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Accurately identifying epileptogenic zone (EZ) using high-frequency oscillations (HFOs)

is a challenge that must be mastered to transfer HFOs into clinical use. We analyzed

the ability of a convolutional neural network (CNN) model to distinguish EZ and non-EZ

HFOs. Nineteen medically intractable epilepsy patients with good surgical outcomes 2

years after surgery were studied. Five-minute interictal intracranial electroencephalogram

epochs of slow-wave sleep were selected randomly. Then 5 s segments of ripples (80–

200Hz) and fast ripples (FRs, 200–500Hz) were detected automatically. The EZs and

non-EZs were identified using the surgery resection range. We innovatively converted

all epochs into four types of images using two scales: original waveforms, filtered

waveforms, wavelet spectrum images, and smoothed pseudo Wigner–Ville distribution

(SPWVD) spectrum images. Two scales were fixed and fitted scales. We then used a CNN

model to classify the HFOs into EZ and non-EZ categories. As a result, 7,000 epochs

of ripples and 2,000 epochs of FRs were randomly selected from the EZ and non-EZ

data for analysis. Our CNN model can distinguish EZ and non-EZ HFOs successfully.

Except for original ripple waveforms, the results from CNN models that are trained using

fixed-scale images are significantly better than those from models trained using fitted-

scale images (p < 0.05). Of the four fixed-scale transformations, the CNN based on

the adjusted SPWVD (ASPWVD) produced the best accuracies (80.89 ± 1.43% and

77.85 ± 1.61% for ripples and FRs, respectively, p < 0.05). The CNN using ASPWVD

transformation images is an effective deep learning method that can be used to classify

EZ and non-EZ HFOs.

Keywords: high frequency oscillations, epileptogenic zone, convolutional neural network, adjusted smoothed

pseudo Wigner–Ville distribution, refractory focal epilepsy
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INTRODUCTION

Pathological high frequency oscillations (HFOs) have been
proposed as a promising biomarker for the epileptogenic zone
(EZ) (1). They are defined as four continuous oscillations within
the 80–500Hz range whose amplitudes are significantly higher
than the baseline. They are commonly divided into ripples (80–
200Hz) and fast ripples (FRs, 200–500Hz) (2). Resection of
areas with high HFO occurrence ratios is associated with good
surgical outcomes (3). In addition, there is an ongoing multi-
center study that compares the clinical values of interictal HFOs
with the epileptogenicity index and interictal/preictal functional
connectivity alterations for surgical decision making in patients
with focal cortical dysplasia (4). HFOs (especially ripples) can be
recorded both inside and outside the seizure onset zone (SOZ)
or EZ (5, 6). HFOs located in the hippocampus, sensorimotor
cortex, or occipital lobe may be related to physiological activities
(7, 8) such as memory consolidation (9) or visual perceptual
learning (10). The existence of physiological HFOs influence
the accuracy to identify EZs using HFOs in some brain areas.
In addition, FRs outside the EZ disappear concurrently after
resection of FRs inside the EZ in patients with good surgical
outcomes. This indicates the presence of an epileptogenic
network (11). Our previous retrospective study also found that
not all of the brain tissues that produce HFOs need to be
removed completely for good surgical outcomes (12). Therefore,
subsequent studies focus on further development of novel
methods to classify EZ and non-EZ HFOs to delineate the EZ
range accurately.

Deep learning is a type of algorithm that automatically
establishes rules for classifying data and uses these rules to predict
unknown data (13). These algorithms involve probability theory,
statistics, approximation theory, convex analysis, algorithmic
complexity theory, etc. They are developed using artificial neural
networks, which form abstract high-level features by combining

FIGURE 1 | Architecture of the convolutional neural network (CNN) model. The CNN model consists of input, convolutional, batch normalization, max pooling, fully

connected, dropout, and softmax layers.

low-level features to discover distributed feature representations
in data. Deep learning has been applied to image recognition,
speech recognition, brain circuits reconstructing, and many
other areas of scientific research (13). It uses various structures
such as deep confidence networks (DBNs) and convolutional
neural networks (CNNs), that can express a variety of data
with different relations between dimensions. CNNs have been
applied to electrophysiological data analysis. They perform well
in decoding of task-related electroencephalogram (EEG) data and
classification of EEG signals in various brain–computer interface
tasks (14–16). Furthermore, CNNs have been implemented for
automatic HFOs detection (17–19). However, the use of CNNs
to differentiating EZ and non-EZ HFOs has not been studied.
Therefore, this retrospective study used a multi-feature CNN
model to perform deep learning of EZ and non-EZ HFO
characteristics and established a corresponding mathematical
classification model to assist in surgical decision making.

