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Introduction: Cognitive decline and dementia are common and debilitating non-motor

phenotypic features of Parkinson’s disease with a variable severity and time of onset.

Common genetic variation of the Apolipoprotein E (APOE) and micro-tubule associated

protein tau (MAPT ) loci have been linked to cognitive decline and dementia in Parkinson’s

disease, although studies have yielded mixed results. To further elucidate the influence

of APOE and MAPT variability on dementia in Parkinson’s disease, we genotyped

postmortem brain tissue samples of clinically and pathologically well-characterized

Parkinson’s donors and performed a survival analysis of time to dementia.

Methods: We included a total of 152 neuropathologically confirmed Parkinson’s disease

donors with or without clinical dementia during life. We genotyped known risk variants

tagging the APOE ε4 allele and MAPT H1/H2 inversion haplotype. Cox proportional

hazards regression analyses adjusted for age at onset, sex and genetic principal

components were performed to assess the association between the genetic variants

and time from motor onset to onset of dementia.

Results: We found that both the APOE ε4 allele (HR 1.82, 95%CI 1.16–2.83, p= 0.009)

and MAPT H1-haplotype (HR 1.71, 95 % CI 1.06–2.78, p = 0.03) were associated with

earlier development of dementia in patients with Parkinson’s disease.

Conclusion: Our results provide further support for the importance of APOE ε4 and

MAPT H1-haplotype in the etiology of Parkinson’s disease dementia, with potential future

relevance for risk stratification and patient selection for clinical trials of therapies targeting

cognitive decline in Parkinson’s disease.
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INTRODUCTION

Parkinson’s disease (PD) is a heterogenous disorder in terms of clinical presentation and rate of
progression. Dementia is one of the most debilitating non-motor manifestations of the disease,
with broad implications for both patients and caregivers (1–3). Longitudinal studies have shown
that most patients ultimately develop Parkinson’s disease dementia (PDD) if they survive long
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enough, although the time of onset is highly variable (4, 5).
Cognitive disability is not only a feature of advanced disease,
as 36% of patients meet criteria for mild cognitive impairment
already at clinical diagnosis (6) and 17% of patients develop
dementia within five years from disease onset (7). Identification
of biomarkers, including common genetic variants predicting
early cognitive decline and dementia, could provide important
insights into the biological andmolecular underpinnings of PDD,
benefit recruitment to clinical trials and identify potential targets
for novel therapeutics.

Genome-wide association studies (GWAS) have identified
genetic susceptibility loci for sporadic PD, with the latest meta-
analysis bringing the number up to 90 risk signals across 78 loci
(8). Genetic variability may not only affect the risk of developing
PD, but also influence the clinical course of the disease. Several
genetic loci have been hypothesized as risk factors for dementia
in sporadic PD, among them APOE and MAPT, showing partly
conflicting results in previously published reports (9).

Coding variation in APOE on chromosome 19 gives rise to
three common alleles: ε2, ε3, and ε4. The APOE ε4 allele is a
strong and well-established genetic risk factor for Alzheimer’s
disease (AD) (10), and the top GWAS signal in dementia with
Lewy bodies (DLB) (11). While APOE does not seem to alter
the risk for PD in itself according to GWAS results, the ε4 allele
has been studied as a potential risk factor for cognitive decline
and development of dementia in PD patients, with several larger
studies reporting a significant association (12, 13).

An inversion polymorphism on chromosome 17q21,
containing MAPT and several other genes, gives rise to the
H1 and H2 haplotypes in European populations (14). Single-
nucleotide polymorphisms (SNPs) tagging the H1-haplotype
have consistently been among the most significant association
signals in GWAS of PD-risk (8, 15, 16). TheMAPT gene encodes
the tau protein that is found to aggregate in neurofibrillary
tangles (NFT), a core neuropathological feature of AD, but also
found in varying degrees in PD and PDD patients upon autopsy
(17, 18). Interestingly, the MAPT H1-haplotype has also been
reported to be associated with an accelerated rate of cognitive
decline and earlier development of dementia in PD patients
(7, 19, 20), yet larger studies have not been able to replicate this
finding (12, 21).

