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Background and Purpose: Hospital readmissions impose a substantial burden on

the healthcare system. Reducing readmissions after stroke could lead to improved

quality of care especially since stroke is associated with a high rate of readmission.

The goal of this study is to enhance our understanding of the predictors of 30-day

readmission after ischemic stroke and develop models to identify high-risk individuals

for targeted interventions.

Methods: We used patient-level data from electronic health records (EHR), five machine

learning algorithms (random forest, gradient boosting machine, extreme gradient

boosting–XGBoost, support vector machine, and logistic regression-LR), data-driven

feature selection strategy, and adaptive sampling to develop 15 models of 30-day

readmission after ischemic stroke. We further identified important clinical variables.

Results: We included 3,184 patients with ischemic stroke (mean age: 71 ± 13.90

years, men: 51.06%). Among the 61 clinical variables included in the model, the National

Institutes of Health Stroke Scale score above 24, insert indwelling urinary catheter,

hypercoagulable state, and percutaneous gastrostomy had the highest importance

score. The Model’s AUC (area under the curve) for predicting 30-day readmission was

0.74 (95%CI: 0.64–0.78) with PPV of 0.43 when the XGBoost algorithm was used with

ROSE-sampling. The balance between specificity and sensitivity improved through the

sampling strategy. The best sensitivity was achieved with LR when optimized with feature

selection and ROSE-sampling (AUC: 0.64, sensitivity: 0.53, specificity: 0.69).

Conclusions: Machine learning-based models can be designed to predict 30-day

readmission after stroke using structured data from EHR. Among the algorithms

analyzed, XGBoost with ROSE-sampling had the best performance in terms of AUC

while LR with ROSE-sampling and feature selection had the best sensitivity. Clinical

variables highly associated with 30-day readmission could be targeted for personalized

interventions. Depending on healthcare systems’ resources and criteria, models with

optimized performance metrics can be implemented to improve outcomes.
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INTRODUCTION

Hospital readmissions impose a substantial financial burden,
costing Medicare about $26 billion annually (1). Centers for
Medicare and Medicaid Services (CMS) has made reducing 30-
day readmission rates a national healthcare reform goal (2) as a
way to improve hospital care. Reducing readmissions after stroke
could lead to improved quality of care especially since stroke is
associated with a high rate of readmission (3).

Studies have found that stroke severity (3, 4), being
discharged to skilled nursing, intermediate care facility, hospice,
or left against doctor’s advice (2, 3, 5–7), being enrolled in
Medicaid/Medicare (4, 6, 8, 9), and being married (5) were
associated with higher readmissions. A longer length of hospital
stay was associated with lower readmissions among stroke
patients (5). Heart failure (2, 6, 9), coronary artery disease
(10, 11), and dysphagia (4) were also correlated with stroke
readmissions. Additionally, patients with anemia, dementia,
malnutrition, and diabetes were more likely to be readmitted
within 30-day (2, 5, 6, 9).

However, previous studies [Supplementary Table I (12)]
included a limited number of variables and used logistic
regression which restricts the number of included interactions
among the variables (13, 14), thus limiting the model
performance. Machine learning (ML), more appropriate for
high-dimensional datasets (15, 16), has been successfully applied
for predicting readmissions after heart failure (17–19), heart
attack (20), and other causes of readmissions (21, 22). The
goal of this study was to develop prediction models of 30-
day readmission among patients with ischemic stroke and
identify associated predictors for the development of a more
targeted intervention.

METHODS

Study Population
This study was based on the retrospective analysis of
prospectively collected data from acute ischemic stroke
(AIS) patients at two tertiary centers in Geisinger Health System
between January 1, 2015, and October 7, 2018 (23). The data were
extracted from electronic health records and de-identified. As a
part of the de-identification process, the age of patients older than
89 years old was masked. Patients younger than 18 years of age
were excluded from this study. Patients with transient ischemic
attack were not included in this study due to the high rate of
overdiagnosis (24). The study was reviewed and approved by
the Geisinger Institutional Review Board to meet “Non-human
subject research,” for using de-identified information.

