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INTRODUCTIVE REMARKS

It is now well-established that wide-awake neurosurgery with electrostimulation mapping is a safe
technique for removing cerebral tumors drastically (1, 2), whilst sparing central, lowly compensable
pieces of the anatomo-functional architecture (3, 4). In the last 10-year period, significant efforts
have been made to implement new behavioral paradigms in the operating theater with the aim
of giving patients the best opportunities to quickly recover after surgery and to resume a normal
socio-professional life. Without being fully exhaustive, this includes tasks probing semantic (5, 6)
and social cognition (7–9), motor (10, 11), and spatial cognition (12, 13), reading (14), and working
memory (15). In turn, neuroscientic knowledge gained from multifunctional electrostimulation
mapping procedures has been accumulating over the years in at least three directions: (i) the
neuroplasticity potential of neurocognitive networks, (ii) the interindividual variability in the
neural implementation of functional systems and (iii), the role of the main white matter tracts
in different forms of cognition [for a review, see Herbet and Duffau (16)]. Overall, this growing
knowledge is vital not only to help neurosurgeons better anticipate the surgery’s functional
outcomes (and thus better improve patient care), but also to continuously refine the way patients
are operated on based upon valid neuroscientific foundations. In this respect, the virtuous circle
that constitute the reciprocal interactions between neurosurgery and cognitive neuroscience (17)
should be considered as the cornerstone on which to orient our decision-making regarding the
ongoing debate on what kind of functions should be monitored on-line during awake procedures
(18). This reflection is fully justified as wide-awake neurosurgery is now proposed much earlier for
oncological purpose, and patients’ survival is considerately longer than a couple of years ago. In this
context, we have to set higher expectations with respect to preserving functions and to maintaining
quality of life. But where to place the cursor for cognitive mapping without losing touch with
the onco-functional balance (i.e. the best trade-off between extent of resection vs. preservation of
functions) (19)? In this opinion article, I give some balanced perspectives on this debate, especially
on the issue whether complex or flexible cognitions and behaviors (e.g., adaptive, multidetermined
cognitions such as contextual decision-making or fast learning) can be reliably mapped given the
network architecture on which they rest.

CAN HIGHLY DISTRIBUTED VS. MODULAR NEURAL SYSTEMS
BE ACTUALLY MAPPED WITH DIRECT ELECTROSTIMULATION?

It is certainly not new to say that the main functional systems of the human brain are
physically rooted in a web of interconnected neurons, which are structured in the form of
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well-organized neural networks (20). These networks, however,
differ significantly in terms of modularity, as a function of the
wide range of more or less complex cognitions and behaviors
they are supposed to underlay (21). It is indeed known that basic
sensorimotor processes are supported by highly modular and
local networks, whereas higher-order but still modality-specific
or domain-specific cognitive functions are rather supported
by distributed networks of cortical areas within which neural
information needs to be integrated locally in each cortical node
forming the network as well as globally between each node of the
network. On a third level, goal-directed and flexible cognitions
(resulting in complex behaviors) rest on the instantiation of
transient and context-sensitive functional meta-systems that
reflect specific patterns of between-network coordination, the
functional integration of which is permitted by cortical hubs with
a high degree of centrality (such as for e.g., the posterior part of
the dorsolateral prefrontal cortex or the posterior dorsal cingulate
cortex) (16, 22). Such highly integrative functioning is probably
essential in the human ability to form new and creative behaviors,
to efficiently perform cognitive-demanding activities, and to
learn complex abilities. For example, learning a simplemotor task
necessitates the engagement of the sensorimotor, the attention,
the visual and the executive networks, the sensori-motor system
becoming sufficient to perform the task when automaticity
is reached after several sessions of training (23). Different
behavioral parameters seems to constrain the recruitment of this
kind of highly distributed processing, in particular the complexity
of the behavior task to be performed (complex materials
necessitates intervention of domain-general networks, such as
of the attention, executive, and working memory networks), the
goal-directed vs. effortless nature of the task and the recruitment
of conscious vs. unconscious processing (24).

