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Zika has been associated with a variety of severe neurologic manifestations including

meningitis and encephalitis. We hypothesized that it may also cause mild to subclinical

neurocognitive alterations during acute infection or over the long term. In this

observational cohort study, we explored whether Zika cause subclinical or mild

neurocognitive alterations, estimate its frequency and duration, and compare it to other

acute illnesses in a cohort of people with suspected Zika infection, in the region of

Tapachula in Chiapas, Mexico during 2016–2018. We enrolled patients who were at

least 12 years old with suspected Zika virus infection and followed them up for 6

months. During each visit participants underwent a complete clinical exam, including a

screening test for neurocognitive dysfunction (Montreal Cognitive Assessment score). We

enrolled 406 patients [37 with Zika, 73 with dengue and 296 with other acute illnesses

of unidentified origin (AIUO)]. We observed a mild and transient impact over cognitive

functions in patients with Zika, dengue and with other AIUO. The probability of having

an abnormal MoCA score (<26 points) was significantly higher in patients with Zika

and AIUO than in those with dengue. Patients with Zika and AIUO had lower memory
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scores than patients with dengue (Zika vs. Dengue: −0.378, 95% CI−0.678 to −0.078;

p = 0.014: Zika vs. AIUO 0.264, 95% CI 0.059, 0.469; p = 0.012). The low memory

performance in patients with Zika and AIUO accounts for most of the differences in

the overall MoCA score when compared with patients with dengue. Our results show

a decrease in cognitive function during acute illness and provides no evidence to

support the hypothesis that Zika might cause neurocognitive alterations longer than

the period of acute infection or different to other infectious diseases. While effects on

memory or perhaps other cognitive functions over the long term are possible, larger

studies using more refined tools for neurocognitive functioning assessment are needed

to identify these.

Trial Registration: NCT02831699.

Keywords: humans, mental status and dementia tests, communicable diseases, dengue virus infection, memory,

cognition, montreal cognitive assessment, zika virus infection

INTRODUCTION

Zika virus (ZIKV) infection has been associated with severe
neurological disease in adults (1). The most frequently identified
neurological manifestation is Guillain-Barre syndrome (GBS),
which has been estimated to occur in 0.31 to 9.35 per
100,000 people during Zika outbreaks in Latin America and
the Caribbean (2). Zika-associated GBS appears to have unique
pathophysiological and clinical characteristics, such as the
predominance of axonal demyelinating disease and a higher
frequency of atypical varieties such as Miller-Fisher syndrome
and descending paralysis patterns (3, 4). Along with GBS,
ZIKV infection has been associated with other central and
peripheral nervous system disorders including meningitis,
encephalitis, meningoencephalitis, traverse myelitis, radiculitis,
chronic inflammatory demyelinating polyneuropathy, and acute
demyelinating encephalomyelitis, optical neuritis, acute hearing
loss and other cranial, and peripheral nerve neuropathies (3, 5).
ZIKV infect dorsal root ganglion neurons, gastrointestinal tract
neurons, and CNS neural progenitors; induce apoptosis and
downregulates nucleosome-associated genes, thus decreases cell
viability, and enables viral replication (6), which explains neural
tube defects, most notably microcephaly, in children of women
infected during the first trimester of pregnancy (7).

Although experimental models and human studies have
shown that ZIKV has an exquisite affinity for human neural
progenitor cells that might explain pre-natal neural damage
(8), the mechanisms that induce neuronal damage and explains
other neurological manifestations in adults are not clearly
understood. Further, severe manifestations in adults and infants
have received considerable attention given its conspicuousness
and ramifications but it is reasonable to hypothesize that
ZIKV infection may cause subclinical or mild disease, which
might include neurocognitive impairment during acute infection
or over the long term (9–11). In this study, we aimed to
explore whether ZIKV infection may cause subclinical or mild
neurocognitive alterations, estimate its frequency and duration,
and to compare it to other acute illnesses in a cohort of people
with suspected Zika infection in Mexico.