Data Elements
The outcome measure was hospital readmission within 30-
day after discharge among patients with AIS. Independent
variables included patient age, length of stay (LOS), gender,
marital status (married, single, and previously married), and the
National Institutes of Health Stroke Scale (NIHSS). The types
of health insurance at the time of first admission (Medicare,
Medicaid, private, direct employer contract, self-pay, worker

compensation, and other government payers) were also included.
Other variables in this study were six discharge destinations
(discharged to the home health organizations; discharged to
home, court, or against medical advice; discharged to hospice-
home/hospice-medical facility; discharged or transferred to other
facilities; discharged or transferred to Skilled Nursing Facility,
SNF; discharged or transferred to another rehab facility), and
five clinical interventions (intravenous thrombolysis; insert
indwelling urinary catheter; endotracheal tube; percutaneous
gastrostomy; and hemodialysis). In addition, a total of 47
comorbidities were included (see Table 1).

Data Processing, Feature Selection, and
Sampling
Pearson’s correlation coefficient was applied to continuous
variables to identify those with high collinearity. The correlation
matrix between all the predictors along with a list of correlations
above 30 and 50% is provided in Supplementary Figure I and
Supplementary Table II (12), respectively. The complete list
of variables along with their descriptive statistics and level of
missingness was provided in Table 1. Student’s t-test was applied
to identify the significant difference between two groups of
patients (i.e., readmitted and not readmitted) for each predictor
and the test statistics and P-values were reported in Table 1.

Some of the variables were suffering from missing
observations (see Table 1). Imputation, using Multivariate
Imputation by Chained Equations (MICE) package in R (25),
was performed separately on the training and testing sets to
ensure an unbiased evaluation of the final model. For the
variables with high missingness, we performed an assessment
of the distribution of the variable before and after imputation.
We used two sets of variables, set one was the comprehensive
set including all the variables, and set two included variables
selected based on data-driven feature selection, where variables
with high collinearity were removed. We used the random
forest classification algorithm by Boruta package in RStudio
(26) for our data-driven feature selection. Further, to avoid
the poor performance of the minority class compared to the
dominant class, we applied an adaptive sampling strategy, where
we balanced the dataset by applying the Random Over-Sampling
Examples (ROSE) algorithm on the minority class (27). The data
cleaning and preparation were performed in STATA 14.0 (28)
and the analyses were performed using R 3.6.0 (29) in R studio.
Figure 1 shows the processing and modeling pipeline.

Model Development
The de-identified dataset was randomly split into the train set
(80%) and test set (20%). We developed models to predict 30-
day readmission of ischemic stroke using the training dataset
and used ten-fold cross-validation to select the best performing
model. Overall, we built fifteen models – based on five different
algorithms – following three study designs (Design 1, 2, and 3, see
Figure 1). The five algorithms included logistic regression (LR),
random forest (RF), gradient boosting machine (GBM), extreme
gradient boosting (XGBoost), and support vector machines
(SVM). Parameter tuning was performed by an automatic grid
search with ten different values to randomly try for each
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TABLE 1 | Descriptive statistics of variables.

Variables Missing Not Readmitted

(n = 2883)

Readmitted

(n = 301)