Within the hierarchical anatomo-functional architecture
described above (from highly modular to highly distributed
processing) (see Figure 1), I argue that electrostimulation
mapping performs very efficiently to identify and spare
neural systems associated with sensorimotor or modality-
specific/domain-specific functions (e.g., language and semantic
processes, visuo-spatial attention among many others). As a
matter of fact, the rate of lasting and debilitating deficits has
been considerably reduced, leading almost all patients to quickly
resume a normal professional activity even in the event of
incidental discovery (97%) (25). However, electrostimulation
is somewhat limited in its ability to identify higher-order,
complex and flexible cognitions. In my view, this limitation
is mainly due to three reasons. First, flexible cognitions
heavily rely on the resources of multiple large-scale networks
working in synchrony. It thus remains to see the extent to
which short electrostimulations with low intensity might
disturb brain-wide processing and lead to complex behavioral
impairments. We currently know from works combining
electrostimulation mapping and functional connectivity
analyses that positive stimulation sites can be considered
as veritable gateways to domain-specific networks (26, 27),
but the behavioral impact of disrupting cortical areas that
interface with multiple networks is unknown. Some studies
indicate that electrostimulation is able to transiently abolish

aspects of self-awareness or external awareness (5, 28, 29),
but it is unclear whether the physiological basis of these
behavioral impairments is the brain inability to form transient
metasystems. It is possible that the disruption of highly
integrative white matter tracts (i.e., that project in several
lobes such as the inferior fronto-occipital fasciculus) is more
capable of disorganizing the way networks communicate.
Alternatively, as multiple hubs are likely to synchronize
during normal behavior, multi-focal electrostimulations (i.e.,
stimulations performed on two or several cortical hubs at the
same time) might be a way to map more accurately complex
functions. While this approach needs to be explored, it may
be quite difficult to set up in the constraining context of
neurosurgery. Moreover, its potential oncological benefit must
be evaluated.

Second, with the exception of multitasking-like paradigms
(typically, motor execution plus semantic association, or
picture naming) or n-back-like task (strong cognitive load)
the neuropsychological tasks employed in the operating theater
are well-controlled but might be considered as reductionist
because not necessitating strong cognitive requirements. Yet
recent meta-analytic studies indicate that ecological, realistic
(vs. highly controlled, reductionist) behavioral paradigms are
associated with recurrent patterns of functional activations
that overlap with numerous functional networks (sensorimotor,
modality-specific, and domain-general), suggesting that flexible
and complex behaviors triggered by lifelike situations result
from the integration of distinct but cooperating networks (30).
This is not without interest considering that, what we want
ultimately for patients, is to maintain the best level of interactions
with the everyday (including social) environment after surgery.
However, the intraoperative cognitive mapping does not really
accommodate with complex behavioral stimuli due to the
constraints inherent to the surgical procedure (e.g., stimulation
time, positioning constrain, and so one). Some adaptations are
nevertheless possible, in particular varying the complexity of the
materials used. In this situation, the neurocognitive system under
scrutiny is necessarily up-regulated by domain-general networks
(i.e., attention and cognitive control), increasing sensitivity. More
broadly, this raises the question as to how more ecological
but still controlled tasks can be constructed without losing
interpretability (i.e., what is the precise impact of stimulation
on the function probed by the task). This is of course central to
maintaining the validity of cognitive monitoring.

Third, some studies have shown that the efficiency with which
the brain is able to reconfigure its networks as a function of
current cognitive demands is strongly predictive of behavioral
output (31). This important interindividual variability implies
that complex behaviors are likely to be more difficult to map
with electrostimulation.

That said, it remains an open question whether the cognitive
mapping should be pushed forward, keeping in mind the onco-
functional balance. However, it may be not necessary given
the possible high resilience of the distributed systems that
flexible cognitions engage, especially in the context of conditions
known to stimulate neuroplasticity such as slow-growing
tumors (32).
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FIGURE 1 | Hierarchical functioning of the anatomo-functional architecture. Basic sensorimotor processes are performed by low-level, local and highly modular

networks, whereas modality-specific or domain-specific functions are rather underlain by distributed networks. The latter are composed of different cortical epicenters,

the functional integration of which is permitted by anatomical connectivity. At a higher level, complex or flexible cognitions or behavior result from the instantiation of

meta-networks, which consist in specific and unique patterns of cross-network integration transiently generated to reach the task demands. Adapted from Herbet and

Duffau (16) with permission.