MATERIALS AND METHODS

Patient Population
The patient inclusion criteria consisted of the following: (1)
intractable epilepsy patients that were addressed via EZ removal
surgery at the Epilepsy Centre of Beijing Haidian Hospital
between January 2013 and December 2015; (2) implantation
of subdural grids or depth electrodes followed by intracranial
EEG monitoring with video at a sampling rate of 2,000Hz for
at least one entire night; and (3) at least 2 years of patient
follow-up after surgery to confirm an Engel I surgical outcome.
Patients with serious EEG artifacts or a lack of surgical data
were excluded.

Patients over 18 years of age and the legal guardian or next
of kin for those under 18 gave informed consent in agreement
with the requirements dictated by the Research Ethics Board of
Beijing Haidian Hospital. Patients were still under antiepileptic
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drug therapy at the time of the recording. However, the drug
dosesmight have been tapered in some patients to induce seizures
so that the SOZ could be identified.

Electrode Placement and Intracranial
Electroencephalogram Recording
Several types of electrodes were implanted in putative
epileptogenic areas based on previous non-invasive pre-surgical
evaluations. A combination of cortical strips, grid electrodes
(contact diameter 4mm with 2.5mm of exposure and 10mm
of spacing between contact centers; Beijing Huakehengsheng
Healthcare Co., Ltd., Beijing, China), and mesiotemporal depth
electrodes (1.2mm diameter, eight 2 mm-long contacts, 10mm
between contacts; Beijing Huakehengsheng Healthcare Co.,
Ltd., Beijing, China) were implanted. Preimplantation magnetic
resonance imaging (MRI) and post-implantation computer
tomography (CT) scans were used to locate each contact
anatomically along the electrode trajectory.

Data were recorded starting on the day after electrode
implantation. Data for HFO analysis were acquired at 2,000Hz
using a 32- or 256-channel Nicolet recording system (Natus
Medical Incorporated, San Carlos, CA, United States). The
recordings were performed in a monitoring unit that was under
video surveillance.

Delineation of Epileptogenic Zone and
Non-epileptogenic Zone
The EZ was identified by neurologists and neurosurgeons
based on long-term intracranial EEG monitoring. The resected
channels were confirmed by comparing the fusion of pre-surgical
MRI and CT with post-surgical MRI. EZ was defined as the
area of the cortex that generates seizures, and which should be
removed to make the patient seizure-free. In this study, all of
the included patients had Engel I surgical outcomes at least 2
years after surgery. Therefore, we considered the tissues that
were resected to be the EZ and the non-resected areas to be
non-EZ tissues. All electrodes in EZ and non-EZ were included
for analysis.

Data Selection and High-Frequency
Oscillations Detection
We chose a slow-wave sleep segment as this period includes
less muscle activity and more HFOs than other periods. We
used the same method as several previous studies (12, 20).
We then selected a random 5min segment during the slow
wave sleep period of each patient. All data were selected from
interictal periods that occurred at least 2 h from a seizure. Data
with artifacts or noise such as sharp transients with absolute
amplitudes >6 standard deviations (SD) from the baseline mean
amplitude or irregular signals, were not selected. The data
were transformed into a bipolar montage for further analysis.
Our preliminary algorithm automatically detected HFOs based
on maximum peak points (12, 21). “False HFOs” that were
probably caused by filtering of spikes or sharp transients were
automatically deleted. Because ripples and FRs have different
generation mechanisms and electrophysiological characteristics,

the algorithm was designed to analyze the two types of HFOs
separately. We defined ripples as any eight consecutive peak
points with absolute amplitudes >3.5 SD from the baseline mean
amplitude, of which six peak points were more than nine SD
above the baseline mean amplitude. FRs were identified as any
eight consecutive peak points with absolute amplitudes >3 SD
above the baseline mean amplitude, of which four peak points
were more than 10.5 SD above the baseline mean amplitude.
After HFO detection, 5 s original EEG epochs centered on the
HFOs were automatically extracted. The epochs were categorized
as EZ or non-EZ HFOs according to the resection scope. Before
deep learning, the same number of ripples or FRs epochs were
selected randomly from the EZ and non-EZ data from all
patients. Of these, 70% were made the training dataset, 15% were
used in the validation dataset, and 15% became the test dataset.
The training and validation datasets were used to train and adjust
the parameters, whereas the test dataset was used to test the
network accuracy.