t statistics P-value

Age (y), Mean (SD) 12 71.10(13.90) 71.50(12.90) −0.52 0.60

LOSa (d), Median (IQR) 319 3 (1, 76) 4 (1, 24) −4.03 0.00

All gender 12 2873 299 – –

Gender, n (%) Female 1406 (48.80) 155 (51.50) −0.90 0.39

Male 1467 (50.90) 144 (47.80) 1.00 0.31

Total 12 2873 299

Marital Status, n (%) Married 1349 (46.80) 124 (41.20) 1.85 0.06

Single 425 (14.70) 45 (15.00) −010 0.92

Previously married 1099 (38.10) 130 (43.20) −1.72 0.08

0 to above 24 2545 580 59 – –

NIHSS Score, n (%) 0 to 4 330 (11.40) 31 (10.30) 0.60 0.55

5 to 11 150 (5.20) 17 (5.60) −0.33 0.74

12 to 23 75 (2.60) 10 (3.30) −0.74 0.46

Above 24 25 (0.90) 1 (0.30) 0.98 0.33

Total - 291 36 – –

Procedures, n (%) Intravenous thrombolysis 71 (3.00) 2 (0.80) 2.06 0.04

Insert indwelling urinary catheters 3 (0.10) 1 (0.30) −1.07 0.28

Insert endotracheal tube 148 (5.10) 10 (3.30) 1.35 0.17

Percutaneous gastrostomy 42 (1.50) 16 (5.40) −4.81 0.00

Hemodialysis 27 (0.90) 7 (2.30) −2.25 0.02

All centers - 2883 301 – –

Hospital, n (%) GMCb 1784 (61.90) 176 (58.50) 1.08 0.27

GWVc 1099 (38.10) 125 (41.50) −1.16 0.25

Total 492 2418 274 – –

Discharge Status, n (%) Discharged to home health organization 346 (12.00) 37 (12.30) −0.15 0.88

Discharged to home, court, or against

medical advice

902 (31.30) 57 (18.90) 4.46 0.00

Discharged to

hospice-home/hospice-medical facility

82 (2.80) 4 (1.30) 1.54 0.12

Discharged/transferred to other facilities 27 (0.90) 2 (0.70) 0.47 0.63

Discharged/transferred to SNFd 447 (15.50) 91 (30.20) −6.53 0.00

Discharged/transferred to another rehab

facility

614 (21.30) 83 (27.60) −2.51 0.01

Total 51 2836 297 – –

Payer, n (%) Direct employer contract 65 (2.30) 9 (3.00) −0.80 0.42

Medicaid 216 (7.50) 22 (7.30) 0.11 0.91

Medicare 2037 (70.70) 230 (76.40) −2.10 0.03

Other government payers 58 (2.00) 4 (1.30) 0.81 0.41

Private 425 (14.70) 30 (1.00) 2.25 0.02

Self-pay 32 (1.10) 1 (0.30) 1.27 0.20

Workers compensation 3 (0.10) 1 (0.30) −1.06 0.29

Diagnoses, n (%) Anemia - 319 (13.70) 67 (26.40) −5.42 0.00

Atrial fibrillation 691 (29.40) 93 (36.30) −2.29 0.02

Anxiety disorders 328 (14.00) 53 (20.70) −2.90 0.00

Cerebral arterial dissection 23 (1.00) 6 (2.30) −1.98 0.05

Coronary artery disease 684 (29.10) 77 (30.10) −0.32 0.75

Delirium 44 (1.90) 12 (4.70) −2.95 0.00

Dementia 222 (9.50) 35 (13.70) −2.15 0.03

Diabetes 642 (27.50) 86 (33.90) −2.13 0.03

Dysphagia 150 (6.40) 29 (11.30) −2.97 0.00

Heart failure 426 (18.30) 64 (25.20) −2.67 0.00

(Continued)
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TABLE 1 | Continued

Variables Missing Not Readmitted

(n = 2883)

Readmitted

(n = 301)