ON THE RESILIENCE AND FLEXIBILITY OF
COMPLEX FUNCTIONAL SYSTEMS

Although it is established that the brain reorganizes
over time in response to glioma infiltration (32, 33), the
mechanistic aspects of this reactional plasticity remains poorly
understood. Several patterns of functional remodeling has
been described, including loco-regional, intra-hemispheric and
inter-hemispheric/homotopic reorganization patterns [e.g.,
(34, 35)]. However, the different factors constraining these
dynamic modulations are clearly not understood, even if several
advances have been recently made thanks to serial stimulation
mappings performed in patients with recurrent tumors (36).
In particular, bulky (weakly diffusive) gliomas may favor
peritumoral plasticity whereas widely diffuse tumors may cause
brain-wide reorganization. On the other hand, it is likely that the

more integrated the function is, the more resilient the dedicated
network is, especially when the function is underlain by a
neural system that is distributed in both cerebral hemispheres.
For example, despite the central role of the anterior temporal
structures within the semantic memory network, unilateral
damage of this region in various pathophysiological conditions
(including glioma) does not result in the severe impairments
of semantic representations it might be expected. The current
interpretation is that the absence of strict lateralization increases
the robustness of this functional system, with a central role
of homotopic areas (37). Beyond, it has been shown that
neurocognitive networks resting on associative areas are
especially prone to be functionally compensated (4).

In the context of dynamic metasystems, it is somewhat
expected that damage to cortical hubs established to participate
to between-system coordination may have widespread
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neuropsychological consequences because of their central
position in the anatomo-functional architecture. This is the
case, especially in patients with sudden lesion such as stroke or
traumatic injury. In these patient populations, it is indeed shown
that focal disruption of connector or highly participating hubs
has dramatic effects on both global network dynamics (38) and
the brain’s ability to coordinate its networks (39), leading to
multidomain cognitive impairments (40, 41). In patients with
diffuse low-grade glioma, to the best of my knowledge there
are no well-conducted studies specifically assessing the impact
of the tumor on the brain’s ability to generate meta-networks
and the extent to which this may cause neuropsychological
deficits. However, some works seem to indicate that this is not
the case. For example, in the study by Herbet et al. (42) the
surgical excision of the ventral precuneus/posterior cingulate,
a cortical hub with highly connective properties (43, 44), was
not associated with severe and multidomain impairments,
suggesting that activities of such hubs can be redeployed.
Admittedly, however, longitudinally designed and well powered
studies are needed to confirm it.

CONCLUSION

In this opinion article, my attempt was to fuel the debate
on whether higher-order and complex cognitions can be
appropriately mapped during awake surgery in view of the
flexible and highly distributed neural architecture from which
they emerge. From a network perspective, such functions are
probably difficult (but not impossible) to map with a good
reliability because they necessitate coordination of multiple
networks and are associated with a high-level of inter-individual
behavioral variability. Furthermore, they are more likely to
be easily compensable compared to basic or domain-specific

functions. From a neuro-oncological standpoint, however, no
works have currently assessed in a longitudinal manner if
complex and flexible cognitions/behaviors are impaired following
neurosurgical procedures (knowing that they are not probed
with routine neuropsychological tasks) and if these possible
impairments are disabling in daily life. This is an important point
to assess before we go any further.

Some of the challenges described in this article might
be potentially mitigated by the combined use of other tools
that allow to manipulate more complex materials, outside the
operating theater. From this perspective, navigated transcranial
magnetic stimulation (TMS) may offer good opportunities
to identify the critical cortical structures [and perhaps the
interconnected white matter pathways if diffusion tractography
is combined; e.g., (45)] involved in high-level cognitive or
social processes before the surgery is performed. It may
also help evaluate the functional impact of stimulation (and
possibly of surgical resections) on neural hubs that interface
with multiple networks. To my knowledge, nTMS is to
date only used with (most of the time language) stimuli
which are classically employed during the intraoperative
cognitive monitoring. On the other hand, task-based functional
connectivity MRI may provide critical information on how

efficiently complex networks reorganize in response to tumor
invasion or on how the different networks engaged in a
complex function up-modulate their activities to compensate
the neural loss (46). Determining the physiological markers
of resilient networks is of major importance in adjusting the
surgical procedure.
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