Classification of High-Frequency
Oscillations Using Convolutional Neural
Networks
CNN represents a common deep learning method with relatively
few parameters and good performance (22, 23). Therefore, we
chose this type of deep learning structure for data classification.
The network structure is shown in Figure 1. Our CNN model
consisted of input, convolutional, batch normalization, max
pooling, fully-connected, dropout, and softmax layers. For
ripples, the original images were 200 × 120 × 1 pixel. For FRs,
the original images were 400 × 300 × 1 pixel. Then we used
bicubic interpolation method to resize images to 96 × 96 × 1
pixel for use as input data (“imresize” function in Matlab 2019b).
The training images used in this study included four types of
transformations. The EZ and non-EZ HFOs were defined as “0”
and “1,” respectively. Three sets of convolution and max pooling
layers were adopted to improve the classification accuracy.
Since the Rectified Linear Unit (ReLU) function has good non-
linear mapping characteristics, it was adopted uniformly as the
transformation function. The rate of initial learning during
network training, was set to 0.01. The validation and test data
sets were also converted into 96 × 96 × 1 pixel images and
used as input to the trained network. The final test data outputs
were again labeled “0” or “1” to distinguish the classification
results. Then, the actual and output labels were compared. The
identification was correct if the test data actual and output labels
matched. Otherwise, it was wrong. Finally, this process was
performed for 100 rounds to measure the stabilizing effect of the
network and determine the classification accuracy.

Our null hypothesis was that the classification is random. This
null hypothesis could be rejected when the accuracy of the CNN
network to classify EZ and non-EZ HFOs is higher than 50%.

Electroencephalogram Feature
Transformation
Because the EEG data were one-dimensional, they could not
be input directly to the CNN. Transformation of the EEG data
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FIGURE 2 | The smoothed pseudo Wigner–Ville distribution (SPWVD). (A) The original waveform of a 400ms epoch. (B) Left: the first normalization of the SPWVD

transformation (0–500Hz). In this figure, all of the SPWVD transformation values are normalized by dividing all time points by the maximum SPWVD value. The

normalized value (Ŵtf ) is the SPWVD index. Middle: Re-normalized SPWVD. The Ŵtf in the left is re-normalized by dividing all time points in each HFO by the

maximum SPWVD index in all frequencies. Right: Adjusted SPWVD (ASPWVD). The Ŵtf in the left were adjusted by dividing all HFOs time points by the median

maximum SPWVD index. (C) Curve C for re-normalized SPWVD. This is curve C for this epoch from 80 to 500Hz. The small rectangle in the figure is the enlargement

of curve C for FR (200–500Hz). (D) Curve C for the ASPWVD. This is curve C with the median maximum SPWVD index for all epochs from 80 to 500Hz. The small

rectangle in the figure is the enlargement of curve C for FR (200–500Hz). (E) Ripple (80–200Hz) SPWVD spectrum images. Left: the first normalization of the SPWVD

spectrum image. Middle: Re-normalized SPWVD spectrum image. Right: the ASPWVD spectrum image. (F) FR (200–500Hz) SPWVD spectrum image. Left: the first

normalization of SPWVD spectrum image. Middle: Re-normalized SPWVD spectrum image. Right: the ASPWVD spectrum image. (E,F) indicate that the ASPWVD

spectrum image provides higher time frequency resolution and less noise than the re-normalized SPWVD.
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TABLE 1 | Demographics and clinical characteristics.