METHODS

Study Design, Study Population and
Settings
We analyzed data from the ZIk01 study (https://www.redmexei.
mx/) which was a prospective, observational cohort that enrolled
patients with probable ZIKV infection and followed them up for
6 months. The study procedures has been described previously
(12, 13). Briefly, participants were assessed at enrollment and
3, 7, 28, and 180 days later. During each visit participants
underwent a complete clinical exam, including a screening test
for neurocognitive dysfunction, a disability assessment, and
complete blood count and clinical chemistry. Blood and urine
samples for viral nucleic acid identification were also drawn.
Participants had their first sample within 7 days after symptoms
onset as recommended by the CDC guidance for Zika (14).

Patients were accrued in four clinical care centers in the city of
Tapachula in the State of Chiapas, in Southern Mexico from June
2016 to July 2018. We decided to enroll up to 600 participants
across three different cohorts (symptomatic people seeking care
for symptoms compatible with Zika, patients with Guillain-
Barre Syndrome, and asymptomatic household contacts of
symptomatic participants) based on convenience and feasibility
given the uncertainty of the number of people that would be
infected when we planned the study. The protocol specified that
separate analyses would be performed for each cohort. This paper
analyses data from the cohort of symptomatic participants. In
this analysis, we included patients who were at least 12 years
old with any two of the following symptoms with onset in the
previous 7 days: rash, elevated body temperature (>37.2◦C),
arthralgia, myalgia, non-purulent conjunctivitis, conjunctival
hyperemia, headache, or malaise; not explained by other medical
diagnosis, based on a modified version of the Pan American
Health Organization case definition (15).

Study Definitions and Procedures
We classified participants as having confirmed ZIKV, or dengue
virus infection if viral RNA was detected in serum or urine
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TABLE 1 | Demographic characteristics of participants at baseline visit by disease

group (N = 406).

Characteristic Patients, No. (%) p-value

Zika Dengue AIUO

n = 37 (9.11) n = 73 (17.98) n = 296 (72.91)

Age, median (IQR) 33 (13) 27 (20) 32 (22.25) 0.003

Female 23 (62.16) 36 (49.32) 187 (63.18) 0.095

Male 14 (37.84) 37 (50.68) 109 (36.82)

Education Level 0.029

Did not go school 2 (5.41) 2 (2.74) 11 (3.72)

Grades 1–6 (Primary) 4 (10.81) 17 (23.39) 34 (11.49)

Grades 7–9 4 (10.81) 14 (19.18) 52 (17.57)

Grades 10–12 9 (24.32) 18 (24.66) 49 (16.55)

University 16 (43.24) 14 (19.18) 117 (39.53)

Postgraduate 2 (5.41) 8 (10.96) 33 (11.15)

Comparisons were made using Kruskall-Wallis for continuous variables and Fisher’s exact

Test for categorical variables.

samples at enrollment or anytime at 3, 7, or 28 days later. Real-
time RT-PCR assays for ZIKV (16), dengue (17), chikungunya
(18), and panflavivirus (19) were performed in blood and
urine samples from baseline visits and 3,7, and 28 days later.
We extracted total nucleic acids from 500 µl of serum and
urine using the NucliSENS R© easyMAG R© system (bioMerieux R©,
Netherlands) and eluted in 55 µl, according to manufacturer
instructions. The amplification of the human RNaseP (RP)
gene was carried out for each sample as an internal control
to demonstrate the presence of RNA and the validation of
the extraction process. The amplification of the NS5 gene
was also carried out for the generic detection of Flavivirus
as another control of ZIKV and Dengue, and to determine
the possible presence of other flaviviruses in the sample.
Amplifications were performed in singleplex (each virus detected
in a separate reaction) by one-step RT-PCR reaction in 25µl with
SuperScript III Platinum One-Step quantitative RT-PCR System
(Invitrogen R©, ThermoFisher Scientific R©, Waltham, MA, USA)
and 5 µl of sample. Cycle sequencing was: retrotranscription
at 50◦C for 30min, initial PCR denaturation at 94◦C for
2min followed by 45 cycles of denaturation at 94◦C for
15 s and annealing and extension at 60◦C for 1min in the
Applied Biosystems 7,500 Fast Real Time PCR System (Applied
Biosystems, ThermoFisher Scientific R©, Waltham, MA, USA).