Discrepant results across previous genetic association studies
of cognitive outcomes in PD could potentially arise from
differences in methodology, in particular with respect to
inclusion criteria, duration of follow-up and outcome measures
used to assess cognitive decline. A study based on brain bank
samples can take advantage of gold standard diagnostics and
clinical data that cover the patients’ entire lifespan. In this study,
we investigated the association of SNPs in the APOE and MAPT
loci with time to dementia by retrospective survival analysis in
neuropathologically defined PD brain donors.

METHODS

Subjects
All subjects were neuropathologically confirmed patients
with PD or PDD from the Netherlands Brain Bank (NBB,

www.brainbank.nl). All brains available from the NBB from
1989 to 2017 (n = 3,853) were considered for study inclusion
according to the selection criteria. Written, informed consent for
the use of clinical information and tissue samples for research
purpose, was collected from the donors or their next of kin.

Standardized brain autopsies and neuropathological
examinations were performed by experienced neuropathologists
(AR and WB). Neuropathological assessment of Lewy Body
(LB)-related α-synuclein pathology was done according to
BrainNet Europe guidelines (22) and assessment of AD
neuropathologic change was done according to National Institute
on Aging-Alzheimer’s Association (NIA-AA) guidelines (23).

Clinical information was extracted from the medical records
provided by the NBB. The diagnosis of PD was based on the
combination of the clinical syndrome of PD [UK Parkinson’s
Disease Society Brain Bank criteria (24)], and moderate to severe
loss of neurons in the substantia nigra in association with Lewy
pathology in at least the brainstem with or without limbic and
cortical brain regions (25). When dementia had been diagnosed
during life, donors fulfilling these criteria were classified as PDD.
A diagnosis of dementia was made during life by a neurologist
or geriatrician, or retrospectively based on neuropsychological
test results showing disturbances in at least two core cognitive
domains (26) or Mini-Mental State Examination (MMSE) score
<20. Distinction between DLB and PDD was made based on the
1-year rule, where dementia presenting before or within 1 year of
parkinsonism onset was diagnosed as DLB, and not included in
this study (27). Cases diagnosed as having both PD and AD were
also excluded from the study.

Genotyping
DNA was extracted from brain tissue. Genotyping was carried
out on the Infinium R© NeuroChip Consortium Array (Illumina,
San Diego, CA USA) (28). Quality control was carried out
in PLINK version 1.9 (29). Samples passing standard quality
control, including filtering of variants and individuals based on
call rate (< 0.95), Hardy-Weinberg equillibrium (p < 0.000001),
relatedness (pi-hat > 0.125), excess heterozygosity (> 4SD from
mean), sex-check and ancestry assessed by principal component
plots, were imputed using the Michigan Imputation Server (30).
We selected rs1800547 to discriminate between the MAPT H1
and H2 haplotypes, and used rs429358 and rs7412 to define the
APOE ε2, ε3, and ε4 alleles as previously described (31, 32).

The NeuroChip array was also used to screen for known
pathogenic mutations in relevant Mendelian PD genes. Covering
the majority of definitely and probably pathogenic variants in
the autosomal dominant genes SNCA, LRRK2, and VPS35, we
identified no mutation carriers (Supplementary Table 1).

Statistical Analysis
All statistical analyses were carried out in R (version 4.0.2;
http://www.r-project.org). Differences in baseline demographics
and clinical variables between patients with PD and PDD
were assessed using t-tests for continuous variables and
chi-square tests for categorical variables. Ordinal variables
(neuropathological scores) were compared using the Wilcoxon
Rank Sum Test, while associations between neuropathology
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TABLE 1 | Clinical characteristics of cases with Parkinson’s disease

non-demented (PDnD) and Parkinson’s disease dementia (PDD).