ID Gender Age, years MRI Implantation sites Removed sites

1 Male 16 L HS L T, L LF, L H, L A L AT, L partial H, L A

2 Male 33 Abnormal signal in R F R MFG, R PreG, R PosG, R

SFG, R Pos T, R P O

R Pos T, R P O

3 Female 25 Old bleeding foci

in L P O

L F T, L T P L P, L Wernicke zone

4 Female 14 Normal L SFG, L MFG, L IFG, L M F, L T,

L H

L SFG, L MFG, L IFG, L

M F

5 Male 12 Abnormal signal in L F,

L P cortex

L Lat F, L B F, L T, L I L Lat F, L B F

6 Female 24 Normal L M F, L SFG, L PreG, L P, L B F,

L Lat F, L F, L M F

L M F, L SFG, L Pos T,

L P

7 Male 11 Bilateral HS R P, R O, R P O, R P, R O

8 Male 35 Normal R F, R SFG, R B F, R T, RH, R A R F, R SFG, R B F, R

AT, R H, R A

9 Female 42 R HS, bilateral CA R T, R F P, bilateral H, bilateral A R AT, R H, R A

10 Male 24 Normal L F, L T, L A, L H L F, L AT

11 Female 39 Normal Bilateral F, bilateral T, bilateral H,

bilateral A

L AT, L partial H, L Lat

OG

12 Male 21 Normal Bilateral SFG, bilateral MFG,

bilateral IFG, bilateral M F,

bilateral B F, bilateral T, bilateral B

T

L F, L M F

13 Female 36 OPCA R L F, R M F, R B F, R T, R P, R H,

R A

R Lat F, R M F, R B F

14 Male 16 Atrophy in L H and the

whole cortex

Bilateral F, R B F, bilateral T, R I, L

OFC, R H, R A

R B F, R I

15 Female 26 Bilateral CA L F P, L middle T, L Pos T, L P O L Pos T, L P O

16 Male 20 Encephalomalacia foci

in L T P O

L F, L T, L P, L O L P O

17 Female 8 Normal R F, R O, R P, R T, R M F, R H R P, R O

18 Female 27 Normal L F, L P, L T, L H, L A L F P, L Pos T

19 Female 13 AC in L T and L LF,

abnormal signal in

bilateral OHLV

R CS, R P, R P O, R T R O

L, left; HS, hippocampal sclerosis; T, temporal; LF, lateral fissure; H, hippocampus; A, amygdala; AT, anterior temporal; R, right; F, frontal; MFG, middle frontal gyrus; PreG, precentral

gyrus; PosG, postcentral gyrus; SFG, superior frontal gyrus; Pos, posterior; P, parietal; O, occipital; IFG, inferior frontal gyrus; M, mesial; Lat, lateral; B, basis; CA, cerebellar atrophy;

OG, orbitofrontal gyrus; OPCA, olivo-ponto-cerebellar atrophy; I, insular; OFC, orbit frontal cortex; AC, arachnoid cyst; OHLV, occipital horn of lateral ventricle; CS, central sulcus.

into two-dimensional images was required. In our study, the
classification accuracy of CNN using various two-dimensional
images were compared. The EEG data were converted into
four types of images: original waveforms, filtered waveforms,
wavelet spectrum images, and smoothed pseudo Wigner–Ville
distribution spectrum images.

Original Waveform
The original waveform is one of the most direct and commonly
used two-dimensional image transformation methods. First,
since the durations of most HFOs were <1 s, and FRs were
usually shorter than ripples (24, 25), 200ms (for ripples) or
100ms (for FRs) epochs centered on each HFO were extracted
from the original EEG data. This transformation used two scales
to draw the EEG. In the fixed scale, the amplitude scale of the EEG
signal was within ±1,000 µV when an EEG epoch was drawn.
This scale could restore the morphology of the original data well.

In the fitted scale, the maximum absolute EEG signal value α µV
was calculated. Then, the EEG amplitude scale was within±α µV
when the signal was drawn. This scale could effectively eliminate
differences between EEG signal baseline conditions caused by
different references or equipment.

Filtered Waveform
The filtered waveform is a two-dimensional image
transformation method whose result is most similar to EEG
morphology when manually analyzing HFOs. First, the data
were filtered using a finite impulse response (FIR) filter with
a hamming window. They were band-passed by 80–200Hz
for ripples with window length of 330 points and 200–500Hz
for FRs with window length of 132 points. Then, 200ms (for
ripples) or 100ms (for FRs) HFO-centered filtered EEG epochs
were extracted. Again, two types of scales were used to draw the
filtered signal. In the fixed scale, the amplitude scale of the ripple
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FIGURE 3 | Four ripple image transformations. Left: Transformations of a ripple. Right: Network inputs in the form of two-dimensional 96 × 96-pixel images that

represent various transformations. (A) Transformations with fixed scales. From top to bottom are original waveforms, filtered (80–200Hz) waveforms, wavelet

spectrum images, and ASPWVD spectrum images. (B) Transformations with fitted scales. From top to bottom are original waveforms, filtered (80–200Hz) waveforms,

wavelet spectrum images, and re-normalized SPWVD images.

was within ±50 µV and the FR was within ±10 µV when an
HFO segment was plotted. The fitted scale process was the same
as that used with the preceding original waveform.