t statistics P-value

Hypercoagulable state 17 (0.70) 7 (2.70) −3.20 0.00

Hypertension 1308 (56.10) 131 (51.60) 1.38 0.17

Hypotension 55 (2.30) 13 (5.10) −2.61 0.00

Kidney disease 670 (28.50) 101 (39.50) −3.65 0.00

Malignancy 286 (12.20) 47 (18.40) −2.82 0.00

Malnutrition 105 (4.50) 32 (12.50) −5.49 0.00

Migraine 69 (2.90) 13 (5.10) −1.86 0.06

Overweight 58 (2.50) 16 (6.20) −3.46 0.00

Tobacco use 1171 (49.90) 143 (55.90) −1.83 0.07

Venous thrombosis 81 (3.40) 18 (7.00) −2.85 0.00

Acute myocardial infarction 36 (1.50) 9 (3.50) −2.31 0.02

Alcohol use 95 (4.00) 10(3.90) 0.11 0.91

Arrhythmias 99 (4.20) 15 (5.90) −1.22 0.22

Blindness 14 (0.60) 1 (0.40) 0.41 0.68

Cardiac valvular disease 159 (6.80) 22 (8.60) −1.09 0.27

Cardiomyopathy 131 (5.60) 23 (9.00) −2.20 0.03

Cerebral atherosclerosis 93 (4.00) 13 (5.10) −0.86 0.39

Chronic kidney disease 583 (25.00) 89 (35.00) −3.47 0.00

Chronic liver disease 49 (2.10) 2 (0.80) 1.43 0.15

Chronic lung disease 476 (20.30) 69 (27.00) −2.50 0.01

Dysautonomia 16 (0.70) 2 (0.80) −0.18 0.85

Hyperlipidemia 1537 (65.40) 177 (69.10) −1.19 0.23

Intracerebral hemorrhage 521 (22.20) 51 (19.90) 0.83 0.41

Inflammatory disorders 66 (2.80) 5 (2.00) 0.80 0.42

Mood disorders 372 (15.80) 58 (22.70) −2.79 0.00

Non-compliance 107 (4.60) 12 (4.70) −0.09 0.92

Normal weight 44 (1.90) 11 (4.30) −2.56 0.01

Obese 466 (19.80) 62 (24.20) −1.65 0.09

Palliative care on board 254 (10.80) 12 (4.70) 3.08 0.00

Peripheral vascular disease 125 (5.30) 17 (6.60) −0.88 0.38

Respiratory failure 164 (7.00) 19 (7.40) −0.26 0.79

Seizure disorders 96 (4.10) 15 (5.90) −1.33 0.18

Sleep apnea 216 (9.20) 25 (9.80) −0.30 0.76

Systemic infection 63 (2.70) 16 (6.20) −3.17 0.00

Thyroid disease 445 (18.90) 54 (21.10) −0.83 0.41

Underweight 34 (1.40) 9 (3.50) −2.47 0.01

Use of steroids 72 (3.10) 11 (4.30) −1.06 0.29

Year, Median (IQR) – 2016 (2015, 2018) 2016 (2015, 2018) −0.36 0.72

a, length of stay; b, geisinger medical center, c, Geisinger wyoming valley, d , skilled nursing facility.

algorithm parameter. All the hyperparameter evaluation and

model development were performed using the Caret package in

R Studio (30). We ran the SVM with and without normalization

of the dataset. In normalization, we scaled the data to calculate
the standard deviation for an attribute and divided each value by
that standard deviation. Then we centered the data to calculate
the mean for an attribute and subtracted it from each value. The
performance measures of the models were evaluated using the
20% test set. To compare the performance of the applied models,
we calculated the area under the receiver operating characteristic
curve (AUC). We also used other performance measures such

as sensitivity or recall, specificity, and positive predictive value
(PPV) as well as training time.

RESULTS

Study Design and Population
Characteristics
A total number of 3,184 AIS patients [1,960 patients from
Geisinger Medical Center (GMC) and 1,224 from Geisinger
Wyoming Valley Medical Center (GWV)] were included in
this study.
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FIGURE 1 | Data processing flowchart.

Among 3,184 patients with ischemic stroke, 301(9.40%)
were readmitted within 30-day. The train set and test set
included 2,548 (80%) and 636 (20%) patient-level observations,
respectively. In Table 1, the patients were compared based on
diverse characteristics including demographic characteristics,
medical history prior to the ischemic stroke event, and stroke
severity using the NIHSS score. Continuous variables were
presented as mean and standard deviation and as median with
interquartile range (IQR). The average age of patients was 71
(interquartile range, IQR: 18–89) and 1,611(50.60%) patients
were men. There was a significant difference between patients
who were readmitted and those who were not in terms of
median LOS, being married or previously married, discharged
to SNF or against medical advice, and having Medicare or
private insurance.