Patients with no detectable viral RNA were classified as having
an acute illness of unidentified origin (AIUO). We excluded
from the analysis 39 participants who had missing data on at
least two follow up visits and did not have detectable viral RNA
in the available urine or blood samples. We also excluded one
participant with confirmed chikungunya virus infection.

We used the Montreal Cognitive Assessment (MoCA)
screening tool to assess neurocognitive functions. The MoCA
is a one-page test that can be administered in 10min. The
test assesses five domains: (1) memory, (2) visuospatial abilities
and executive functions, (3) attention, (4) language, and (5)

orientation in time and space (20). Each domain is scored
and added for a total score ranging from 0 to 30 points.
The Spanish version of the test has been validated in Mexico
(21) and showed a sensitivity of 80% and specificity of 75%
[Area under the Curve 0,886 (IC95%, 0,826-0,947)] for mild
cognitive impairment using a cutoff of <26 points for abnormal
performance (21). For the secondary analysis, we explored each
domain separately. The MoCA test was originally developed as a
brief tool for primary care physicians to identify elderly patients
which might suffer cognitive impairment but perform within the
normal range of dementia screening tools (20). Still, it has been
used in research settings as a screening tool in younger adults
with sleep disorders (22), heart failure (23), Parkinson’s Disease
(24), Vascular Cognitive Impairment (25), and Systemic Lupus
Erythematosus (26). Moreover, since the MoCA tests evaluates
different domains in cognitive functions, it has also been used to
assess specific areas of dysfunction. In recent studies, it has been
observed that a neuroanatomical correlation between MoCA
scores sub-specific domains and cortical volumes, particularly in
hippocampal area (27).

We assessed disability using the World Health Organization
Disability Assessment Schedule 2.0 (WHODAS 2). The
WHODAS 2 is an instrument designed to provide a cross-
cultural standardized method for measuring activity limitations
and participation restrictions irrespective of the individual’s
medical diagnosis (28).

Ethical Considerations
Study protocol was evaluated and approved by the Institutional
Review Board in all Mexican participating institutions.
Participation was voluntary and documented through a
written informed consent procedure. Participants younger than
18 years were requested their assent and parents or legal tutors
authorized their participation. This study was carried out in
accordance with the ethical standards of the institutional research
committee and with the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards.

Statistical Analysis
We modeled the longitudinal behavior of education-adjusted
MoCA scores across study visits, and compared these results
between disease groups (Zika, dengue, and AIUO), using a
regression model and generalized estimable equations (GEE) to
account for intrasubject correlation using the geepack package
(29) in R (30). We modeled the MoCA score as function of
the indicators for disease group, study visits, education status,
sex and age; allowing for interactions between visit and disease
group, and then dropped non-significant interactions from the
final model. We used contrasts to determine whether there
were differences in MoCA scores at each study visit across
disease groups. In a secondary analysis, the MoCA score was
dichotomized into normal or abnormal (≤26 points), and fitted
a similar model using logistic regression with GEE. We used the
same approach of the continuous MoCA to test time and group
difference for five MoCA domain scores that make up the total
MoCA score. The longitudinal model assumes data is missing
at random. We performed analyses to assess missingness, and a
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TABLE 2 | Distribution and characteristics of baseline, self-reported signs, and symptoms of patients 12 years and older seeking care within 7 days of onset due to acute

episodes of fever and/or rash (N = 406).