Wavelet Spectrum Image
Time-frequency spectrum images can transform one-
dimensional EEG signals from the time domain to the
time-frequency domain and are widely used in EEG signal

processing. The most popular algorithms include short-time
Fourier transforms, wavelet transforms, and empirical-mode
decomposition. In this study, a Morlet wavelet with a center
frequency of eight was used for analysis (12). Ripples were drawn
with a frequency range of 80–200Hz and a step size of 1Hz.
FRs were drawn with a frequency range of 200–500Hz and a
step size of 1Hz. In order to remove the influence of boundary
effects on the wavelet graph, wavelet spectra of 1,000ms epochs
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FIGURE 4 | Four fast ripples (FRs) image transformations. Left: Transformations of a FR. Right: Network inputs in the form of two-dimensional pictures of 96 × 96

pixels that represent various transformations. (A) Transformations with fixed scales. From top to bottom are original waveforms, filtered (200–500Hz) waveforms,

wavelet spectrum images, and ASPWVD spectrum images. (B) Transformations with fitted scales. From top to bottom are original waveforms, filtered (200–500Hz)

waveforms, wavelet spectrum images, and re-normalized SPWVD spectrum images.

centered on the extracted 5 s data were calculated. Then,
partial wavelet spectrum graphs with durations of 200ms
(for ripples) or 100ms (for FRs) centered on the 5 s graphs
were restored.

The scales were similar to those of other transformations. In
the fixed scale, the wavelet spectrum energy mapping range was
within 0–1,000 µV2 for ripples and within 0–10 µV2 for FRs
when the wavelet spectrum image was plotted. In the fitted scale,

the maximum absolute value α µV2 of wavelet spectrum was
computed. When the wavelet spectrum graph was drawn, the
wavelet spectrum energy scale was within 0 α µ V2.

Smoothed Pseudo Wigner–Ville Distribution

Spectrum Image
The Wigner–Ville distribution is widely used in the field of
time-frequency feature extraction. It is a powerful, appealing
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FIGURE 5 | Network inputs in the form of two-dimensional pictures of ripples. (A) Two-dimensional pictures (96 × 96 × 1 pixel) of five ripples in different channels of

EZs. Upper and lower four panels are fixed and fitted scales. The four panels are original waveforms, filtered (80–200Hz) waveforms, wavelet spectrum images, and

SPWVD spectrum images. (B) Two-dimensional pictures (96 × 96 × 1 pixel) of ripples in different channels of non-EZs. Upper and lower four panels are fixed and

fitted scales. The four panels are original waveforms, filtered (80–200Hz) waveforms, wavelet spectrum images, and SPWVD spectrum images.

tool for the analysis of non-stationary, non-linear, and transient
signals (26). This method has higher temporal and frequency
resolutions than wavelet transforms. However, cross-term
interference occurs when this algorithm is applied to signals
with multiple frequency components. We used a smoothed
pseudo Wigner–Ville distribution (SPWVD) to reduce this
influence. The SPWVD improves on WVD by using windowed
smoothing for time-frequency analysis. This method can
reduce interference from cross terms with little loss in time
and frequency resolution, and is thus more suitable for
EEG analysis.

The central point of each HFO was set as time 0, and
data from 500ms before and after this point were used for
SPWVD analysis. This study used a Kaiser window with a
length of 1,000ms and a frequency of 1,000Hz to smooth in
time and frequency. For a continuous signal x (t), the WVD is
defined as:

WVDx

(

t, f
)

=

∫ ∞

−∞

x
(

t +
τ

2

)

x∗
(

t −
τ

2

)

e−j2π f τ dτ . (1)

For a discrete signal withN samples, the distribution becomes:

WVDx

(

n, k
)

=

N
∑

m=−N

x (n+m/2) x∗(n−m/2)e−j2πkm/N . (2)

The SPWVD used independent windows to smooth in time
and frequency:

SPWVD
g,H
x

(

t, f
)

=

∫ ∞

−∞
g(t)H(f )x

(

t +
τ

2

)

x∗
(

t −
τ

2

)

e−j2π f τ dτ . (3)

where g(t) is the smoothed window of time domain, and H(f )
is the smoothed window of frequency domain.