PDnD PDD p

N = 71 N = 81

Sex, male (%) 43 (60.6) 57 (70.4) 0.271

Age at disease onset, mean (SD) 61.3 (13.0) 64.2 (9.5) 0.117

Age at dementia onset, mean (SD) - 73.7 (7.0) -

Disease duration, mean (SD) 15.5 (7.7) 13.6 (6.7) 0.102

Motor dementia interval, mean (SD) - 9.4 (5.8) -

Dementia duration, mean (SD) - 4.1 (2.8) -

Age at death, mean (SD) 77.0 (9.3) 77.8 (6.5) 0.515

SD: standard deviation. P value from t-tests for continuous variables and chi-square tests

for categorical variables (sex).

and genotypes were measured by odds ratios using ordinal
logistic regression adjusting for age at death and sex. For
the survival analysis we used the R package “survival.” Cox
proportional hazards regression models were employed to assess
the relationship between genotype and dementia onset. The event
variable was presence of dementia. As time variable we used
disease duration at dementia onset for PDD and disease duration
at death for PD. Separate analyses were carried out for each
risk locus, with sex, age at motor symptom onset and the first
five genetic principal components as covariates. We estimated
hazard ratio (HR) and the 95% confidence interval (CI). P
values for each covariate were obtained from the Wald test.
The results were visualized as Cox regression-adjusted curves
using the R package “survminer.” A combined plotting and
testing approach was employed to check the proportional hazards
assumptions. A p < 0.05 was used as significance threshold in

this study.

RESULTS

One hundred sixty five donors (PD n= 79 and PDD n= 86) were
identified. A total of 13 cases were excluded for missing clinical,
neuropathological or genotype data, or failing quality control. A
total of 152 cases (PD n = 71 and PDD n = 81) meeting clinical
and neuropathological criteria were included in the final analysis.
The demographic and clinical characteristics are displayed in
Table 1. There were no significant differences in sex distribution,
age at disease onset, disease duration or age at death between PD
and PDD patients.

Braak α-synuclein stage (p= 0.01), Thal amyloid-β (Aβ) phase
(p = 0.001), Braak NFT stage (p = 0.003) and CERAD neuritic
plaque score (p < 0.001) were all higher in PDD compared to
PD patients (Figure 1 and Supplementary Table 2). Applying
the NIA-AA criteria, intermediate or high AD co-pathology was
present in 7% (5 of 67) of PD patients and 14% (11 of 80) of PDD
patients.APOE ε4 was significantly associated with Thal Aβ phase
(OR 4.85, p < 0.001) and CERAD neuritic plaque score (OR
4.97, p < 0.001), but not Braak NFT or Braak α-synuclein stage

TABLE 2 | Risk variant frequencies and results from Cox proportional hazards

regression models with age at onset, sex, and genetic principal components as

covariates.

Variant Frequency HR 95% CI for HR p

APOE ε4 PDnD: 0.11 1.82 1.16–2.83 0.009*

PDD: 0.14

MAPT H1/H1 PDnD: 0.68 1.71 1.06–2.78 0.03*

PDD: 0.77

APOE, Apoliporotein E; HR, hazard ratio; CI, confidence interval; MAPT, microtubule-

associated protein tau.

*P value from the Wald test.

(Supplementary Table 3). The MAPT H1-haplotype was not
significantly associated with any of the neuropathological scores.

In the Cox proportional hazards model the APOE ε4 allele
was significantly associated with a shorter time between PD onset

and diagnosis of PDD (HR per ε4 allele 1.82, 95 % CI 1.16–
2.83, p = 0.009, Table 2 and Figure 2A). When Thal Aβ phase
or CERAD neuritic plaque score were added as covariates, the
association with time to dementia was no longer significant (p
= 0.23 and p = 0.11, respectively). The MAPT H1-haplotype
was also significantly associated with a shorter time to dementia
(HR per H1 haplotype 1.71, 95% CI 1.06–2.78, p = 0.03, Table 2
and Figure 2B). Later age at onset was significantly associated
with shorter time to dementia in both models (HR 1.09, 95% CI
1.06–1.12, p < 0.001).