Models Can Be Trained to Predict 30-Day
Readmission Using EHR
The performance metrics—AUC and its 95% confidence interval
(CI), sensitivity, specificity, PPV, and the training time —for
all the 15 models with and without ROSE-sampling (Design
2, and 1), and with feature selection and ROSE-sampling
(Design 3) were reported in Table 2. The CIs for the test
sets were calculated using bootstrapping. We also provided the
confusion matrices of all 15 models in Supplementary Table V.
The results showed that applying ROSE for addressing class
imbalance during the model training improved the AUC, PPV,
and specificity of models during the testing phase. However,
feature selection did not improve the results [see Table 2,

and Supplementary Figures II, III (12)]. Feature selection
was performed using the Boruta package which reduced the
number of features from 52 to 14 [see green variables in
Supplementary Figure IV (12)]. These 14 attributes were used
in the third design while all features were included in the
other designs.

The ROC curves for LR, RF, GBM, XGBoost, and SVM
without feature selection and sampling (Design 1) and with
ROSE-sampling (Design 2) were shown in the top and
bottom side of Figure 2 accordingly. In the absence of
sampling and feature selection, GBM provided the highest
AUC (0.68), specificity (0.95), and PPV (0.33) when compared
to the other models (Figure 2 and Table 2). However, the
best AUC (0.74), PPV (0.43), and specificity (0.98) were
reached when ROSE-sampling was applied. The optimal model
parameters for ROSE-sampled XGBoost were max-depth =

4, subsample = 0.50, colsample_bytree = 0.80, gamma = 0,
and min_child_weight = 10. In terms of AUC, specificity, and
PPV, the LR in Design 2 had poor performance compared
to XGBoost and GBM models. However, LR with feature
selection and ROSE-sampling (Design 3) provided the highest
sensitivity (0.53) relative to other models. We also performed
SVM with normalized data and the results are provided
in Supplementary Table IV.

The training times for LR, RF, and GBM were faster when
compared to models based on XGBoost and SVM (see Table 2).
The model training was performed using MacBook Pro14,2, four
thunderbolt 3 ports with 3.1 GHz Dual-Core Intel Core i5, and 8
GB memory. Overall, the addition of the sampling step increased
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TABLE 2 | Performance metrics for machine learning models.

Train set Test set

Method AUC Training Time (s) AUC 95% CI for AUC Sensitivity Specificity PPV

No feature selection and sampling (Design 1)

LR 0.76 3 0.60 (0.52, 0.67) 0.32 0.86 0.19

RF 0.82 42 0.57 (0.50, 0.64) 0.09 0.93 0.12

GBM 0.70 48 0.68 (0.52, 0.76) 0.23 0.95 0.33

XGBoost 0.76 1,752 0.62 (0.56, 0.69) 0.30 0.88 0.21

SVM 0.98 990 0.62 (0.56, 0.70) 0.30 0.86 0.18

With ROSE-sampling (Design 2)

LR 0.74 3 0.63 (0.55, 0.70) 0.38 0.72 0.12

RF 0.74 33 0.67 (0.51, 0.76) 0.09 0.97 0.26

GBM 0.74 48 0.70 (0.61, 0.75) 0.09 0.98 0.45

XGBoost 0.76 2,340 0.74 (0.64, 0.78) 0.20 0.98 0.43

SVM 0.83 1,689 0.67 (0.59, 0.74) 0.38 0.89 0.27

With feature selection and ROSE-sampling (Design 3)

LR 0.70 3 0.64 (0.56, 0.72) 0.53 0.69 0.15

RF 0.70 12 0.65 (0.56, 0.70) 0.30 0.89 0.24

GBM 0.69 30 0.66 (0.58, 0.74) 0.17 0.95 0.26

XGBoost 0.70 2,130 0.65 (0.56, 0.73) 0.17 0.95 0.27

SVM 0.72 960 0.64 (0.56, 0.72) 0.42 0.77 0.16

FIGURE 2 | ROC curves for machine learning models with (bottom) and without (top) ROSE-sampling. GBM, gradient boosting machine; XGBoost, extreme gradient

boosting; SVM, support vector machines; RF, random forest; and GLM, generalized linear model with logit link which is logistic regression in our study.

the training time, while having fewer features resulted in faster
training as expected.