Symptoms Confirmed zika infection

(n = 37)

Confirmed dengue infection

(n = 73)

Acute illnesses of

unidentified origin (n = 296)

p-valueb

Fever (>37.2◦ C) 26 (70.3%) 69 (94.5%) 248 (83.8%) 0.0058

Rash (self-reported) 22 (59.5%) 40 (54.8%) 106 (35.8%) 0.0009

Arthralgia 19 (51.4%) 62 (84.9%) 244 (82.4%) 0.0001

Myalgia 28 (75.7%) 61 (83.6%) 243 (82.1%) 0.551

Conjunctivitisa 17 (45.9%) 26 (35.6%) 123 (41.6%) 0.516

Headache 28 (75.7%) 71 (97.3%) 249 (84.1%) 0.0008

Malaise 28 (75.7%) 70 (95.9%) 272 (91.9%) 0.0033

Confusion/Disorientationc 3 (8.3%) 7 (11.3%) 72 (25.3%) 0.0058

Behavior Alterationsc 5 (13.9%) 10 (16.1%) 64 (22.5%) 0.3778

Disabilityd 28.33 (19.165) 40 (24.1675) 33.33 (18.33) 0.0007

aThere was missing data about days of onset of conjunctivitis in two patients with dengue and six patients with undefined fever episodes.
bp-values are unadjusted.
cData available only for 383 participants (36 with ZIKV, 62 with DENV, and 285 with AIUO).
d Disability was assessed using the World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2).

Comparisons were made using Kruskall-Wallis for continuous variables and Fisher’s exact Test for categorical variables.

sensitivity analysis using the last rank carried forward (LRCF)
method (31), to determine the potential impact of missing data
in our final results.

RESULTS

Characteristics of the Study Population
We analyzed information from 406 patients of which 73 had
confirmed dengue, 37 Zika, and 296 had an acute illnesses of
unidentified origin (AIUO). The demographic characteristics of
these patients are summarized in Table 1. Overall, patients with
dengue were younger and predominantly placed in the lower
educations groups (70% with twelve years of school or lower). A
brief description of the main clinical characteristics is shown in
Table 2. Overall, patients with dengue virus infection and AIUO
more frequently presented fever, arthralgia, headache, malaise,
behavior alterations, and disability at baseline than patients with
ZIKV; while rash was more frequent in ZIKV and dengue virus
infection patients compared with those with AIUO.

MoCA Score
When analyzing the MoCA score as a continuous endpoint
we observed that all disease groups (Zika, dengue and AIUO)
followed similar trajectories. While patients with dengue tended
to have higher mean MoCA scores than patients with Zika and
AIUO, these differences were not statistically significant neither
in general nor at any timepoint (see Figure 1). This slightly
higher MoCA score in patients with dengue could be attributed
to better performance in the Memory subdomain for this group
(see below). Overall, there were no significant changes in the
mean MoCA score from baseline to visit at day 7 (−0.06, 95%
CI: −0.35, 0.22 p = 0.68). There was a significant improvement
in the mean MoCA scores between day 7 and 28 (1.10 0.83
1.36, p < 0.001), but no further improvement was observed
between day 28 and 180 (0.01 −0.31 0.32, p = 0.96). Patients
with AIUO as a group, but not those with Zika or dengue, had

a non-statistically significant increase in the mean MoCA scores
from day 28 to day 180, as illustrated in Figure 1. These findings
are consistent with the analysis of the MoCA scores used as a
binary variable, where we estimated the probabilities of having
an abnormal MoCA score (score<26) during follow up. In all
groups, the probability of an abnormal MoCA score decreased
at days 28 and 180 in comparison to measurements at baseline
and day 7 (see Supplementary Table 1). Also, both the Zika and
AIUO groups had increased odds of an abnormal MoCA scores
in comparison with the dengue group (see Table 3).

MoCA Subdomains
When we analyzed and compared separately the MoCA test
subdomains, we observed no overall differences in orientation,
attention, language, and visuospatial and executive functions
across disease groups (Figure 2). During follow-up, the
orientation subdomain score did not change across time
(Figure 2A). The Visuospatial and Executive domain score
increased at each follow up time point up to day 28: baseline to
day 7 [0.192, (0.073, 0.310), p = 0.001], day 7 to day 28 [0.261,
(0.116, 0.360), p < 0.001], and slightly decreased afterwards:
day 28 to 180 [0.277, (0.142, 0.411) p ≤ 0.001], but not to
the level present at baseline [0.279, (0.136, 0.421, p < 0.001)]
(Figure 2B). The attention subdomain score did not significantly
change between baseline and day 7 [0.06, (−0.05, 0.18) P =