DISCUSSION

In this study we explored the genetic effects of MAPT and
APOE on onset of dementia in PD in a neuropathologically
characterized cohort. With the advantages of definite diagnosis
and clinical data from the patients’ entire lifespan, we found that
even in a small sample, both the APOE ε4 allele and the MAPT
H1-haplotype were significantly associated with an accelerated
onset of dementia in PD patients.

Several studies have examined the effects of APOE ε4 on
cognitive decline and dementia in PD. Many of these have had
cross-sectional design, and while some have demonstrated an
association with APOE ε4 and lower cognitive performance (21),
others have failed to do so (33). Consistent with our results, a
previous study of PD patients demonstrated earlier development
of dementia among APOE ε4-carriers (HR 1.90, 95% CI 1.05–
3.44) (34). In line with our data, two recent meta-analyses
reported an increased risk of dementia in PD patients who carried
the APOE ε4 allele, although regional differences in effect size
were noted (35, 36). Longitudinal studies have found associations
with APOE ε4 and a more rapid cognitive decline measured on
both screening instruments for global cognition (37, 38) and
battery-style assessment of mental status (12, 39). In a recent
GWAS on PD progression using longitudinal data from three
large cohorts, the top hit for cognitive progression was rs429358
tagging APOE ε4 (40). In contrast, variants in the APOE-gene
were not associated with cognitive decline or dementia at 3.5,
5, or 10 year follow-up in the CamPaIGN study, a UK incident
cohort of PD patients (7, 20), or with shorter time to dementia
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FIGURE 1 | Neuropathological scores for PD and PDD patients. (A) Braak α-synuclein stage. (B) Thal amyloid-β phase. (C) Braak neurofibrillary tangle (NFT) stage.

(D) CERAD neuritic plaque score. PDD patients display more advanced LB, Aβ, and tau pathology compared to PD patients.

in another longitudinal study (41). While longitudinal designs
represent a gold standard for tracking disease progression, they
may be hampered by small sample size, short follow-up time and
loss to follow-up. Taken together, the weight of evidence favors an
effect of APOE on cognitive decline and dementia in PD, further
supported by our results.

We also found a significant association between MAPT H1
and time to dementia in PD. This locus is less established

than APOE in the previous literature on genetic risk factors
of cognitive progression. The CamPaIGN study was the first
to report an association between the MAPT H1/H1 genotype
and cognitive decline in PD (19). The results were confirmed
in the subsequent 5- and 10-year follow-up studies, supporting
the MAPT H1/H1 genotype as predictive of dementia (7, 20).
The association between MAPT genotype and PDD has later
been replicated (42), while other studies have failed to do so
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FIGURE 2 | Adjusted survival curves for Cox proportional hazards model. (A) Apolipoprotein E (APOE) ε4 (0 = negative, 1 = ε4 heterozygous, 2 = ε4 homozygous),

and (B) Microtubule-associated protein tau (MAPT ) H1-haplotype (0 = negative, 1 = heterozygous, 2 = homozygous).

(12, 21, 38). Contrary to our results, no association between
MAPT H1/H1 genotype and dementia onset was found in a
previous survival analysis of 298 PD patients where 59 progressed
to dementia (34). A prospective investigation of 212 patients
noted associations between MAPT H1 and specific cognitive
outcome measures, but not with the overall rate of cognitive

decline (12). The authors of this study hypothesized that
the significant signal reported in the CamPaIGN study could
represent an effect specific to early dementia development, as
the CamPaIGN patients were included at diagnosis and assessed
for progression to PDD at 3 years. Our data do not support this
explanation of previously discrepant results, as the mean disease
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duration at dementia onset in the PDD group was 9–10 years
in our study.

