based on the anatomical
information from a given image to the next in order to take
into account the corresponding changes along the proximo-
distal axis. On that basis, the initial segmentation could be
automatically propagated along this axis. The initial manual
segmentation has to be repeated each time a muscle was
appearing or disappearing. The method was initially proposed
and validated for the segmentation of the four muscles of
the quadriceps femoris group in Ti-weighted images of 11
healthy subjects (58). Validation has been then extended for the
segmentation of all individual thigh muscles in healthy subjects
(59). Mean DSC scores of 0.90 £ 0.03 was reported with a
manual input for 30% of the slices only. The semi-automatic
method was also assessed for the segmentation of thigh and lower
leg individual muscles in 10 patients with myotonic dystrophy
type 1 (60). Using Dixon images recorded in both thigh and
lower leg, only 9 out of 50 slices were manually segmented.
Using water images, a mean DSC value of 0.91 £ 0.04 was
reported and the results were similar regardless of the type of
Dixon image used. In addition, an excellent reliability was also
quantified from the comparative analysis between fat fraction
computed from the segmented images and from the manual
segmentation. The method has been deemed sufficiently robust
for clinical applications and assayed in cross-sectional studies,
which evaluated the pattern of fat infiltration in muscles in two
different neuromuscular pathologies (12, 16).

Nonlinear registrations were also used for semi-automated
segmentation methods dedicated to longitudinal studies.

Single-atlas approach was first assayed for the 3D
segmentation of anterior and posterior thigh compartments in
a 2-years follow-up study of patients with facioscapulohumeral
muscular dystrophy, some at severe stages of intramuscular
fat infiltration (61). No metrics of segmentation accuracy were
reported but the fat quantification estimated through the semi-
automatic segmentation showed a good reproducibility and
repeatability as well as a good correlation with clinical scores.

Based on the single-atlas approach, Ogier et al. (60) reported
a follow-up study in 10 myotonic dystrophy type 1 patients
assessed twice 10 months apart. The 3D supervised segmentation
of the first time point using the original semi-automatic method
previously proposed (58) was used as a template for the automatic
propagation to the second time point. The combined methods
allowed an accurate segmentation with a DSC of 0.87 % 0.07.
Similarly to what has been obtained for the semi-automatic
segmentation of baseline images, an excellent reliability was also
observed between the fat fraction quantified from the automatic

and manual segmentations. The combined methods provided
the first complete framework dedicated to individual muscles
segmentation and follow-up in patients with a neuromuscular
disorder. Both the segmentation and a quantitative metric
(fat fraction) in individual muscles were accurate, while the
number of slices manually segmented was substantially reduced.
The follow-up segmentation was performed with no additional
manual segmentations and this could be translated for multiple
repeated time points.

4. DEEP LEARNING-BASED
SEGMENTATION METHODS

In the previous sections, evidence has been provided indicating
that completely automatic methods are not efficient for a
robust segmentation of individual fat-infiltrated muscles. On the
contrary, semi-automatic methods can be robust and useable
for clinical applications but the manual initialization remains an
issue in terms of user dedication. Given the recent promising
results reported in the field of medical imaging, deep learning-
based segmentation methods are appealing (62).

Deep learning methods are part of machine learning
methods, which have proven their efficiency in the diagnosis
of neuromuscular diseases. Machine learning algorithm such
as random forest models have been able to overcome experts
for complicated diagnostic tasks (63). Deep learning methods
are generally based on artificial neural networks, which are
supervised to learn the segmentation process from manually
segmented images provided as training examples. Neural
networks rely on pixel intensities and image characteristics
in order to compute the final segmentation. For images
segmentation tasks, network architectures are built on the basis
of convolutional encoder-decoder (CED) network. This kind
of networks combines paired encoder and decoder networks
and have the advantage of producing a result with a resolution
similar to the initial images. This architecture can be seen as the
association of a contracting path to capture the context and a
symmetric expanding path that allows the image reconstruction.
Various CED have been used for images segmentation. Among
them, U-Net is considered as the standard CED architecture
for image classification tasks (64) because of its efficient way
of reconstructing the segmentation using information from the
contracting path.

Similar to the conventional methods discussed in the previous
sections, deep learning based segmentation methods have been
applied for the different segmentation strategies, i.e., from the
separation of muscle and fat deposits to the segmentation of
individual muscles.

The very first deep learning approach applied on lower limb
MR images was used in order to detect the fascia lata. Two
studies intended to address this issue using a 5-layer network
combined with a dual active contour model (65) or a U-Net
architecture (66). Yao et al. used T;-weighted images while
Amer et al. showed the interest of combining T,-weighted and
PD images for their study. Both of them provided high-quality
results with DSC values larger than 0.97 £ 0.02. Distinction
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between adipose and healthy muscle tissue was performed using
the same networks and the corresponding DSC values were
also high, ie., 091 (66) and 0.94 £ 0.07 (65) for muscle
detection. Recently, impressive DSC scores of 0.97 were obtained
with an improved U-Net structure using residual connections
and dense blocks (67). However, such a classification did not
allow to distinguish perimuscular and intramuscular adipose
tissue. Using a U-Net architecture, Gadermayr et al. intended
to segment healthy and fat-infiltrated muscle all-together on T;-
weighted images, allowing the distinction of intramuscular from
perimuscular adipose tissue (68). Given the complexity of this
task, corresponding DSC values were smaller (around 0.88 +
0.05), illustrating a poorer segmentation quality.