0.26], increased from day 7 to day 28 [0.145, (0.04, 0.250), p =

0.007], and remained stable from day 28 to day 180 [0.10 (−0.01,
0.22); P = 0.08] (Figure 2C). There was an earlier decrease in
the language domain score (baseline to day 7 [−0.409, (−0.514,
−0.304), p < 0.001]) and subsequent recuperation from day
7 to 28 [0.460, (0.355, 0.565), p < 0.001], and plateaued from
day 28 to 180 [0.037, (−0.079, 0.153), p = 0.533] ending at a
similar mean score at the end of follow-up than at enrollment
(Figure 2D). In contrast, patients with Zika had a lower memory
score than patients with dengue (−0.378, 95% CI = −0.678
to −0.078; p = 0.014); and patients with dengue had a higher
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FIGURE 1 | Predicted MoCA scores for each disease group and 95% confidence intervals. Covariates set to 33-year-old female with university education for each

disease group. Levels of the adjustment variables were selected to be the most common when categorical and average when continuous. The solid horizonal lines

represent significant changes in the level of the score for time comparisons.

TABLE 3 | Comparisons of the probabilities of having and abnormal MoCA Score

and p-values for the group comparisons using the binary MoCA score (abnormal

<= 26 points).

Estimated Odds (95% CI) p-value

Zika–Dengue 2.58 (1.14–5.81) 0.02

Zika–AIUO 1.20 (0.63–2.27) 0.58

Dengue-AIUO 0.46 (0.27–0.81) 0.01

memory score than patients with AIUO [0.264, (0.059, 0.469); p
= 0.012] (Supplementary Table 2). We observed no differences
between the Zika and AIUO groups [−0.114, (−0.369, 0.144); p
= 0.383]. The difference in the memory subdomain accounted
for most of the magnitude of the difference between dengue and
Zika or AIUO in the overall MoCA score (Figure 3).

Finally, we observed low memory subdomain mean scores at
baseline with no significant changes during the first 7 days. The
memory subdomain score increased from day 7 to day 28 [0.217,
(0.07, 0.364), p= 0.004], and maintained from day 28 to day 180
(Figure 3).

We analyzed missing data patterns among disease groups,
which is described in detail in Supplementary Figure 1. Although

there is significantly more missing data in the AIUO and dengue
groups, there does not appear to be a systematic missingness
pattern with respect to baseline MoCA score and disease group.
So, it is reasonable to accept the assumption that this information
is missing at random.

DISCUSSION

In this study we present a longitudinal assessment of
neurocognitive function, using the MoCA score and its
subdomains, of a group of patients with Zika and compared them
with patients with dengue and acute illnesses of unidentified
origin (AIUO) in the region of Tapachula in Chiapas, Mexico
during 2016-2018. We documented a transient deficit in
cognitive functions in adults infected with Zika, dengue or
AIUO during the first days and up to 28 days after infection with
recovery at 6 months of follow-up. While all groups experienced
this pattern, patients with Zika and AIUO tended to have a
lower overall MoCA score during acute infection and early after
that than patients with dengue, although these differences did
not reach statistical significance. The probability of having an
abnormal MoCA score (<26 points) was significantly higher
in patients with Zika and AIUO than in those with dengue.
The low memory performance in patients with Zika and AIUO

Frontiers in Neurology | www.frontiersin.org 5 March 2021 | Volume 12 | Article 631801

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Belaunzarán-Zamudio et al. Neurocognitive Impact of Zika

FIGURE 2 | Predicted MoCA Domain scores for each disease group and 95% confidence intervals. Covariates set to 33 year-old female with university education for

each disease group. The solid horizonal lines represent significant changes in the level of the domain score between time points. (A) Presents Orientation, (B)

Visuospatial and Executive, (C) Attention, and (D) Language. The solid horizonal lines represent significant changes (p ≤ 0.05) in the score between time-points.

accounts for most of the differences in the overall MoCA
score when compared with patients with dengue. The sixth
month measurements were higher in patients with AIUO and
dengue than in patients with Zika, after adjusting for sex, age
and educational status, but again these differences were not
statistically significant.