Since the frequency components of the EEG signals follow
power laws, the energy in the time-frequency SPWVD diagram
decays rapidly as the frequency increases. Therefore, it is difficult
to distinguish high-frequency information in the SPWVD time-
frequency spectrum. We used the following improvements to
solve this problem.

First, for the specified frequency f, the SPWVD transformation
was normalized by dividing by the maximum SPWVD value
at all timepoints (Figures 2A,B). The normalized SPWVD
transformation value was named the SPWVD index. The
formulas are as follows:

Ŵtf =

{

0, Wtf ≤ 0
Wtf

max
(

Mf

) ,Wtf > 0
(4)

where Ŵtf is the SPWVD transformation of HFO; t is
time, which ranges from 0 to 1,000ms; f is frequency, which
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FIGURE 6 | Network inputs in the form of two-dimensional pictures of FRs. (A) Two-dimensional pictures (96 × 96 × 1 pixel) of five FRs in different channels of EZs.

Upper and lower four panels are fixed and fitted scales. The four panels are original waveforms, filtered (200–500Hz) waveforms, wavelet spectrum images, and

SPWVD spectrum images. (B) Two-dimensional pictures (96 × 96 × 1 pixel) of ripples in different channels of non-EZs. Upper and lower four panels are fixed and

fitted scales. The four panels are original waveforms, filtered (200–500Hz) waveforms, wavelet spectrum images, and SPWVD spectrum images.

ranges from 0 to 1,000Hz; and Mf is the curve that contains
the SPWVD transformation values and time information for a
specific frequency f. The sample frequency is 2,000Hz and the
frequency interval is 0.5 Hz.

Second, we innovatively applied two further improvements to
the algorithms in this study:

(1) The re-normalized SPWVD. After computing the
normalized Wtf values for all of the frequencies (80–200 or
200–500Hz) in an HFO, we obtained a curve C for each HFO
and determined the maximum SPWVD index in the curve
(Figure 2C). Then, theWtf was re-normalized by dividing by the
maximum SPWVD index at all frequencies for each HFO.

(2) The adjusted SPWVD (ASPWVD). Although SPWVD
provides an improvement by adding windowed smoothing to
the WVD, noise remains in the EEG. This can decrease the
accuracy of time-frequency analysis. Therefore, we determined
the median of the maximum SPWVD indexes of the C
curves of SPWVD transformation for all HFOs (Figure 2D).
Then, the SPWVD transformations of all of the HFOs
were adjusted by dividing them by the median maximum
SPWVD index. After adjustment, the WVD-related noise
was suppressed and the features of the time-frequency were
highlighted (Figures 2E,F). ASPWVD transformed images could
obtain oscillation energy better while retaining their time
frequency resolution.

Then, partial SPWVD spectrum graphs with durations of
200ms (for ripples) or 100ms (for FRs) that were centered on
the 1,000ms graphs were restored.

Statistical Analysis
In the current study, we sought to detect epileptic HFOs in
EZs from HFOs in non-EZs. Therefore, true positive (TP) refer
to cases where HFOs in EZs were classified correctly and false
negative (FN) refer to cases where HFOs in EZs were classified as
HFOs in non-EZs. False positive (FP) refers to cases where HFOs
in non-EZs were classified as HFOs in EZs and true negative
(TN) refer to cases where HFOs in non-EZs were classified
correctly. The sensitivity, specificity, and accuracy are defined in
the following equations:

Sensitivity = TP
TP+FN × 100

Specificity = TN
TN+FP × 100

Accuracy = TP+TN
TP+FN+TN+FP × 100

(5)

All data are expressed as mean± SD and were analyzed using
Sigmaplot version 12.0 (Systat Software, Inc, San Jose, CA, USA).
The one-way ANOVA was used to compare the accuracies of
CNN networks using four types of transformation images. The
Tukey test was used for pairwise comparisons. The t-test and
Mann–Whitney rank sum test were used for normal distribution
data and non-normal distribution data to compare the CNN
classification results based on fixed-scale and fitted-scale images.
A p < 0.05 was considered statistically significant.
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TABLE 2 | Performance of convolutional neural networks (CNNs) trained using various electroencephalogram (EEG) data transformations.