With a similar purpose of distinguishing intramuscular and
perimuscular fat, studies have been conducted with the aim of
segmenting individual muscles. The AlexNet network was used
by Ghosh et al. (69) to produce a principal component analysis
of the segmentation, leading to poor results with average DSC
of 0.85 £ 0.09. Standard deviation score illustrated the high
variability of the results, which is known as a major weakness
of deep learning methods (70). Better results were obtained with
a U-Net architecture on T;-weighted images (71) with average
DSC reaching 0.95 £ 0.03. More recently, Ding et al. (72) used
U-Net on fat-water decomposition MR images to segment 4
muscle regions and obtained DSC scores around 0.89 % 0.03
in both healthy and affected subjects. However, as the network
was trained with a single slice position, the high muscle shape
variability along the proximo-distal axis could not be taken into
consideration. One way to take into account the variability of
the proximo-distal shape is to consider the muscle as a volume,
which can be done using a 3D segmentation neural network.
In this field, Conze et al. (73) demonstrated the interest of
3D segmentation for the segmentation of individual shoulder
muscles. A limitation to 3D CED is the memory necessary to
train it. Ni et al. (74) used bounding boxes around organs to
reduce resolution and prevent memory growth. This method
was applied with 3D U-Net on complete lower limb images of
athletes, obtaining mean DSC on 35 muscles of 0.89 + 0.03. A
very recent study proposed to use an edge-aware network based
on U-Net and reached a DSC of 0.90 £ 0.09 and an ASD of 1.37
= 0.92 on both healthy and affected subjects (75).

Solutions to Scarcity of Data

The methods presented on the detection of fascia lata, the
classification of adipose tissue, or the segmentation of individual
muscles all showed promising results. However, all of them faced
the problem of data availability due to the scarcity of annotated
images of patients with pathological changes. Indeed, public
datasets of annotated limbs MR images are scarce, unlike for
other organs such as the brain (76).

An interesting solution for this issue relies on either the use
of unlabeled data or the creation of artificial training examples.
Amer et al. (66) proposed a semi-supervised learning method,
which uses both labeled and unlabeled datasets. In that case,
each image does not have to be annotated before the network
training phase and one can increase the database without a
human intervention for the labeling process. Anwar et al. (67)
proposed to use a CED on unlabeled data to create labels

and thus enlarge their dataset. However, unlabeled data are
not always available especially for the study of rare diseases.
For this purpose, methods based on data generation using
neural networks are emerging since the founding article on
generative adversarial networks (GAN) (77). Recently, Yi et al.
(78) made a review regarding the application of such methods in
medical imaging. For lower limb muscle segmentation, solutions
based on GAN were assessed with the aim of generating
pathological images (68). Many issues related to the realistic
nature of the generated images and their variability have still to
be addressed.

One has to keep in mind that the neural network training
phase tightly relies on a tuning phase of the network hyper-
parameters, which has to be empirically performed thereby
reducing the fully automatic aspect of the method. In other
words, a given network has to be optimized for a given dataset.
Deep learning solutions have to be optimized by experts and
this commonly takes hours of implementation. In addition, the
training phases can be time consuming and the final results
could be equivalent to those obtained with more conventional
methods (53).

Overall, although deep learning tools for the segmentation
of fat-infiltrated muscles have a great potential, one should
keep in mind two major issues related to the availability of
large amount of annotated data and the need of a specific
network tuning for each dataset. Semi-automatic propagation
methods have proven their efficiency (60) and could be used
to annotate large amount of images. These methods could be
combined to data augmentation for the generation of databases
compatible with deep learning methods. The corresponding
potential is still to be proven for the segmentation of
fat-infiltrated muscles.

5. CONCLUSION

This review highlighted the lack of fully automated approaches
that could produce accurate segmentations of muscle images
of patients with neuromuscular disorders. The few validated
methods that addressed the difficulty of segmenting images with
severe infiltrated muscles were proposed for the whole muscle
only. That might not be optimal in neuromuscular disorders
in which individual muscles are seen to be affected differently.
However, for segmentation of individual muscles, approaches
that validated segmentations that were accurate enough for
clinical use were evaluated only on healthy subjects. Specific
studies are warranted for the extrapolation of these approaches to
images of pathological muscles as the confounding factors differ.
Indeed, the issue of distinguishing muscle, intramuscular adipose
tissue, and subcutaneous adipose tissue seems to be crucial for the
follow up of patients with a severe fat infiltration. Semi-automatic
methods has proven some efficiency in clinical context. But even
if they reduce the manual load required for the study of large
cohorts, some manual interventions are still needed. As recent
techniques, deep learning based approaches are promising but
they need databases that are representative enough of typical
neuromuscular disease images. The community should promote
the emergence of common dedicated image databases.
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