Flaviviruses can cause a wide variety of neurological
manifestations (1) including alterations in sensitivity, cognitive
impairment, seizures and personality disorders such as
mania, depression, emotional lability, anxiety, psychosis
and agoraphobia in dengue (32) and encephalitis, myelitis,
confusion and paresthesia in patients with Zika (5). We observed
transient alterations in attention, visuospatial and memory
functions as assessed by the MoCA test in all groups of patients,
suggesting a possible common mechanism of neural damage
instead of specific to each disease. Considering the known

mechanisms of neural damage by flaviviruses, our findings
could be explained by direct viral replication in brain tissue with
subsequent neuronal destruction, immune complex formation or
both (32, 33). It also has been demonstrated that neural damage
may result from the preexistence of cross-reactive antibodies
against flavivirus during ZIKV infection (34–36). Interestingly,
patients with Zika and AIUO had a lower memory score than
patients with dengue during acute infection and this difference
persisted over the 6 months of observation. Animal models
showing Zika virus infection and viral replication in the frontal
cortex and hippocampus associated with synapse damage leading
to memory alterations (37), as well as the presence of ZIKV in
CSF in patients with overt encephalopathy (38) are consistent
with direct damage by ZIKV to adult neurons (39).

Our study has several drawbacks which might limit the
validity of our results. First, it comprises a relatively small group
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FIGURE 3 | Predicted MoCA Memory Domain scores for each disease group and 95% confidence intervals. Covariates set to 33-year-old female with university

education for each disease group. The solid horizonal lines represent significant changes in the level of the domain score between time points. The solid horizonal lines

represent significant changes (p ≤ 0.05) in the score between time-points.

of people with Zika and dengue with most participants in the
AIUO group. The latter might include an heterogenous group
of infections, which limits our ability to have a comparison
group clearly differentiated from Zika, dengue and other
flaviviruses. We reasonably excluded the possibility of a potential
confounding effect of differentiated patterns of missing data due
to loss of follow-up associated with cognitive dysfunction or
disease group, and adjusted for the potential confounding effects
of sex, age and educational status in our model.

While the MoCA screening test is a convenient, widely
used, validated instrument to assess cognitive functions, it was
developed to identify mild cognitive impairment in elderly
patients performing within the normal range of dementia
screening tools. Thus, it might still be poorly sensitive to
milder or subclinical cognitive dysfunction in younger people,
for whom tools to properly assess cognitive functioning might
have been needed. The advantage of the MoCA score is
that despite its limitations, its widespread use in research
settings facilitates comparisons across studies. Finally, the lack
of cerebral neuroimaging studies and cerebrospinal fluid testing,
make it difficult to propose a mechanism for the observed
changes inmemory, visuospatial and attention cognitive domains

in all groups. Even so, our study is one of the first to
explore the impact of Zika on cognitive functions. Our results
show a decrease in cognitive function during acute illness,
it would be interesting to follow up on this finding with
a larger sample size and more refined tools to identify
cognitive impairment.

In conclusion, while Zika is a neurotropic virus that can
produce a constellation of severe neurological manifestations,
few studies have explored its short- and long-term impact in
cognitive function in adult humans. We observed a transient
impact on cognitive functions in patients with Zika, dengue and
with other undefined acute illnesses, particularly in memory,
visuospatial and attention domains. Patients with Zika tended to
have lower MoCA scores at 6 months of follow-up than patients
with AIUO and dengue but this finding has uncertain clinical
significance. Our study provides no clinical evidence to support
the hypothesis that Zika or dengue might cause neurocognitive
alterations persisting longer than the period of acute infection.
While effects on memory or perhaps other cognitive functions
over the long term are possible, larger studies using more refined
tools for neurocognitive functioning assessment are needed to
identify these.
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