NIHSS, Insert Indwelling Urinary Catheter,
Hypercoagulable State, and Percutaneous
Gastrostomy Are the Top Predictors of
30-Day Readmission
Using XGBoost in Design 2, the best predictive model, we
identified the most important predictors of 30-day readmission.

According to the variable importance scores for XGBoost in
Design 2 (Table 3), the top 10 predictors of 30-day readmission
were NIHSS above 24, insert indwelling urinary catheter,
hypercoagulable state, percutaneous gastrostomy, using workers
compensation as insurance, hemodialysis, overweight, cerebral
arterial dissection, malnutrition, intravenous thrombolysis, and
venous thrombosis.

We also reported the result of LR in the third design.
In the latter, the multicollinearity was addressed by feature
selection (Table 4). The odds ratios (OR), log odds, 95% CI,

Frontiers in Neurology | www.frontiersin.org 6 March 2021 | Volume 12 | Article 638267

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Darabi et al. Machine Learning for 30-Day Readmission

TABLE 3 | Variable importance scores of the XGBoost model with

ROSE-sampling (Design 2).

No. Variable Importance

Score

(out of 100)

1 NIHSS above 24 100.00

2 Insert Indwelling Urinary Catheter 89.94

3 Hypercoagulable State 61.95

4 Percutaneous Gastrostomy 40.04

5 Payer Workers Compensation 37.78

6 Hemodialysis 35.13

7 Overweight 33.35

8 Cerebral Arterial Dissection 30.61

9 Malnutrition 25.74

10 intravenous thrombolysis 24.15

11 Venous Thrombosis 22.94

12 Discharged to Hospice-Home or Hospice-Medical Facility 17.15

13 Palliative Care on Board 14.92

14 Delirium 14.54

15 Payer Self-Pay 14.42

and P-values were reported in this table. This analysis revealed
that being discharged to SNF, malignancy, and malnutrition were
significantly associated with stroke readmission within 30-day (p-
value< 0.0001). Also, being discharged to a rehabilitation facility
and stroke severity above twelve were significantly associated
with 30-day readmission at 0.001 significance level.

DISCUSSION

We have taken a comprehensive approach to identify and
prioritize factors associated with 30-day readmissions after
ischemic stroke. We aimed to find the most effective predictive
model by comparing the results of different ML techniques and
LR. There have been multiple readmission studies that developed
predictive models for the chances of 30-day readmission in stroke
patients. However, most of these models used LR (31) which
limits the inclusion of higher-order interactions among variables
and does not perform well in the presence of collinearity.
Also, many studies considered readmission after 90 days or
1 year as a dependent variable which is a long follow-up
period, as CMS penalizes healthcare systems for readmission
under 30 days. In this study, we addressed these gaps and
improved the prediction performance of readmissions in stroke
patients using a wide range of potential risk factors and the
proper ML techniques. Our results show that depending on the
resources and criteria of healthcare systems, a predictive model
with optimized performance metrics can be used to improve
decision making.

Machine Learning-Based Models Can Be
Trained to Predict 30-Day Readmission
The results of this study indicate that ML-based models can
be designed to predict 30-day readmission after stroke using

TABLE 4 | Logistic regression results for predictors of 30-day readmission in

ischemic stroke patients (Design 3).