HFO Transformation method Fixed scale /ASPWVDa

(mean ± standard deviation)

Fitted scale/re-normalized SPWVDb

(mean ± standard deviation)

Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

Ripple Original waveform 67.90 ± 1.48 65.73 ± 1.52 73.45 ± 1.84 70.25 ± 1.27 69.93 ± 2.04 71.91 ± 1.47

Filtered waveform 68.47 ± 4.13 68.36 ± 4.35 70.32 ± 4.49 63.99 ± 4.97 62.88 ± 5.52 65.76 ± 4.75

Wavelet spectrum image 74.96 ± 1.19 72.37 ± 1.95 79.07 ± 2.05 68.07 ± 2.43 67.62 ± 2.32 69.56 ± 2.75

SPWVD spectrum image 80.89 ± 1.43 80.10 ± 1.97 82.48 ± 2.25 70.48 ± 1.05 68.92 ± 2.59 73.53 ± 3.02

Fast ripple Original waveform 64.09 ± 2.02 63.87 ± 2.24 64.49 ± 2.29 62.38 ± 1.95 62.46 ± 2.02 62.37 ± 2.16

Filtered waveform 66.85 ± 6.04 65.81 ± 5.03 68.43 ± 4.98 62.84 ± 6.25 62.11 ± 5.36 63.20 ± 5.47

Wavelet spectrum image 75.90 ± 1.81 76.40 ± 3.10 75.82 ± 3.33 73.60 ± 1.78 73.48 ± 2.85 73.75 ± 2.96

SPWVD spectrum image 77.85 ± 1.61 77.39 ± 2.53 78.75 ± 2.33 67.80 ± 3.76 66.81 ± 4.10 68.32 ± 4.06

aAdjusted smoothed pseudo Wigner–Ville distribution (ASPWVD); bSmoothed pseudo Wigner–Ville distribution (SPWVD).

RESULTS

A total of 19 subjects with focal refractory epilepsy were included
in the study (10 females). Their demographics and clinical
characteristics are shown in Table 1. A total of 20,238 ripples
(12,756 in EZs and 7,482 in non-EZs) and 5,189 FRs (3,146
in EZs and 2,043 in non-EZs) were detected automatically.
Therefore, before deep learning, 7,000 ripple epochs and 2,000 FR
epochs were selected randomly from the EZ and non-EZ groups
for analysis.

Figure 3 shows the four types of ripple transformations with
two scales. The re-normalized SPWVD image displays higher
time-frequency resolution than the wavelet spectrum image.
The ASPWVD further suppresses the WVD-related noise and
highlights the features of HFOs. Figure 4 shows four types of FR
transformations with two scales and excellent two-dimensional
ASPWVD images. Figures 5, 6 show two-dimensional 96× 96×
1 pixel images of five different ripples or FRs fromEZ and non-EZ
that were put into the network.

The classification performances of CNN models trained on
four different transformations of EEG features with two scales
are shown in Table 2. The accuracies of the CNN networks to
classify EZ and non-EZ HFOs were higher than 50%. Therefore,
the null hypothesis that the classification is random was rejected.
Except for original ripple waveforms, the results from the CNN
models that are trained using fixed-scale images are significantly
better than those from models trained using fitted-scale images
(p < 0.05, Figures 7, 8). Of the four models based on fixed-scale
transformations, the CNNmodel based on the ASPWVD exhibits
the best accuracies (80.89± 1.43% and 77.85± 1.61% for ripples
and FRs, respectively, p < 0.05). The training and validation
accuracies and losses of ripples and FRs are also displayed in
Figures 7, 8.

DISCUSSION

In this study, a multi-feature CNN network structure was used
to explore a new method of identifying EZ and non-EZ HFOs.
ASPWVD images were applied creatively to transform one-
dimensional EEG data into two-dimensional signals and help to

improve the accuracy of the CNN network. As a result, the CNN
model based on ASPWVD images provided the best accuracies
with fixed scales (80.89 ± 1.43% and 77.85 ± 1.61% for ripples
and FRs, respectively).