The underlying mechanisms linking APOE and MAPT
variants to dementia are unclear, however neuropathological
studies suggests that protein aggregation is pivotal in this
association. In our study APOE ε4 was significantly associated
with both Thal Aβ phases and CERAD neuritic plaque scores,
supporting that APOE ε4 exerts its genetic risk on dementia
primarily through Aβ neuropathology. TheMAPT H1 haplotype
was not associated with any neuropathological scores in our
study. Concomitant AD pathology (Aβ plaques and NFT) is
found in variable amounts upon autopsy in PD and PDD brains,
and is more prevalent in PDD compared to PD (17, 43, 44). This
is indeed true for our cases, as neuropathological examination
revealed significantly more advanced Thal Aβ phases, Braak NFT
stages and CERAD neuritic plaque scores in PDD compared to
PD samples.

Several lines of evidence support the role of cortical LB
pathology as the major pathological driver of dementia in PD
(17, 45), and in our study PDD donors had significantly more
advanced Braak α-synuclein stages than PD donors. While it
seems likely that APOE ε4 mediates dementia through an Aβ-
dependent pathway, previous studies have also reported an
effect of APOE ε4 on cognitive outcome and severity of cortical
LB pathology in patients with low concomitant AD-pathology
(46, 47). Corroborating these findings, two recent experimental
studies have shown evidence that APOE ε4 may promote LB
pathology independent of Aβ pathology (48, 49). In our results,
however, the association with dementia was dependent on Aβ, as
the signal was no longer significant when adjusting for Thal Aβ

phase or CERAD neuritic plaque score.
While the presence of tau pathology has been correlated with

reduced time to dementia (50), some evidence also supports that
the MAPT H1-haplotype may influence the cortical LB burden
(51), suggesting MAPT also may promote dementia in more
than one way. This idea was not supported by our data, but
we note that the size of our study provided limited statistical
power to disentangle potentially complex correlations between
genotype and various neuropathologies. We also acknowledge
that although the H1 inversion haplotype on chromosome 17
is commonly named after MAPT, it contains a number of other
genes, and the mechanism driving the association signal for PD
risk has yet to be unequivocally established. Recent evidence
suggest that rather than MAPT, the disease-relevant gene could
be the neighboring KANSL1, which is involved in autophagy
regulation (52).

The clinical diagnosis of PD can be challenging, with a
diagnostic accuracy of 80.6% when pathological examination
is used as the gold standard (53). The strength of this study
lies in the neuropathological confirmation of diagnosis and the
retrospective overview of the clinical disease course from the
patients’ entire lifespan. Some limitations of our study should be
noted. First, clinical information was obtained by retrospective
review of medical records posing a risk for information bias,
in particular regarding approximation of timing of events.
However, the timing of motor symptom onset and dementia
onset observed in this study harmonize well with previous

reports (17, 54). Second, we acknowledge that lack of extensive
neuropsychological evaluation is a limitation. In theory, death
and dementia may be competing events and potentially bias
the estimated effect of genotypes on dementia development.
APOE ε4 has been associated with decreased longevity, but
we observed similar age at death in PD and PDD, and any
theoretical bias from this effect would skew results in the opposite
direction of our findings (55). Further corroboration of the
genetic associations reported here is warranted, preferably in
longitudinal cohorts. Third, given the limited sample size and
statistical power of our study, we narrowly selected only two
candidate loci among several previously reported as associated
with cognition in PD. A broader perspective on the genetic
architecture of PDD would have to consider the contribution
from loci such as SNCA, GBA, COMT and potentially others
(9), and ideally also the possibility of synergistic interactions
between these.

In conclusion, our study adds to the growing evidence
supporting the role for not only APOE ε4 but also the
MAPT H1 haplotype in development of dementia in PD.
Detecting significant associations in a small, but well-
characterized neuropathological sample, we anticipate that
larger genetic association studies of neuropathological
phenotypes will be a fruitful strategy to further disentangle
molecular mechanisms in neurodegenerative disorders.
Ultimately, a better understanding of genotype-phenotype
correlations may facilitate precision medicine in PD,
improving risk prediction and patient stratification for novel
targeted therapies.
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