Variables OR Log

Odds

95% CI

(2.5%, 97.5%)

P-value

(Intercept) 0.25 −1.39 −2.55 −0.30 0.01

Age 0.99 −0.01 −0.03 0.00 0.07

Discharged to home health

organization

1.61 0.47 −0.01 0.94 0.05

Discharged to hospice-home or

hospice-medical facility

0.44 −0.83 −2.04 0.28 0.16

Discharged/transferred to other

facilities

0.49 −0.70 −2.62 0.66 0.38

Discharged/transferred to another

rehab facility

1.79 0.58 0.17 0.99 0.01

Discharged/transferred to SNF 2.77 1.02 0.56 1.48 0.00

Medicaid 0.41 −0.89 −1.79 0.07 0.06

Medicare 0.57 −0.55 −1.31 0.30 0.17

Other government payers 0.39 −0.93 −2.33 0.32 0.16

Private insurance 0.40 −0.91 −1.75 −0.00 0.04

Self-pay 0.29 −1.23 −4.21 0.59 0.27

Workers compensation 1.82 0.60 −2.59 3.04 0.65

Chronic kidney disease 1.28 0.24 −0.36 0.89 0.44

Hypercoagulable state 3.09 1.13 0.18 1.99 0.01

Kidney disease 1.15 0.14 −0.49 0.72 0.65

Malignancy 2.10 0.74 0.37 1.09 0.00

Malnutrition 2.51 0.92 0.39 1.42 0.00

Palliative care on board 1.13 0.13 −0.73 0.90 0.76

Respiratory failure 0.74 −0.30 −1.06 0.39 0.41

Underweight 1.00 0.00 −1.01 0.91 0.99

Insert endotracheal tube 0.86 −0.15 −1.11 0.74 0.76

Percutaneous gastrostomy 1.39 0.33 −0.51 1.09 0.42

NIHSS 12 to 23 1.76 0.57 0.14 0.99 0.01

NIHSS 5 to 11 0.65 −0.43 −0.79 −0.08 0.02

NIHSS above 24 0.17 −1.77 −3.25 −0.65 0.01

structured data from EHR. ML algorithms can include higher-
order interactions among variables, handle multicollinearity, and
improve readmission predictions when applied to large and high-
dimensional datasets (15). This study was the first in predicting
the associated variables of 30-day ischemic stroke readmission
using ML techniques. Our findings indicated that the best
performance in terms of AUC, specificity, and PPV was obtained
when XGBoost was used with ROSE-sampling.

Past studies that used ML techniques to improve the
prediction power, either performed their analysis on readmission
more than 30-day or studied other causes of readmission such as
heart failure (17, 18, 21). However, our best performing model
(XGBoost in Design 2) provides higher AUC and PPV compared
to these studies [See Supplementary Table III (12)].

Clinical Features Highly Associated With
30-Day Readmission
The results of our best performing model (XGBoost in Design
2) showed that NIHSS score above 24, insert indwelling urinary
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catheter, hypercoagulable state, percutaneous gastrostomy, and
insurance type are among factors with the highest importance.
The common significant predictors of the 30-day readmission in
both XGBoost in Design 2 and LR in Design 3 included NIHSS
score above 24, hypercoagulable state, and malnutrition. Since
NIHSS is an important variable and this variable also suffered
from high missingness, we assessed its distribution before and
after imputation for both train and test sets. Our results
corroborate that the distribution of this variable remains the
same after applying imputation (see Supplementary Table VI,
Supplementary Figures V, VI).

Additionally, malignancy, NIHSS scores between 5 and 23,
private insurance type, and being discharged to a rehabilitation
facility or SNF were only significant in the LR, and they
had low importance scores in the XGBoost model. Among all
variables, stroke severity and malnutrition were found significant
predictors of 30-day readmission in ischemic stroke patients in
past studies and our results corroborated the previous findings
(2–6, 9).

It has been shown in previous studies that heart failure and
being Medicare or Medicaid user were significantly correlated
with 30-day readmission (2, 4, 6, 8, 9). However, we found no
evidence in favor of these assertions. Past studies provided mixed
results on the importance of age, hypertension, and gender; some
studies found that patients of older age were more likely to
be readmitted (2, 5) while others showed that age was not a
significant predictor (3, 32). Also, hypertension was found as a
significant risk factor of readmission in a study (8) while in other
works authors claimed that hypertension was not significantly
associated with 30-day readmission (13, 32). Several studies
conducted on data from Taipei, China, and Western Australia
found that gender of patients was not significantly associated
with the chances of being readmitted (3, 5, 32); however, studies
based on U.S. data have found women were significantly at
higher risk of readmission (2, 8, 13). The results of the ROSE-
sampled XGBoost model indicated that age, hypertension, and
gender–in this specific cohort–were not significantly associated
with 30-day readmission after ischemic stroke. We have also
performed a detailed analysis of our Geisinger cohort and
identified that sex was not an independent risk factor for all-
cause mortality and ischemic stroke recurrence (33). Finally, the
identification of malnutrition provides potential new venues to
improve secondary prevention and outcome (34).