CNNs are used widely for EEG signal analysis and perform
well (27–29). A traditional CNN structure was used to distinguish
EZ and non-EZ HFOs in this study (30). We innovatively
converted all epochs into four types of images with two scales.
The CNN classification results produced by using networks
that were trained using various EEG feature transformations
indicated that fixed-scale image performance was usually
significantly better than fitted-scale image performance. The
fitted-scale images provided similar oscillation patterns of EZ and
non-EZ HFOs. This led to ordinary classification performance.
The better performance of CNNs that were trained using fixed-
scale images indicates that there are potentially significant
differences between the amplitudes of EZ and non-EZ HFOs.
This finding is similar to previous results (31, 32).

The classification results from CNNs that were trained using
ASPWVD transformed images were optimal. We applied this
time-frequency analysis to transform one-dimensional EEG
data into two-dimensional images. This succeeded because this
method could reduce WVD-related noise and receive higher
time-frequency analysis resolution than wavelet transformation.
Therefore, more detailed time and frequency information of
HFOs in the image was analyzed during convolution with the
CNN than other transformations. This could help the CNN
to identify oscillations more accurately. It is widely proven
that physiological and pathological HFOs exhibit overlapping
properties (33, 34), and different brain regions generate highly
variable rates of physiological HFOs (7, 35). The differences
between EZ and non-EZ HFOs are reflected mainly in the
oscillation details. Thus, a method that adequately expresses
oscillation details, such as the ASPWVD, can effectively assist
CNN model in classification of EZ and non-EZ HFOs.

Our results indicate that CNNs can distinguish EZ and non-
EZ HFOs, but the highest accuracy achieved is limited to 81%.
Apart from the limitations of the method, this limited accuracy
may be related to the inherent characteristics of the data for
two reasons. First, the pervasiveness of physiological HFOs limits
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FIGURE 7 | Convolutional neural networks (CNN) accuracies for ripples classification. (A) Accuracies of CNNs for ripples classification using various transformations.

The CNN network using the fixed-scale ASPWVD images provides the highest accuracy (p < 0.05). Except for original ripple waveforms, the results from CNN models

that are trained using fixed-scale images are significantly better than those from models trained using fitted-scale images (p < 0.05). (B) CNN training and validation

accuracies and losses are displayed. Asterisk (*) means a statistically significant difference.
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FIGURE 8 | CNN accuracies for FRs classification. (A) Accuracies of CNNs for FRs classification using various transformations. The CNN using the fixed-scale

ASPWVD images provides the highest accuracy (p < 0.05). The results from CNN models that are trained using fixed-scale images are significantly better than those

from models trained using fitted-scale images (p < 0.05). (B) CNN training and validation accuracies and losses are displayed. Asterisk (*) means a statistically

significant difference.
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accuracy. Due to the presence of functional neural networks in
the brain, physiological HFOs are distributed widely among EZ
and non-EZ areas. Therefore, certain characteristics may overlap
EZ and non-EZ HFOs. This increases the difficulty of classifying
HFOs in these two areas. Second, the blurred boundaries of
real EZs may affect accuracy. Although the surgical outcomes of
the patients in our group were Engel I and we defined the EZ
according to the resection scope, the brain area that was resected
during surgery might be larger than the real EZ range.

In addition, the number of patients that could be included
was limited because of the restrictive inclusion criteria, and the
training, validation, and test datasets were from the same patients
because of the limited number of patients. This might cause
higher accuracies than it would have been achieved in a scenario
where the model was tested on patients that were different from
the ones used in training and validation. Due to the small number
of FRs, the performance of CNNs to classify EZ and non-EZ
FRs were not as good as ripples. In the future, we will include
more patients to further train and test the CNN model. Accurate
EZ and non-EZ HFOs training datasets can help to train CNNs
better. Furthermore, we hope to optimize the network structure
and improve HFO characteristic transformation in order to
modify our algorithm further.

CONCLUSION

In this study, EZ and non-EZ HFOs were distinguished
successfully using our multi-feature CNN model. Their
classification was most effective when they used time-frequency

information from EEG data that was filtered using the ASPWVD
method. We innovatively proposed an optimized CNN model to
classify EZ and non-EZ HFOs, though the accuracy of our CNN
model is not yet sufficient for clinical use. In the future, accurate
training datasets that distinguish physiological and pathological
HFOs or occurrence of other network structures may enable

deep learning networks to produce a simple, fast, and reliable
system for classifying EZ and non-EZ HFOs.
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