Model Performance Metrics Optimized
Based on the Target Goals
According to our results, the best performing predictive model,
which was ROSE-sampled XGBoost, had a 17.5% improvement
in AUC compared to LR. This XGBoost performed better in
comparison with other models of 30-day readmission in the
literature (17, 18, 21). We improved the AUC up to 0.74 (95%
CI: 0.64, 0.78) for the test set with 0.43 PPV (see Design 2
in Table 2). In the absence of sampling and feature selection,
GBM returned very close AUC for the training and testing sets,
corroborating that the models did not suffer from overfitting
(Design 1 in Table 2). XGBoost and GBM with ROSE-sampling

achieved comparable AUC for the testing and training sets,
confirming that these models did not suffer from overfitting
(Design 2 in Table 2). However, the SVM-based models had the
largest difference between testing and training AUC, leading to
the possibility of overfitting given this dataset. Overall, ML-based
models such as GBM and XGBoost improved the prediction of
30-day readmission in stroke patients compared to traditional
LR [see Table 2, Supplementary Figures II, III (12)]. However,
LR with feature selection and ROSE-sampling provided the best
sensitivity which implies that healthcare systems can choose their
decision models based on their resources and criteria.

LIMITATIONS

One of the important strengths of this study was that we analyzed
a diverse list of potential predictors including an extensive
number of clinical interventions and patient’s comorbidities. To
the best of our knowledge, this was the first attempt to apply
ML techniques to predict the 30-day readmission for ischemic
stroke patients. Considering a large number of included variables
in our dataset, these ML techniques could include higher-order
interactions among variables, and improve the prediction power
when compared to LR.

Our analysis had several limitations. Although our dataset
was rich in the number of variables, the number of patients was
relatively small compared to the included independent variables.
Therefore, the small number of observations might result in
overfitting in the models. However, comparable AUC measures
provided by XGBoost for the testing and training sets rule out the
possibility of overfitting in this model. Another limitation of this
work was missing data specifically for the NIHSS score. The most
missing data points belonged to the NIHSS score before 2016
and we applied imputation to not lose any observation or cause
sampling bias. Additionally, due to the unique demographic
characteristics of this dataset (the majority of patients were white
and from non-urban areas), the results may not be generalizable
to other health systems.

FUTURE DIRECTIONS

In this study, we only considered ischemic stroke as the cause
of readmission. Therefore, future avenues of research can be
done by considering other stroke types and subtypes. However,
considering the size of our dataset which came from two
health centers from central Pennsylvania, further work needs
to focus on a larger population with diverse demographics to
introduce a generalizable model. Additionally, to improve the
prediction power, future studies may include the application of
deep learning techniques (35) as well as the integration of features
from unstructured sources such as clinical notes and imaging
reports. Finally, improvement in parameter optimization, by
using sensitivity analysis (SA)-based approaches (36, 37) and
improving the imputation for laboratory values for EHR-mining
(38) can lead to an improvement in outcome prediction models
using administrative datasets. These strategies will help in model
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generalizability, improve patient representation, and reduce
algorithmic bias.

CONCLUSION

Our results showed that machine learning-based predictive
models perform better than traditional logistic regression,
enabling the inclusion of a more comprehensive set of variables
into the model. The insights from this work can assist with
the identification of ischemic stroke patients who are at higher
risk of readmission for more targeted preventive strategies.
Our study also indicated the importance of including multiple
performance metrics for empowering the healthcare system to
choose a predictive model for implementation as an assistive
decision support tool into their EHR based on their resources
and criteria.
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